“浩然呀”通过精心收集,向本站投稿了6篇高一数学必修1知识,这次小编给大家整理后的高一数学必修1知识,供大家阅读参考。
篇1:高一数学必修1知识总结
数学(mathematics),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学,可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。
数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。代数学可以说是最为人们广泛接受的“数学”。
可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程。而其后更发展出更加精微的微积分。
西方最原始math(数学)应用之一,奇普现时数学已包括多个分支。创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。就纵度而言,在数学各自领域上的探索亦越发深入。
篇2:高一数学必修1知识总结
一:集合的含义与表示
1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
3、集合的表示:{…}
(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来{a,b,c……}
b、描述法:
①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x?R|x-3>2},{x|x-3>2}
②语言描述法:例:{不是直角三角形的三角形}
③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:a?A
(2)元素不在集合里,则元素不属于集合,即:a¢A
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N_或N+
整数集Z
有理数集Q
实数集R
篇3:高一数学必修1知识总结
一、集合
知识点1:集合的概念与性质
→下设考点:集合的表示方法
集合中元素的性质
思路点拨:区分好数集与点集,利用集合元素的特征:尤其是互异性!
知识点2:集合的基本关系
→下设考点:1-集合关系判断
思路点拨:方法一:逻辑分析①化简②表达式中寻求
方法二:列举法
2-已知集合关系,求参数取值范围
思路点拨:①将集合关系转化为元素关系②利用数轴、韦恩图辅助分析
3-集合子集个数问题
思路点拨:①确定元素个数②确定子集个数
注意事项:子集问题勿忘空集
知识点3:集合的基本运算
→下设考点:1-求集合的交集、并集、补集
思路点拨:①识别集合认清元素属性②化简③用数轴、韦恩图辅助计算
二、函数与映射
知识点1:函数的定义
→下设考点:1-函数的定义
思路点拨:给图像判断①画竖线②看交点个数
2-同一函数的判断
思路点拨:①定义域②对应法则③值域完全相同
知识点2:映射
→下设考点:1-映射的定义
思路点拨:任意对唯一确定
2-映射个数问题
思路点拨:①确定好象与原象②画出对应关系
知识点3:函数的定义域
→下设考点:1-基本初等函数定义域
思路点拨:①分母不为零
②偶次根号下大于等于零
③零次幂底数不为零
2-抽象函数定义域
思路点拨:①定义域指“x”取值范围
②同一个f下,括号内范围相同
知识点4:函数解析式
→下设考点:1-求函数解析式
思路点拨:方法一:待定系数法(已知函数类型)
方法二:换元法(f[g(x)]),记得求新元范围!
方法三:方程组法(f(x),f(-x),f(1/x))
方法四:赋值法(0,1,-1,x,-x)
2-分段函数求解析式
思路点拨:注意复合变量的要求
知识点5:求函数值域
→下设考点:1-求函数值域
思路点拨:方法一:基本函数法
方法二:分离常数法
方法三:换元法
方法四:单调性法
知识点6:函数的单调性
→下设考点:1-判断函数的单调性
思路点拨:方法一:定义法
方法二:图像法
方法三:复合函数单调性法
2-求函数的单调区间
2-已知奇偶性求值求参数范围
思路点拨:利用奇偶性图像与性质
3-已知奇偶性求解析式
思路点拨:求哪设哪
篇4:高一数学必修1公式
高一数学必修1公式整理
【和差化积】
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
【某些数列前n项和】
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a·r a是圆心角的弧度数r >0 扇形面积公式 s=1/2·l·r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1·X2=c/a 注:韦达定理
【判别式】
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
【两角和公式】
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
【倍角公式】
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
【半角公式】
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
【降幂公式】
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
【万能公式】
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
数学学习方法和技巧
根据现在初中学生的心理特征、初中教学现状、高中规模的扩张等,影响高一数学学习障碍的主要因素有如下几个:
基础知识不扎实
初中教学同样受升学压力的影响,为了挤出更多的时间复习迎考,挤压新课学习时间,删减未列入考试的内容或自认为考试不重要的内容,造成学生知识结构不完整,基础知识掌握不扎实,如初中对函数和平面几何等内容的新课学习时间不够,学生感到困难,带着这样的阴影学生到高中碰到函数和立体几何等内容的学习就感到恐惧,没有学就产生了畏难情绪。
学习习惯和方法的指导不够
初中教学不太关注对学生学习习惯和方法的指导,忽视对数学思想方法的培养和渗透(现在学生的认知水平是可以接受的),热衷于通过大量的练习模仿来掌握解题方法,如对初中二次函数的学习。
初、高中教学内容、要求、教学方法的强烈反差
随着初中课改的实施,普九工作的不断推进,初中教学内容在不断删减,要求在不断地降低,而高中教学内容,就是现使用的试验修订本教材新增加了不少内容。加之高考的激烈竞争,高考试题命题方向的调整(由过去的以知识立意为主转向以能力立意为主),导致高中数学教学的一些“战略”性调整,赶教学进度,提前结束新课,争取复习时间,没有顾及到高一学生的接收水平。另外,高中数学教学重在培养思维能力和分析问题、解决问题的能力.强化思维的培养训练,代替了初中的强化知识掌握和解题为主的培养训练,这种定位的不同,必然提高了对学生的要求,这是高一新生感到很不适应的一个重要因素。
学好高一数学的方法
读好课本,学会研究
有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平” ,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳” 。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。
记好笔记,注重课堂
首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。
做好作业,讲究规范
在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。
写好总结,把握规律
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。“ 不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。” 通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。
关于数学的名言
1、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。――康托尔
2、一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。——马克思
3、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。——柯西
4、学习数学要多做习题,边做边思索。先知其然,然后知其所以然。——苏步青
5、如果我继承可观的财产,我在数学上可能没有多少价值了。——拉格朗日
6、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。——达尔文
7、非数学归纳法在数学的研究中,起着不可缺少的作用。——舒尔(I·Schur)
8、现代数学最主要的成就是真正揭示了数学的整个面貌及其实质存在。——Russell
9、我总是尽我的精力和才能来摆脱那种繁重而单调的计算。——纳皮尔
10、一个没有几分诗人才能的数学家决不会成为一个完全的数学家……——魏尔斯特拉斯
11、纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。——哈尔莫斯
12、整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。——伯克霍夫
13、数学——科学不可动摇的基石,促进人类事业进步的丰富源泉……——巴罗
14、在数学里,分辨何是重要,何事不重要,知所选择是很重要的。——广中平佑
15、一个没有几分诗人气的数学家永远成不了一个完全的数学家。——维尔斯特拉斯
16、无限!再也没有其他问题如此深刻地打动过人类的心灵。——希尔伯特
17、数无形时少直觉,形少数时难入微,数与形,本是相倚依,焉能分作两边飞。——华罗庚
18、纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。——怀德海
19、以我一生最好的时光追寻那个目标……书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者。——开普勒
20、数学受到高度尊崇的另一个原因在于:恰恰是数学,给精密的自然科学提供了无可置疑的可靠保证,没有数学,它们无法达到这样的可靠程度。——爱因斯坦
篇5:高一数学必修1目录
高一数学必修1目录
第一章 集合与函数概念
1.1集合——阅读与思考 集合中元素的个数
1.2函数及其表示——阅读与思考 函数概念的发展历程
1.3函数的基本性质——信息技术应用 用计算机绘制函数图形
实习作业
小结
复习参考题
第二章 基本初等函数(1)
2.1指数函数——信息技术应用 借助信息技术探究指数函数的性质
2.2对数函数——阅读与思考 对数的发明
探究与发现 互为反函数的两个函数图像之间的关系
2.3幂函数
小结
复习参考题
第三章 函数的应用
3.1函数与方程——阅读与思考 中外历史上的方程求解
信息技术应用 借助信息技术求方程的近似解
3.2函数模型及其应用——信息技术应用 收集数据并建立函数模型
实习作业
小结
复习参考题
关于数学:
课本上讲的定理,你可以自己 试着自己去推理。这样不但提高自己的证明能力,也加深对公式的理解。还有就 是大量练习题目。基本上每课之后都要做课余练习的题目(不包括老师的作业)。
数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开 的,因此。良好的数学学习习惯包括:听讲、阅读、探究、作业。听讲:应抓住 听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好 笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
阅读:阅读时应 仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起 来一同学习,博采众长,增长知识,发展思维。
探究:要学会思考,在问题解 决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论 去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维 规律。作业:要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要 认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学。
总之,在学习数学的过程中,要认识到数学的重要性,充分发挥自己 的主观能动性,从小的细节注意起,养成良好的数学学习习惯,进而培养思考问 题、分析问题和解决问题的能力,最终把数学学好。
到了高中,数学跟初中数 学是有很多的不同,对知识的理解能力要求高了,对数学思维的要求也高了,凭 以前的方法是不行了。
高中数学学习方法一般来讲还是以上课认真听讲为主, 抓住课本典型例题理解透了掌握透了才是王道,千万别只顾着看参考书了,那是 本末倒置的方法;另外与老师交朋友经常与老师沟通,问问题、请教学习方法都 很重要。建立自己的错题档案是杀手锏的一招。
总之,是个积累的过程,你了 解的越多,学习就越好,所以多记忆,选择自己的方法。
有关数学知识点拓展 数学(mathematics),是研究数量、结构、变化、空间以及信息等概念 的一门学科,从某种角度看属于形式科学的一种。借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学, 可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。
数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积 累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只 是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的 贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基 本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。
从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长 久以来仍处于独立的状态。代数学可以说是最为人们广泛接受的“数学”。
可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数 学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。
几何学则是最早开始被人们研究的数学分支。直到16世纪的文艺复兴时期,笛卡 尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后, 我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的 代数方程。而其后更发展出更加精微的微积分。
西方最原始math(数学)应用之一,奇普现时数学已包括多个分支。创 立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研 究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。他们认为, 数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序 ……)、拓扑结构(邻域,极限,连通性,维数……)。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。
数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促 成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实 际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的 应用。
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代 的对于不确定性的研究(混沌、模糊数学)。就纵度而言,在数学各自领域上的探 索亦越发深入。
如何学好数学
1、重视课本知识
对于高一学生来说,大部分数学知识的来源都是课本,只有很少的一部分知识是课外拓展。所以高一学生想要学好数学,就要先把课本知识理解透彻。平时做题的时候,也要以课本为重,把课本上的练习做会了,再做其他题。
2、课前预习
对很多高一学生来说,还没有养成良好的学习习惯,完全没有课前预习的习惯。但是如果想要学好高一数学,一定要进行适当的预习,如果时间不多,可以浏览一下老师要讲的主要内容,有一个大概的印象。这样在上课的时候,可以更好的跟上老师的思路。
最牛高考励志书,淘宝搜索《高考蝶变》购买!
3、记好笔记
对于高一学生来说,想要学好数学,记好课堂笔记也是一件很重要的事情。不要以为记笔记是文科生该做的事情,理科同样需要。高一学生要清楚,在这45分钟内,并不是所有的知识点都能掌握的,这个时候要把自己没有理解的知识点记下来,然后课下再去钻研。另外笔记也可以作为考试复习时的参考!
4、及时复习
想要学好高一数学,及时复习是其中重要的一环。高一学生可以通过反复阅读教材和查找相关资料,来加深自己对基本概念和知识体系的理解和记忆,把自己学到的新知识和旧知识联系起来,进行比较和分析。
篇6:高一数学必修1知识点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
练习题目:
1.(08?江西)若0 A.3y<3x B.logx3 C.log4x [解析] ∵0 ∴①由y=3u为增函数知3x<3y,排除A; ②∵log3u在(0,1)内单调递增, ∴log3x ③由y=log4u为增函数知log4x ④由y=14u为减函数知14x>14y,排除D. 2.已知方程|x|-ax-1=0仅有一个负根,则a的取值范围是( ) A.a<1 B.a≤1 C.a>1 D.a≥1 [答案] D [解析] 数形结合判断. 3.已知a>0且a≠1,则两函数f(x)=ax和g(x)=loga-1x的图象只可能是( ) [答案] C [解析] g(x)=loga-1x=-loga(-x), 其图象只能在y轴左侧,排除A、B; 由C、D知,g(x)为增函数,∴a>1, ∴y=ax为增函数,排除D.∴选C. 4.下列各函数中,哪一个与y=x为同一函数( ) A.y=x2x B.y=(x)2 C.y=log33x D.y=2log2x [答案] C [解析] A∶y=x(x≠0),定义域不同; B∶y=x(x≥0),定义域不同; D∶y=x(x>0)定义域不同,故选C. 5.(上海大学附中2009~2010高一期末)下图为两幂函数y=xα和y=xβ的图像,其中α,β∈{-12,12,2,3},则不可能的是( ) [答案] B [解析] 图A是y=x2与y=x12;图C是y=x3与y=x-12;图D是y=x2与y=x-12,故选B. 6.(2010?天津理,8)设函数f(x)=log2x, x>0,log12(-x), x<0.若f(a)>f(-a),则实数a的取值范围是( ) A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1) [答案] C [解析] 解法1:由图象变换知函数f(x)图象如图,且f(-x)=-f(x),即f(x)为奇函数,∴f(a)>f(-a)化为f(a)>0,∴当x∈(-1,0)∪(1,+∞),f(a)>f(-a),故选C. 解法2:当a>0时,由f(a)>f(-a)得,log2a>log12a,∴a>1;当a<0时,由f(a)>f(-a)得,log12(-a)>log2(-a),∴-1 高一数学学习技巧 1.要读好课本 有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。 2.要记好笔记 首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。 3.要做好作业 在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。 4.要写好总结 一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。“不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。 通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。高一数学必修1知识(精选6篇)