石油化工离心泵的故障分析及维护探讨论文

时间:2023-02-09 03:59:56 作者:快乐小花卷 综合材料 收藏本文 下载本文

【导语】“快乐小花卷”通过精心收集,向本站投稿了11篇石油化工离心泵的故障分析及维护探讨论文,以下是小编为大家整理后的石油化工离心泵的故障分析及维护探讨论文,希望对您有所帮助。

篇1:石油化工离心泵的故障分析及维护探讨论文

中图分类号: C35 文献标识码: A

Abstract: how to improve the reliability, life and efficiency of the centrifugal pump operation is very important. Centrifugal pump for good daily maintenance, timely operation in the process of failure analysis processing, not only can ensure the safety of the stable operation and enterprise production and business operation smoothly; Also conducive to energy conservation and environmental protection at the same time, create smooth and efficient petrochemical production plant.

Keywords: petroleum chemical centrifugal pump maintenance fault analysis

引言:无论是离心泵,还是往复泵、齿轮泵等,几乎所有种类的泵都在石化装置内有所应用,其中离心泵是最为常见的一种。在离心泵运转过程中,难免会出现各种各样的故障,严重者可能会引发安全事故。因而,如何提高离心泵运转的可靠性、寿命及效率十分重要。

一、离心泵在石油化工中的运用

化工离心泵一般适用于化工厂以及化工行业,常用的化工离心泵材质有不锈钢、氟塑料材质或者碳钢等。每一种材质的化工离心泵的用途都不一样,要根据实际输送介质来决定。由于化工离心泵输送的介质往往有毒、有害、有腐蚀性,具有高温或低温,因此要求化工离心泵能满足化工工艺需求,无泄漏或少泄漏, 耐腐蚀、耐磨损,耐高温或低温,能输送临界状态的液体,运行可靠。

二、常见故障原因分析及处理

造成离心泵故障的原因多种多样,常见的有选型不合理及设备固有故障、安装、启动和运行故障。例如,因选型不合理造成泵超功率;因设计制造缺陷造成泵气蚀严重和流量不足;因安装故障造成泵的振动与噪声严重超标;因泵的启动和运行故障造成泵不能正常启动及出水量逐渐减少、填料发热、轴承过热等。

泵运转声音异常或振动过大 泵正常运转时,泵和电机组成的小机组应是平稳的,声音应当是正常的。如果这个小机组有杂音或异常振动,则往往是泵故障的先兆,应立即停机检查,排除隐患。

出现故障的原因可能有:泵或电机的转子转动不平衡、泵与电机不对中,对轮胶圈老化、叶轮平衡未校正、机泵基础刚度不够,地脚螺栓松动、轴承或密封磨损过多,造成转子偏心、泵内有气体,没有抽成真空、轴承和填料润滑不当,磨损过多、、轴承磨损或已损坏、润滑油(脂)过多或过少、吸程过大,叶轮进口产生气蚀,液体经过叶轮时在低压区出现气泡,到高压区气泡溃灭,产生撞击引起振动,此时应降低泵的安装高度、泵吸入异物,堵塞或损坏了叶轮,则应停机清理异物或更换已损坏的叶轮、共振引起的振动,主要是转子的固有频率和泵的转速相同,产生了共振等。

轴承过热 如果在泵的运行中发现轴承烫手,则可在下面几项中排查其原因:泵与电动不同心、联轴器对中不良或轴向间隙太小,方法是检查对中情况和调整轴向间隙、润滑油量不足或润滑油循环不良、润滑油质量差、有杂质使轴承锈蚀、磨损,转动不灵活、轴承已严重磨损、轴瓦刮研的不好,则应取出轴瓦重新刮研或更换新轴瓦、轴承间隙过小,则应重新调整轴承间隙或刮研轴瓦、轴承装配不良,则应按要求检查轴承装配情况,消除不合要求的因素、冷却水断路,则应立即检查修理冷却水装置、泵轴弯曲,则应矫正泵轴等因素。

三、正确的维护的内容

离心泵诊断技术以离心泵的故障机理为基础,通过准确采集和检测反映设备状态的各种信号,并利用现代信号处理技术将现场采集的各种信号经过相应变换,提取真正反映设备状态的信息,然后根据已掌握的故障特征信息和状态参数判断故障及原因,并预测故障的发展和设备寿命。由于目前人们对故障诊断的理解不同,各工程领域都有其各自的方法,按检测手段分类,主要包括:振动检测诊断法;噪声检测诊断法;温度检测诊断法;压力检测诊断法;声发射检测诊断法;润滑油或冷却液中金属含量分析诊断法等。

对离心泵的官路和密封和状况进行检查,要求每个班次上岗前都要进行此项检查,在启动离心泵之前还要通过手动的方式进行检查,看其是否能正常运转;,检查油位的情况,每天根据观察的情况对润滑油的缺位进行及时的补充,还要定期(每月一次)进行更换;离心泵进入工作状态后,及时打开出口的阀门,同时要对电机的运转负荷状况进行观察,对管路的压力情况进行观察。在离心泵正常运转的状况下,调节出口阀,使离心泵的工作指标在正常控制范围内,使离心泵达到最佳的运行效率;在离心泵正常运转的状态下,轴承温度一般最高不超过80摄氏度,在日常的温度控制上,如果发现轴承温度高于60,就需要检查润滑油的油位和冷却水的管路情况,有时也可能是由于油箱内进入了异物;在工作程序上,在停止离心泵工作时,需要先关出口阀,再关压力表,最后停止电机的运转;在新离心泵刚开始安装使用时,在经过初始的100小时运转后要进行润滑油的更换,在今后的使用中经过500小时后进行一次换油即可;一般在冬季离心泵将进入停运状态,此时需要拧开离心泵下方的放液螺塞,放干净存留的介质,防止冬季发生冻裂现象;如果离心泵需要长时间的停用,在闲置之前要将离心泵拆开并且擦干,再对旋转部位和接合处进行润滑处理后,再进行存放。 四、正确的维护的方法

1、准确选择离心泵的流量、扬程

准确地选择流量、扬程,可以确保离心泵在使用过程中处于最佳的性能状态。若离心泵在低流量状态下运转,在离心泵内会造成环流漩涡,并产生径向力,使叶轮处于不平衡状态,轴承负载加大,引起密封和轴承受损,严重的低流量还能使流体温度升高、涡轮和泵壳受损,并增加泵轴的.偏斜,甚至使泵轴发生疲劳断裂。若生产上无法提高流量,可以考虑从工艺配管上增加回流,以达到调节流量的目的。

2、保持润滑效果

要经常检查润滑剂的质量和油位,以确保润滑效果。新泵投用一次后应换油,大修时更换了轴承的离心泵也应如此。因为新的轴承同轴运行跑合时,会有异物进入油内,因此必须换油,以后每季度更换一次,所用的润滑油一定要符合质量要求。油雾润滑需要一套使油雾化并以雾状加到轴承上的装置。油雾系统的突出优点是能不断地将新油加到轴承上,同时在轴承箱内形成正压,阻止来自周围环境的污染物。

3、加强易损件的维护

密封圈、油杯(大部分是塑料)、机械密封等均为易损件,特别是机械密封,造价较高,但是其使用寿命直接关系到离心泵故障平均间隔时间的长短。流体水力负荷不断变化、污染物太多、轴偏转、频繁拆装修理等都是导致机械密封寿命缩短的重要因素,应尽量减少。对于输送含固体颗粒的离心泵,更应特别注意,一定要在停泵前,用清水冲洗,防止颗粒进入密封,造成密封损坏。

总结:离心泵在化工生产中应用最为广泛,这是由于其性能适用范围广(包括流量、压头及对介质性质的适应性)、体积小、结构简单、操作容易、流量均匀、故障少、寿命长。因此,在国民经济中占有非常重要的地位。所以随着我国的石油化工业中的离心泵的数目越来越多,其在生产中的重要性不言而喻,离心泵的监测和诊断技术所带来的社会效益和经济效益,也不断为人们所认识。提高离心泵的故障诊断技术,可以有效的预防事故,保证人生和设备的安全,推动设备维修制度的改革,提高经济效益。

篇2:石油化工落地式离心泵基础规划思考论文

摘要:阐述落地式离心泵基础的一般设计步骤,总结此类设备基础在设计中应注意的各种问题

关键词:落地式;泵基础;设计;

引言

石油化工行业内的离心泵基础比较常见,根据安装位置可分为落地式和楼面式。基础结构形式主要可分为钢筋混凝土块式和框架式。泵基础设计的要点有:基础强度要求,基础沉降问题,设备抗震动问题。离心泵基础设计质量的好坏,直接影响着离心泵的安装,运转,使用过程。而且离心泵基础除了承受设备本身重量和运转时所产生的作用力和震动力之外,还要吸收和隔离由于工作时产生的振动,并有防止共振现象发生的要求。因此,设计好离心泵基础基础对设备的顺利安装和运行有着重要的意义,在此就以石油化工落地式离心泵基础为例做简单介绍。

1设计落地式离心泵基础时,一般应先取得以下资料

1.1设备基础的型号、转速、功率、规格及轮廓尺寸图等;

1.2设备机器的自重,重心及传至基础的各种恒、活荷载值,设备动荷载值及其作用位置和方向;

1.3基础的'初步模板图、设备底座的外廓尺寸、基础顶面的设计标高、地脚螺栓(或地脚螺栓孔)的位置及规格;

1.4设备基础在生产装置中的座标定位及邻近建构筑物的基础图;

1.5建设场地的工程地质和水文地质勘察资料。

2确定基础的形式及顶面尺寸

设备基础形式一般采用整体现浇钢筋混泥土块式基础。通常泵基础的顶面尺寸的确定则主要根据“设备底座的外廓尺寸”和“地脚螺栓(或地脚螺栓孔)的位置及规格”两点共同确定。

1)根据设备底座的外廓尺寸,为避免基础边缘混凝土不受集中力影响以及保证设备运行的稳定,设备底座边缘至基础顶面边缘的距离不宜小于100mm。

2)地脚螺栓分直接埋入式(直埋)和预留孔埋置(预埋)2种。根据规定,螺栓直埋时,其中心线至基础边缘距离不应小于4d,且不应小于100mm(注:d为螺栓直径,且d>20时不应小于150mm)和锚板宽度一半加50mm;螺栓预埋时,预留孔边至基础边缘距离不应小于100mm。

3确定基础的埋深及底面尺寸

3.1离心泵基础底面平均压力值,应符合下式要求:Pk≤ηfaPk――相应于荷载效应标准组合时,基础底面处的平均静压力值,kN/m2;η――地基承载力的动力修正系数,一般可取0.8;fa――修正后地基承载力特征值,按GB50007的规定采用,

3.2基组(包括机器、基础和基础上回填土)的总重心与基础底面形心宜位于同一垂直直线上,如果偏心不可避免时,偏心距与基底边长(平行于偏心方向)的比值,应符合下列要求:

1)当地基承载力特征值小于或等于150kPa时,不应大于3%;

2)当地基承载力特征值大于150kPa时,不应大于5%。

3.3考虑到动设备的动力特性,基础质量应大于设备质量的3~5倍。根据上述3点可基本确定基础的埋深及底面尺寸。

4基组总重心及动力计算

4.1基组总重心,应按下列公式计算:x0=∑i=1nmi?xi∑inmiy0=∑i=1nmi?yi∑inmiz0=∑i=1nmi?zi∑inmix0――基组总重心的横坐标,m;xi――分别为基础、电机及泵的重心横坐标,m;y0――基组总重心的纵坐标,m;yi――分别为基础、电机及泵的重心纵坐标,m;z0――基组总重心的竖向坐标,m;zi――分别为基础、电机及泵的重心竖向坐标,m;mi――基础、电机、泵及附件的质量,kg。

4.2当地基承载力特征值不小于80kPa、电机功率不大于560kW且离心泵基础的质量不小于机器质量三倍时,可不做动力计算。

4.3当基础需作动力计算时,基础的允许振幅,应符合下表规定。基础的允许振幅[A]转速,r/mim1000≥n>750750>n≥500n<500[A],mm0.080.120.16(当n>1000r/min时,允许振幅[A]可根据制造厂要求确定,或取0.08mm)

4.4当基础需作动力计算时,基础的最大振动速度不应大于6.3mm/s。

4.5基础的振动线位移、最大振动速度,应按GB50040的规定计算。

5基础的构造要求

5.1设备基础一般为无筋整体现浇混凝土基础,素混凝土的强度等级不得低于C15,钢筋混凝土的混凝土不得低C20,垫层一般采用C15,以上取值还应根据环境类别等满足国家设计规范的要求。

5.2在冻土地区,建在室外的泵基础的地基,应采取防冻胀措施。

5.3基础防腐。设备基础应根据腐蚀性介质的情况采取必要的防腐措施,一般情况下,可以采取刷冷底子油或环氧煤沥青等方式,可灵活选择。

5.4基础顶面的二次浇灌层,厚度宜为30mm~50mm,材料宜采用高强无收缩二次灌浆料。当采用高强无收缩二次灌浆料时,其强度不宜低于:1天为20MPa,3天为40MPa,28天为50MPa,并具有较好的流动性。当采用细石混凝土时,其强度等级应比基础混凝土强度等级提高一级。

5.5自制地脚螺栓下端宜采用直钩型式,直钩长度不应小于地脚螺栓直径的4倍;埋置深度L不应小于地脚螺栓直径的20倍,且不应小于300mm。

5.6基础的地脚螺栓的材质除有特殊要求外,应采用未经加工的Q235-B钢。

5.7地脚螺栓预留孔底至基础底面的距离,不应小于100mm;地脚螺栓底端至预留孔底的距离,不应小于50mm。

6结论

综上所述,设备基础需要考虑多方面的因素,而最终确定一个比较合理经济的方案,此外,设备基础的设计还应考虑基础的不均匀沉降,设备振动比较大时,还应做详细的动力计算,在此不做详述,可参照相关规范进行动力设计。

参考文献:

篇3:石油化工落地式离心泵基础规划思考论文

[2]GB50040-1996,动力设备基础设计规范[S]

[3]韩立平,常见机泵类设备基础设计简介,纯碱工业,2008

篇4:石油化工污水处理分析论文

石油化工污水处理分析论文

摘要:随着现代化技术的发展,我国石化行业也在不断进步。在石油化工的生产中,会产生许多工业废水。这些工业废水中掺杂着大量的污染物。如果不能对这些工业废水进行有效合理的处理,那么将会造成极其严重的后果。因此针对如何高效地处理化工污水及其未来的发展趋势进行了分析。

关键词:石油化工;污水处理;发展趋势

石化行业作为我国的支柱产业之一,在我国现代化建设中起到了至关重要的作用。在石油加工过程中产生了大量废水,石油化工污水处理问题一直困扰着石化行业。现如今石油需求量连年增加,但是水资源却越来越稀少。石油化工污水处理技术的升级与改进已经到了刻不容缓的地步。

1、石油化工污水现状

石油化工是将石油作为主要原料,通过裂解、精炼、分馏、整合等工艺手段将原料中的多种有机物进行加工处理。伴随着石油的加工处理,会产生出大量的工业废水。这些工业废水中掺杂着大量污染物,一旦不能经过很好的回收处理,那么将对我们的生态环境造成巨大的损害。这些工业废水中夹杂着大量有毒物质,常规的化工污水中主要污染成分为氨氮、硫、酚、氧化物等[1]。

2、石油化工污水处理的问题

2.1 化工污水成分复杂

由于国内石油的需求量不断增大,导致在最近几年中所开采出的原油品质逐渐下降,原油中的杂质也越来越多。在石油化工过程中由于原油品质变差,导致原油要经历更复杂的加工过程。伴随着劣质原油的加工,产生的化工污水成分也更加复杂。这也增添了污水处理的工作难度。

2.2 含硫量增多

在世界范围内石油的存有量越来越少,直接导致油价一直持续上升。这也导致高硫含量石油与低硫含量石油的差价不断增加。在高油价的影响下,大量进口高硫含量的原油。这也导致在加工高硫原油中,产生出的化工污水也掺杂着大量硫元素。

2.2 处理难度增加

由于工业废水中含有大量化学元素,传统的污水处理流程已经不能满足目前的环境保护要求,必须改进、加强现阶段我国的化工污水处理手段。很多石化企业在污水处理技术上存在一定的技术操作问题,导致不能针对高浓度污染的化工污水进行有效处理[2]。在我国石化企业飞速发展的同时也应该加强我们对于污水处理的技术手段,只有这样才能更好的对水资源进行回收与再次利用。

3、石油化工污水处理的对策

3.1 复杂的污水处理

在石油加工过程中产生的`化工污水可以分为以下几种:生化性良好的化工污水,不具备毒性有机物;生化性差的化工污水,不具备毒性有机物;有毒性特质的化工污水。在化工污水中有机物的毒性不同,对于环境的污染程度也不同。

3.2 减少污水中硫含量

含硫成分高的化工污水一般都来自石油提炼的二次加工中,含有硫的化工污水可以溶解水中的氧。这种高硫化工污水一旦处理不好直接流入到河流中会造成大量生物死亡。目前国内外在处理污水的过程中多数采用空气氧化法、碱性吸收法、水蒸气汽提法。其中空气氧化与水蒸气汽提对于祛除化工污水中的硫含量有着比价显著的效果。其中空气氧化法是最为便捷的一种去硫方法。在使用空气氧化法时将醌类化合物、钴等催化剂加入到化工污水中,让催化剂与空气中的氧形成化学反应产生硫酸盐与硫代硫酸盐[3]。

3.3 污水的回收与再次利用

水资源的短缺一直困扰着石化行业。石油化工的过程中采用的都是纯洁净水体,其中一部分水体在加工过程中变成水蒸气蒸发,而剩下的水就变成化工污水。企业应根据污水水质进行整合归类。将含硫污水、含盐污水、碱渣污水进行分流排放。同时应该采用不同类别污水进行隔离运输、隔离贮存。

4、结语

石化污水对生态环境造成了巨大的破坏,因此要让化工企业深刻意识到化工污水造成的严重后果。石油化工污水的构成及其复杂,处理手段繁琐。在化工污水的回收与利用中很难达到我国的水质排放标准。面对化工污水问题,容不得工作中出现半点马虎,要充分意识到这项工作的重要性。

参考文献

[1]李恺翔.石油化工污水处理技术的现状与发展趋势[J].石化技术,2015,12(2):264.

[2]于波.石油化工污水处理技术分析[J].化工管理,2014,35(8):143.

[3]穆虹竹.石油化工污水处理的技术探讨[J].石化技术,2016,11(10):206.

篇5:石油化工污水处理技术分析论文

石油化工污水处理技术分析论文

摘要:随着社会的不断发展,各行各业都在一定程度上得到发展和进步,石油化工企业污水的污染处理技术也需要进一步加强。石油化工工业产生的废水组成元素复杂,具有难降解、浓度高并且毒性强等特点,对自然环境造成了极大的污染。本文拟从石油化工污水处理技术的发展方面进行分析与阐述。

关键词:石油化工;污水处理;技术研究;自然环境

随着社会的发展,社会各界都以飞快的速度发展,产业的结构不断升级优化,石油化工工艺也不断进步与发展。近几年来,石油化工工业的产业升级速度加快,对社会的发展起到了一定的促进作用,但是其在安全防范措施上还存在着一定的安全隐患,事故的发生率远远超出之前几年。例如石油化工污水的随意排放对环境造成了很大的污染,使得大量水质和土地资源受到严重的污染,导致大量不可再生资源被浪费。因此,为解决石油化工污水的排放问题,相关企业技术管理人员要致力于加强工业废水的排放问题的解决,对石油化工工业废水进行处理后再排放。

1、石油化工污染概述

石油化工工艺主要是以石油为原料进行各种方式的加工。包括石油裂解、分馏、萃取、精炼、提取、重整等各种程序,在每一次裂解的过程中都会产生大量的化工污染污水对环境有严重污染的气体或液体。因此,想要减少石油化工对空气和环境的污染就要改善废气废水的处理措施,净化其中对环境有严重影响的成分,以达到保护环境的目的。废弃材料无论是对人体还是对环境都有着不容小觑的危害,严重的可危害到人们的生命安全。由于产品的原料不同,污水中含有的有毒元素不仅仅只有一种,而是多种有毒元素以及重金属元素并存,包括各种杂环化合物以及芳香烃类化合物组成的混合物。因此,加强对污水的治理以及及时解决排放问题的措施要立即执行,减少对环境以及人体的伤害。

2、石油化工工业废水的产生途径

石油化工企业污水产量大、毒性强、密度大,具有极大的杀伤力,包括多种化学元素的混杂,具有易燃易爆等特点。石油化工工艺涉及多种工艺的参与,例如对化学原料的加工、储存、煅烧、合成等工艺,石油化工是相对于其他各行业及领域,发生火灾和爆炸伤害频率最高的企业。石油化工工艺的进行需要多种步骤与程序,且每一个步骤都需要大量的人力和化工原料以及水资源等,新鲜的自来水最终都将经过加工和使用转变成工业废水,如果工业废水得不到有效的再利用就要排放到大自然中,势必会对环境造成直接污染。因此,想要对废水的处理工艺进行改造就要从根本上解决问题,加强对处理工艺每一个环节的把关,在每一个工艺环节上加强资源的回收利用,促进产业结构的升级和优化,从根本上解决环境污染问题。

3、石油化工工业废水处理需要解决的问题

(1)石油化工中含油污水的处理技术石油化工工业的过程汇总产生的含油污水的污染性要远远高于不含油污的污水。含油污水不仅会影响土地资源的利用率,还会增加水产工艺品的质量,影响水资源的利用率。水中的动植物众多,植物和动物的正常生命活动都离不开氧气成分。含油污水会在水面形成一层氧化膜,大大减少了氧气成分在水中的含量,阻碍了动植物的生长,造成大量动植物死亡,进而导致水体的污染,对环境也造成一定的影响,污染水质,减少水产动植物的产量下降。

(2)石油化工中硫成分含量的处理众所周知,硫成分对环境的污染程度远远高于其他各种成分,因此,加强对石油化工工业污水成分中硫的处理力度会大大降低污水的污染性。石油化工中硫成分来源广泛,不易处理,炼油厂中的为二次加工装置中用来分离罐的排水、富气洗涤水等的处理工艺都能够产生硫污染的石油化工工艺。其中硫的化合物以SO2、SO3等硫的氧化物为主,其中还包括H2S等气体组成成分,这些气体溶于水后,会给环境造成极大的污染。在处理废水含硫方面。工业上主要采取的是空气氧化以及水蒸气汽提的方法。空气氧化方法主要是用空气中的某些成分对工业废气以及工业废水中含有污染物进行氧化,使含硫化合物的含量降低或转化成其他易处理的气体。从而在最大程度上达到降低环境污染的目的。空气氧化法的优点在于操作方法比较简单,整体费用不高,但是其存在的不足之处在于至适用于含硫量较低的污水的处理,不能达到高效率脱硫的目的。水蒸气汽提法则适用于硫含量较高的污水处理,这类的污水通常含有较多芳香烃类化合物以及乳化油等物质,水蒸气汽提法可破坏化合物出现积油等现象的发生,破坏气体平衡条件,从而达到对污水净化处理的效果。当前,加强对污水的处理工艺已经成为当代石油化工工业亟待解决的问题。当前我国大部分石油化工企业均设有相关污水处理系统与设备,但是相关污水处理不彻底等情况时有发生,归根结底是因为我国污水处理系统不完善,对污水的危害没有得到正确的认识。

(3)石油化工工业污水治理措施作为政府相关人员,要大力加强对企业污水排放的管理与监督,要采取相关强制措施加强对企业污水排放的禁量,企业一旦超标排放就要采取相关措施对其进行罚款或者劝停。只有加强管理才能够在一定程度上以及在该问题的解决上得到一定的成果。不加强制度的实施强度,就无法使政策得到一定的效力,也就无法保证环境的质量。作为企业的管理人员,不仅要加大力度进行产业规划与布局,优化产业结构,使企业朝着更加健康可持续的方向发展,还要加上人员管理,对企业的工作制度进行一定程度上的.改革,要根据企业相关的实际情况对生产规模和模式进行相关完善,只有完全掌握企业的情况,才能对症下药,达到优化产业结构,促进企业的可持续发展。另外,企业管理部门要定期对企业工作人员进行培训教育,并及时加强与国外先进产业和技术的交流,向国外的先进技术学习,并能够对其进行研究,将有关高科技技术运用到石油化工工业废水废气的处理之中。作为企业的工作人员,要加强自身的责任感,及时发现企业生产中所出现的问题,并及时上报,及时解决。另外,企业的工作人员还要加强对先进技术的了解与学习,及时增强企业的信息更新速度,为提高工作效率而加强参与管理力度,尽自己应尽的职责向上级领导及时提出相关管理意见,增加企业的经济效益,促进企业的再生产,为社会的和谐与共同发展而努力做出自己的贡献。

4、解决石油化工工业废水的具体措施及方法

处理石油化工工业废水的方法有多种。其中最常见、处理效率最高、适用于当前企业的运用的几种方法总结如下:

(1)石油化工水污染物化法石油化工工业生产中物化法是最为常见的一种解决工业废水中含油污水的污水处理方法。石油化工工业中的废水含有较多的原油,漂浮在水面上或者生物膜的表面,阻碍了生物与空气的直接接触,氧气的缺少使得好氧生物因缺少氧气而失去活性,对生物的处理带来了极大的不利影响。例如大连新港含油废水处理工艺进行改造,将平流隔油储水池的前部的三分之一改建为隔油池,经改造后的隔油池处理后,废水的含油量从300~500mg/L降为8~15mg/L。

(2)石油化工工业水污染膜分离法渗透、反渗透、纳滤、微滤等都属于膜分离的范畴,能够有效脱除废水中的色素、繁杂的气味等多种阴阳离子,以超滤膜以及反渗透膜的双膜法在石油化工废水的再生产中检验出超滤系统产水率为95%,出水率高达86%,经过净化的水中油率低于1mg/L,但是在对电导率的去处效果不太明显。反渗水率大于75%,脱盐率大于99%,出水的水质完全满足石油化工生产的要求。因此,膜分离对于石油化工工业生产产生的污水的处理效果具有明显的净化作用。

(3)物理吸附吸附是利用活性炭的吸附作用对污水中的污染物进行处理,活性炭可以将污水中的附着物、特殊性气味、色素等物理污染物进行吸附。但是活性炭的吸附成本较高,不适用于企业广泛使用,并且其吸附作用受多种因素的影响,其吸附功能可能会因此有所降低,从而导致对污水的处理不够彻底,从而对环境造成二次污染。因此,想要利用物理吸附功能净化污水,就要及时检查活性炭的性质是否改变,避免对环境再次造成伤害。

5、结束语

综上所述,石油化工工业废水处理的方法有多种,要使用最适用于企业生产和处理的方法才能达到效果。石油化工工业的废水量大、毒性高、难处理、难降解并且成分复杂,对人体和自然环境的危害都特别大,单一的处理方法与措施很难达到对污水净化的目的,处理不充分,净化不彻底,势必会对环境造成二次伤害。因此,为解决相关污水处理的问题,相关企业负责人和企业工作人员要加强对工业废水的处理加工工艺,使废水能够被重新利用。如此一来,不仅能够减轻对环境的污染,还能够减少对人体的伤害,进一步提高了原料的利用率,为企业带来高额的经济效益。除此之外,工业废水的高效处理还能够促进该企业的可持续发展,为更多的化工企业提供良好的经验教训。扩大废水处理的工艺,从根本上解决环境污染等问题,使更多的企业选择最优化的污水处理方式,共同努力减少环境污染,促进社会的健康发展,为社会和企业创造更高的经济效益和社会影响。有利于创建和谐社会,促进社会和谐稳定的发展进程。

【参考文献】

[1]丛秋梅,苑明哲,王宏等、基于稳定Hammerstein模型的在线软测量建模方法及应用[J]、化工学报,2015,(4):1380-1387、

[2]刘宗昭,方申文,龙卫红等、聚甲基丙烯酸改善含聚污水黏性絮体的评价[J]、石油化工,2013,42(3):334-338、

[3]王玉晓,孔秀琴,冯权等、以亲水化改性聚氨酯为多孔载体的生物膜移动床反应器处理污水中试研究[J]、环境科学,2012,33(10):3489-3494、

篇6:有线电视定期维护与故障维修分析论文

有线电视定期维护与故障维修分析论文

对于日渐丰富的生活来说,电视机已经成为每家每户必不可少的重要娱乐工具。而随着电视机功能的增加,节目也变得丰富多彩。有线电视网络覆盖面日渐增大的同时故障也越来越多,本文就针对有线电视日常中出现的问题及其维修方法作出论述。随着有线电视在家庭中占据了一定的主导地位后,成为了满足广大人民群众文化语录的主要途径。而在中老年人群中,比起因特网,有线电视更容易被接受。而正因为有线电视的地位越来越特殊,其运行过程中出现的故障和维修方法也逐渐引起更多人的关注。

1、对电视机设备的定期维护

1.1调试系统

为了提高有线电视的观看质量,应定期对电视内部的仪器按照系统的标准进行调试,以免影响电视的传输质量。

1.2对设备进行除尘去灰

由于电器设备的长期使用,设备内部容易堆积灰尘,使电器的散热功能受到影响,造成功能不稳定,因此要定期对设备内部进行除灰,以确保设备的正常运行。

1.3检查设备线路

应定期对设备放大镜、电缆线和电缆接头进行检查,以便及时更换损坏部位,防止出现故障。

1.4定期查看接地电阻

在相关防雷设施中,有线电视系统的接地电阻应保持在4Ω以内,线路上的接地电阻不能超过10Ω。

1.5季节性调整前端及放大器电平

由于电缆的特性,一般冬季要比夏季电平高10dB左右,因此对于没有采用AGC的干放系统,应该在春、秋季节分别调整放大器的增益,避免因季节变化而使系统出现互调或交调干扰。

2、几种常见的故障及维修

2.1电视没有信号

出现此类情况时,应该检查电源的接头是否出现松动、电视信号接收器的连接是否出现松动、短路等情况。其次查看放大器、分支器是否有电平异常的情况出现,更换输入电平正常但是没有输出电平的设备。

2.2信号交流声干扰

信号交流声干扰会使电视机屏幕上出现横向条纹上下滚动,这种现象就是俗称的“滚道”。如果屏幕画面上呈现1条“滚道”则是由电源50Hz纹波干扰,呈现2条则是整流后的100Hz纹波干扰。这样的干扰一般都是由于电视机的电源或者放大器的故障引起的。应该检查放大器接地是否有异常、变压器是否出现损坏、各部位之间的'螺丝是否出现松动。

2.3屏幕中出现网纹干扰

当屏幕中出现网状的条纹、变曲细波纹、网纹或者不规则的倾斜条纹,这种情况都是由网纹干扰所造成的。出现此类情况时,应该检查有源设备的高频屏蔽接地是否出现异常,适当降低放大器的增益,对调制器的图像伴音载波电平适当降低。

2.4屏幕中有水平条纹干扰

如果屏幕中出现水平条纹干扰,应该检查放大器电源滤波电容是否出现故障。若为上下移动的水平黑白横条,则是50Hz电源以及谐波造成的,检查机房接地是否良好,也可以采用滤波特性较好的稳压电源。

2.5屏幕中出现雪花

这是由于电视信号电平过低,图像载噪比下降而导致的。可检查放大器的输入输出电平以及分支分配器,也可以通过测量电平找到故障点并排除。

2.6画面重影干扰

由于电视机信号在到达电视机时时间的不统一或路径不相同从而引起画面的重影。可以通过调整电视机的摆放位置、提高电平,或者更换U/V、V/U频道转换器来维修。同时也可以选择性能较好的天线或者屏蔽效果较好的电缆或者其他设备。

3、结语

相比传统电视机的信号传输功能,有线电视功能更多更丰富,不仅可以实现本地特色的分类,更方便于人们的工作、学习、娱乐。但是有线电视的故障比起传统电视来说更具有突发性、多样性。定期的检查以及及时的发现并排除是减少有线电视出现故障的有效方法。

篇7:电动机故障分析论文

一、电动机的选择

1.根据电动机安装地.点的周围环境来选择电动机的形式

农村用电动机的常见形式有防护式和封闭式两种。防护式的通风性能较好,价格低,适合环境干燥,灰尘少的地方采用;如果灰尘较多,水滴飞溅的地方,应采用封闭式电动机。如农副产品加工机械及水泵中可采用这种电动机,另外,还有一种密封式电动机,可以浸汲在水里工作,电动潜水泵就采用这种电动机。

2.根据使用负荷情况,选择电动机的功率

电动机的功率一般应为生产机械功率的1.1~1.5倍。如果功率选择过大,不仅增加投资,同时也降低了机械效率,增加生产成本。如果功率选择过小,电动机长期承受过大负荷,会使温度上升过高而损坏绝缘,缩短电动机使用寿命。

3.根据工作机械的转速要求以及传动方式选择电动机转速配套原则是使电动机和生产机械都在额定转速下运行,传动方式两者相同。

二、电动机常见故障分析

1.起动故障

当电器接通电源后,电动机不工作,并且电动机无任何声响。分析其主要原因一是与电动机相配套的起动电器,若电扇、排风扇、洗衣机等电机均采用电容器起动运转,而电冰箱、冷柜起动机构采用电阻分相起动运转,所以一旦起动电路中的.电容器和分相电阻损坏击毁,导致电动机无法正常运转工作,检测时应先排除起动电容或电阻故障后,才查电机故障。

另一种情况是电动机内部绕组短路,局部绕组烧毁,导致电动机停止工作。当一旦怀疑电动机自身故障时,最简单的检测用万用表电阻档测各绕组阻值便知。

首先将电动机的三根引出线ABC用万用表区分判断,这里以双桶洗衣机电动机为例,当测量AB线之间的电阻值在95欧姆,BC间阻值在130欧姆,AB间阻值在12欧姆时,那么很容易确定C为中线性,AC为运行绕组,BC为起动绕组。以上均为电动机绕组的正常电阻值,在发生短路后,其电阻值均小于以上正常值,电动机绕组存在各类问题。又如电冰箱电动机一般起动绕组无短路,电阻值约在23欧姆,运行绕组无短路,电阻值在10欧姆间,起动和运行串接绕组正常阻值在35欧姆。

2.运行中的故障分析

电动机在运行中由于种种原因,会出现故障,故障分机械与电气两方面。

2.1机械故障

机械方面有扫膛、振动、轴承过热、损坏等故障。异步电动机定、转子之间气隙很小,容易导致定、转子之间相碰。一般由于端盖轴室内孔磨损或端盖止口与机座止口磨损变形,使机座、端盖、转子三者不同轴引起扫膛。

振动应先区分是电动机本身引起的,还是传动装置不良所造成的,或者是机械负载端传递过来的,而后针对具体情况进行排除。属于电动机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良,转轴弯曲,或端盖、机座、转子不同轴,或者电动机安装地基不平,安装不到位,紧固件松动造成的。振动会产生噪声,还会产生额外负荷。

电动机在通电后发现转速无力很慢时,分析其原因有多方面,电容起动式电动机是否电容器容量不足漏电严重,电源电压过低,或者是鼠笼转子铝条部分有严重事故缩孔、断条等情况,特别是洗衣机电动机经常起动和正反交替运转,使转了铝条的感应电流大而使电磁力增大,均会产生转了铝条断裂,从而导致运转慢无力问题,严重时使转子发热和产生电火花而烧坏定了绕组线包。

2.2电气故障

电气方面故障有定子绕组缺相运行,定子绕组首尾反接,三相电流不平衡,绕组短路和接地,绕组过热和转子断条、断路等。

缺相运行是常见故障之一。三相电源中只要有一相断路就会造成电动机缺相运行。缺相运行可能由于线路熔断器熔体熔断,开关触点或导线接头接触不良等原因造成。

三相电动机缺一相电源后,如在停止状态,由于合成转矩为零而堵转(无法起动)。电动机的堵转电流比正常工作的电流大得多。因此,在此情况下接通电源时间过长或多次频繁地接通电源起动将导致电动机烧毁。运行中的电动机缺一相时,如负载转矩很小,仍可维持运转,仅转速略有下降,并发出异常响声;负载重时,运行时间过长,将会使电动机绕组烧毁。

三相绕组首尾错接时,接通电源后会出现三相电流严重的不平衡、转速下降、温升剧增、振动加剧、声音急变等现象。如保护装置不动作,很容易烧坏电动机绕组,所以必须辨清电动机出线端首、尾后,方可通电运转。

三相电流不平衡的故障,常常由于电动机外部电源电压不平衡所引起,其内部原因主要是绕组匝间短路或在电动机重绕修理时线圈匝数错误或接线错误。

绕组接地和短路都会造成电流过大。接地故障可用兆欧表检查。短路故障可在降低定子绕组电源电压情况下,通过测量电流来判断,也可以测量其直流电阻来判断。

分析电动机过热温升的原因,主要有这样几种情况,电动机自身内在质量问题,电动机长期处于超负荷工作运行状态(械传动机机构故障引起电动机负荷大),电动机散热性能很差,电动机绕组局部短路烧毁等一系列情况。

电动机温升异常最大的故障原因是绕阻匝间短路,匝间短路是由于绕组漆包线绝缘层性能差而损坏;,从而使相间导线直接碰及,形成了一个低阻抗的电流回路,使匝间电流增大而使线包发热,久之使用使整个定子绕组产生过热,最终因热量剧升而击毁绕组,所以此类故障应拆开机壳,查绕组故障点。如果线包无烧毁问题,可将定子浸入专用绝缘漆内重新进行浸漆绝缘处理,然后在烘箱内烘烤干燥。若线包有局部烧毁现象,而短路点又在定子槽内,那只有更换整个绕组线包。

笼型电动机转子铸铝导体断条或绕线式电动机转子绕组断路时,会造成定子电流不正常,出现时高时低周期性变化,还出现忽大忽小的噪声和振动。负载越重时,这种现象越显著。

三、电动机的维护

1.使用环境应经常保持干燥,电动机表面应保持清洁,进风口不应受尘、纤维等阻碍。

2.当电动机的热保护连续发生动作时,应查明故障来自电动机还是超负荷或保护装置整定值太低,消除故障后,方可投入运行。

3.应保证电动机在运行过程中良好的润滑,一般的电动机运行5000h左右,即应补充或更换滑脂(封闭轴承在使用寿命期内不必更换润滑脂),运行中发现轴承过热或润滑变质时,应及时换润滑油。更换润滑脂时,应消除旧的润滑脂,并用汽油洗净轴承及轴承盖的油槽,然后将ZL—3锂基润滑脂填充轴承内外圈之间空腔的1/2(对2极)及2/3(对4.6.8极)。

4.当轴承的寿命终了时,电动机运行时的振动及噪声将明显增大,检查轴承的径向游隙一定数值时,即更换轴承。

5.拆卸电动机时,从轴伸端或非轴伸端取出转子都可以,如果没有必要卸下风扇,还是从非轴承伸端取出转子较为便利,从定子中轴出转子时,应防止损坏定子绕组或绝缘。

6.更换绕组时必须记下原绕组的形式,尺寸及匝数、线规等,当失落了这些数据时,应向制造厂索取,随意更改原设计绕组,常常使电动机某项或几项性能恶化,甚至无法使用。

参考文献:

[1]农业机械化与现代化第四期

[2]山东农机化使用维护第五期

[3]电动机使用与故障分析20第三期

篇8:石油化工管道焊接工艺分析论文

摘要:经济和科学技术的不断发展促进了各行各业的发展。对于石油化工企业来说,经济的发展增加了社会对石油的需求量,促进了石油化工企业的发展。为了保证石油运输作业的高效进行,满足现代社会的发展需要,要增加对石油化工管道安全性的关注,保证石油运输作业的安全性。本文主要就石油化工管道焊接工艺分析及其质量控制策略进行分析和阐述,以实现新形势下石油化工企业的最大发展目标。

关键词:石油化工管道;焊接工艺;质量控制;分析和研究

随着社会对化学产品和石油、天然气的需求不断增加,增加了石油化工管道的工作压力,众多危害和易燃易爆的物品需要经过管道才能进行运输,为石油管道的安全性带来极大威胁。另外,当下石油管道的焊接弊端较多,时常伴有焊接断裂和裂缝,进而对石油等物质的运输带来极大安全隐患。面对这一形势,要增加对石油化工管道焊接工艺分析及其质量工作的关注。

1焊接工艺分析阐述

1.1石油化工管道焊接前期准备环节

对于石油运输作业来说,石油化工管道发挥着不可替代的作用。石油化工管道的安全性和焊接环节具有紧密联系,是保证石油化工管道质量的基础,因此,要给予石油化工管道的焊接环节极大关注。首先,焊接工作人员在进行焊接作业时,要依据具体的实际情况,构建焊接的计划任务目标,建立合理的焊接方案,利用新型技术来进行焊接工作,对整个焊接环节可能出现的问题和事故,进行预测和建立预先解决方案,来保证石油管道焊接工作的高效进行。与此同时,要增加对焊接材料的关注度,看焊接材料是否满足石油管道的实际运输质量要求,对实际的焊接工艺和技巧进行及时的评判,依据评判结构来设计工艺卡,增加焊接工艺运用的'科学性和合理性。

1.2石油化工管道的底层焊接施工环节

石油化工管道施工环节主要包括以下几个不同部分。(1)石油化工管道的底部焊接工作。石油化工管道的底步焊接工作可以利用氩弧焊来进行焊接作业,利用氩弧焊技术依下向上来进行焊接,利用角磨机在焊接的端点和尾部,来进行接头端点的打磨,保证焊接底部环节焊缝的合理性,保证其具备较好的焊透性。对于石油化工管道的底部焊接工作,要注意以下几个环节。一是要保证在石油化工管道的底部焊接工作开展前期,对试板进行焊接检测,看氩气中有没有其它物质存在。(2)用挡板把焊接的管沟包围,避免外界因素为焊接工作带来影响,避免影响焊接的质量。(3)在实际焊接过程中,利用角磨机来对接口端点和斜口端点进行打磨,避免石油化工管道底部位置出现下凹和内陷的问题。(4)对焊接质量进行多次的检查,保证次层焊接工作及时进行,避免裂缝现象的产生。

1.3石油化工管道的中层焊接和盖面施工环节

石油化工管道的中层焊接施工环节进行施工时,主要注意以下几个施工环节。第一,要增加对石油管道清洁度的关注度,避免因为管道底部焊接工作残渣遗留,为中部施工带来影响。第二,在实际焊接过程中,要保证焊接的端点和缝隙的关联点的间距在0.11cm以上。第三,保证焊接焊条的大小直径在3.65cm,保证其焊接的焊缝间隙在0.35~0.55之间。第四,在进行表面基础的焊接作业时,要利用直线类型的运条,来进行实际焊接,避免利用引弧形方法进行焊接。第五,在实际焊接过程中,要注意及时的对杂质进行清理,增加对焊接质量的检查次数。第六,对于盖面的焊接环节来说,其在实际焊接过程中,要保证在焊接时,盖面焊接位置的收弧和起弧工作的科学性,保证其与中层环节的焊接端点进行分离,标准焊接表面的光润度,保证焊接颜色的一致性,保证焊接颜色的自然性。第七,要注意及时把管道上的残渣进行清理,增加对保温工作的关注度,保证管道不被侵蚀,保证石油化工管道的质量和安全性,增加对盖面焊接质量的检查,发现其存在质量和安全问题,要及时的进行维护,保证其具备较好的实际应用性,保证管道的整体质量。

1.4做好石油化工管道的焊接记录

在进行石油管道焊接作业时,除了要保证焊接技术的合理运用,遵循焊接的技术标准要求外,也要增加对焊接工作数据和信息的关注,对焊接不同环节产生的数据和信息进行记录,保证焊接工作科学高效的进行,例如:在实际焊接过程中,对不同环节使用的焊接材料、焊接的电流和电压进行记录。其次,也要注意对焊接结束后,对焊工钢号进行排编,增加维修工作的便利性,保证石油化工管道的安全性和实际应用性。

篇9:石油化工管道焊接工艺分析论文

2.1构建质量保证系统

在进行石油化工管道焊接工作时,为了保证管道焊接的质量,首先要构建质量保证体系,建立合理化的质量标准,焊接机构和焊接工作人员在内进行焊接作业时,要保证其坚持在质量第一的基础上,来进行焊接。在实际焊接时,首先要构建合理的计划和目标,在建立目标和计划的基础上来进行实际焊接工作,在焊接完毕后,要对石油化工管道的质量进行检查,保证焊接的环保性。其次对于焊接的材料、焊接的形式、焊接的技术等等保证其具有实际应用性。在实际应用过程中,对于不合理的地方要及时的改进。在焊接完毕后,对焊接管道进行检查,可用不利于分层次的焊接质量检测方法来进行检测,发现问题及时解决。石油化工管道焊接质量检测示意图如图1。

2.2增加对焊接工作人员的关注度

焊接的技术工作人员和质量检测人员,是焊接工作的主要人员构成。因为当下的石油化工管道主要是以人力手工焊接为主,进而在实际焊接过程中,焊接的技术工作人员和质量检测人员对石油化工管道的安全性和质量具有紧密联系。为了确保石油焊接工作的高效进行,保证管道的质量和实际应用性,要增加对焊接的技术工作人员和质量检测人员的关注度。在日常工作中,要建立合理化的技术和专业知识培训周期。对没有工作经验的焊接技术工作人员和质量检测人员,对其进行岗前的教育培训,保证其具备实际工作能力,通过考核后才能上岗。对于在职的工作人员,要不时地进行针对性培训,保证其可以充分了解焊接工作的内容。其次,对于焊接工作的质量检测人员来说,也发挥着不可替代的作用,其在实际工作中,不仅要具备扎实的检测知识,也要具备相应的操作技能,保证检测工作的高效进行。对于焊接细小部分和薄弱环节的检测工作人员,要及时对其进行培训,保证其质量检测的质量和有效性,保证石油化工管道的安全性,保证管道的质量和实际应用性。

2.3对工艺质量进行管理和控制

首先,为了保证焊接管道的质量,焊接机构在进行焊接工作前期,要对焊接的工艺进行判断和评判,依据判断和评判报告,来作为焊接工作的指导方针,利用合理化的焊接技术和焊接方法来进行焊接工作,建立科学的焊接方案和施工计划,保证焊接工作科学进行。其次,要增加对焊接材料的关注度。对石油化工管道的安全性和质量进行检测,看其是否满足当下焊接工作的要求,看其是否具备实际应用性。最后,在实际焊接作业中,可以利用工艺卡来进行实际焊接工作,对不同环节的焊接数据信息进行保存和记录,为日后石油化工管道的维护奠定坚实基础。在每个环节焊接工作完毕后,要增加对其进行二次质量和安全检测,对焊接不同设备进行管理和控制,保证焊接工作可以高效率进行。

3结语

石油管道焊接工作的有效进行,首先要建立合理化的焊接目标,保证焊接材料的质量,要构建质量保证体系,建立合理化的质量标准,对工艺质量进行管理和控制,保证焊接工作高效进行。

参考文献:

[1]晏圣平.石油化工管道焊接工艺和焊接质量控制[J].交流研讨,2014,03(23):113-115.

[2]王玉亮.石油化工管道焊接工艺与质量控制对策探究[J].能源科技,2015,05(11):43-45.

[3]顾天杰.管道焊接质量的分析和控制[J].河南化工,2014,01(24):22-23.

[4]魏力群.压力管道安装质量管理探讨[J].科技信息(科学教研),2014,06(26):66-68.

[5]包海平.石油化工管道焊接工艺和焊接质量控制[J].广东科技,2015,08(16):62-63.

篇10:变压器故障统计分析以及维护措施论文

变压器故障统计分析以及维护措施论文

摘要:通过对美国近间变压器故障的统计分析,讨论故障的起因,并涉及了故障类型、频率、程度及运行寿命。对预防变压器故障以延长其使用寿命的维护方法提出了建议。

关键词:变压器故障统计分析预防

当前的世界范围内,不间断的电力供应已成为工业生产、国防军事、科技发展及人民生活中至关重要的因素。人们对能源不间断供应的依赖性常常是直到厂房里的生产设备突然停止工作、大楼灯光突然全部熄灭、电梯被悬在楼层之间时才意识到各种断路器、布线及变压器的重要性。

变压器故障通常是伴随着电弧和放电以及剧烈燃烧而发生,随后电力设备即发生短路或其他故障,轻则可能仅仅是机器停转,照明完全熄灭,严重时会发生重大火灾乃至造成人身伤亡事故。因此如何确保变压器的安全运行受到了世界各国的广泛关注。

美国HSB公司工程部总工程师WilliamBartley先生,主要负责对大型电力设备尤其是发电机和变压器的分析和评估工作,并负责重大事故的调查、检修程序的改进及新型检测技术方面的研究。自70年代以来,他负责调查了数千起变压器故障并进行了几十年的科学统计研究。

在中国高速的现代化发展中,电力工业的安全运行更起着关键作用。本文从介绍美国1988年至10年间变压器故障的统计数据进行分析,为国内提供参考资料及可借鉴的科学统计方法,以达到为电力部门服务的目的。

1变压器故障的统计资料

1.1各类型变压器的故障

过去10年来,HSB发生几百起变压器故障造成了数百万美金的损失。图1中列出了按变压器类型显示的变压器故障统计数。从图中的显示可以看出除1988年外,电力变压器故障始终占据主导位置。

1.2不同用户的变压器故障

变压器使用在不同的部门,故障率是不同的。为了分析变压器发生故障的危险性,可将用户划分为11个独立类型:(1)水泥与采矿业;(2)化工、石油与天然气;(3)电力部门;(4)食品加工;(5)医疗;(6)制造业;(7)冶金工业;(8)塑料;(9)印刷业;(10)商业建筑;(11)纸浆与造纸业。

按照HSB的RickJones博士风险管理的方法,将“风险”定义为发生频率与损失程度。损失程度可以被定义为年平均毛损失,而发生频率(或称为概率)则可定义为故障发生平均数除以总数。所以,对于每一个给定的独立组来说:

频率=故障数/该组中的变压器台数

(举例来说,如果每年平均有10起故障,在一个给定的独立组中有1,000个用户,在该组中任何地点故障的概率就是0.01/年。)因此,可以采用产品的故障频率与程度将变压器的风险按用户加以划分。(风险=频率×程度)。

图2中给出的是10年中10个独立组中变压器风险性的频率—程度“分布图”。每组曲线中,X轴表示频率、Y轴表示程度(或平均损失),X-Y的关系就形成了一个风险性坐标系统。其中的斜线称为风险等价曲线(例如,对于$1,000的0.1的可能性与$10,000的0.01的可能性可认为是同等风险的)。坐标中右上角的象限是风险性最高的区域。

当考虑到频率和程度时(如图2所示),电力部门的风险是最高的,冶金工业及制造业分别列在第二和第三位。

1.3各种使用年限变压器的故障

按照变压器设计人员的说法,在“理想状况下”变压器的使用寿命可达30~40年,很明显的是在实际中并非如此。在1975年的研究中,故障时的变压器平均寿命为9.4年。在1985年的研究中,变压器平均寿命为14.9年。通常有盆形曲线显示使用初期的故障率以及位于右端的老化结果,然而故障统计数据显示变压器的使用寿命并非无法预测。图3中显示了该研究中使用寿命的统计数据,这些数据可以用来确定对变压器进行周期检查的时间和费用。

在电力工业中变压器的使用寿命应当给予特别地关注。美国在二战后经历了一个工业飞速发展的阶段,并导致了基础工业特别是电力工业大规模的发展。这些自50年代到80年代安装的设备,按其设计与运行的状况,现在大部分都已到了老化阶段。据美国商业部的数据,在1973~1974年间电力工业在新设备安装方面达到了顶峰。如今,这些设备已运行了近25年,故必须对已安装变压器的故障可能性给予特别的关注。

2变压器故障原因分析

HSB收集了有关变压器故障10年来的资料并进行分析的结果表明,尽管老化趋势及使用不同,故障的基本原因仍然相同。HSB公司电气部的总工程师J.B.Swering在论文中写到:“多种因素都可能影响到绝缘材料的预期寿命,负责电气设备操作的人员应给予细致地考虑。这些因素包括:误用、振动,过高的操作温度、雷电或涌流、过负荷、对控制设备的维护不够、清洁不良、对闲置设备的维护不够、不恰当的润滑以及误操作等。“

下表中给出了在过去几十年中HSB公司总结出的有关变压器故障的基本原因,表中列出了分别由1975、1983以及的研究得出的关于故障通常的原因及其所占百分比。

2.1雷击

雷电波看来比以往的研究要少,这是因为改变了对起因的分类方法。现在,除非明确属于雷击事故,一般的冲击故障均被列为“线路涌流”。

2.2线路涌流

线路涌流(或称线路干扰)在导致变压器故障的所有因素中被列为首位。这一类中包括合闸过电压、电压峰值、线路故障/闪络以及其他输配(T&D)方面的异常现象。这类起因在变压器故障中占有显著比例的事实表明必须在冲击保护或对已有冲击保护充分性的验证方面给与更多的关注。

2.3工艺/制造不良

在HSB于19的研究中,仅有很小比例的故障归咎于工艺或制造方面的缺陷。例如出线端松动或无支撑、垫块松动、焊接不良、铁心绝缘不良、抗短路强度不足以及油箱中留有异物。

2.4绝缘老化

在过去的10年中在造成故障的起因中,绝缘老化列在第二位。由于绝缘老化的因素,变压器的平均寿命仅有17.8年,大大低于预期为35~40年的.寿命!在1983年,发生故障时变压器的平均寿命为。

2.5过载

这一类包括了确定是由过负荷导致的故障,仅指那些长期处于超过铭牌功率工作状态下的变压器。过负荷经常会发生在发电厂或用电部门持续缓慢提升负荷的情况下。最终造成变压器超负荷运行,过高的温度导致了绝缘的过早老化。当变压器的绝缘纸板老化后,纸强度降低。因此,外部故障的冲击力就可能导致绝缘破损,进而发生故障。

2.6受潮

受潮这一类别包括由洪水、管道渗漏、顶盖渗漏、水分沿套管或配件侵入油箱以及绝缘油中存在水分。

2.7维护不良

保养不够被列为第四位导致变压器故障的因素。这一类包括未装控制其或装的不正确、冷却剂泄漏、污垢淤积以及腐蚀。

2.8破坏及故意损坏

这一类通常确定为明显的故意破坏行为。美国在过去的10年中没有关于这方面变压器故障的报道。

2.9连接松动

连接松动也可以包括在维护不足一类中,但是有足够的数据可将其独立列出,因此与以往的研究也有所不同。这一类包括了在电气连接方面的制造工艺以及保养情况,其中的一个问题就是不同性质金属之间不当的配合,尽管这种现象近几年来有所减少。另一个问题就是螺栓连接间的紧固不恰当。

3变压器维护建议

根据以上统计分析结果,用户可制订一个维护、检查和试验的计划。这样不但将显著地减少变压器故障的发生以及不可预计的电力中断,而且可大量节约经费和时间。因为一旦发生事故,不仅修理费用以及停工期的花费巨大,重绕线圈或重造一台大型的电力变压器更需要6到12个月的时间。因而,一个包括以下建议的良好维护制度将有助于变压器获得最大的使用寿命。

3.1安装及运行

(1)确保负荷在变压器的设计允许范围之内。在油冷变压器中需要仔细地监视顶层油温。

(2)变压器的安装地点应与其设计和建造的标准相适应。若置于户外,确定该变压器适于户外运行。

(3)保护变压器不受雷击及外部损坏危险。

3.2对油的检验

变压器油的介电强度随着其中水分的增加而急剧下降。油中万分之一的水分就可使其介电强度降低近一半。除小型配电变压器外所有变压器的油样应经常作击穿试验,以确保正确地检测水分并通过过滤将其去除。

应进行油中故障气体的分析。应用变压器油中8种故障气体在线监测仪,连续测定随着变压器中故障的发展而溶解于油中气体的含量,通过对气体类别及含量的分析则可确定故障的类型。每年都应作油的物理性能试验以确定其绝缘性能,试验包括介质的击穿强度、酸度、界面张力等等。

3.3经常维护

(1)保持瓷套管及绝缘子的清洁。

(2)在油冷却系统中,检查散热器有无渗漏、生锈、污垢淤积以及任何限制油自由流动的机械损伤。

(3)保证电气连接的紧固可靠。

(4)定期检查分接开关。并检验触头的紧固、灼伤、疤痕、转动灵活性及接触的定位。

(5)每三年应对变压器线圈、套管以及避雷器进行介损的检测。

(6)每年检验避雷器接地的可靠性。接地必须可靠,而引线应尽可能短。旱季应检测接地电阻,其值不应超过5Ω。

(7)应考虑将在线检测系统用于最关键的变压器上。目前市场上有多种在线检测系统,供应商将不同的探测器与传感器加以组装,并将其与数据采集装置相连,同时提供了通过调制解调器实现远距离通讯的功能。美国SERVERON公司的TrueGas油中8种故障气体在线监测仪就是极好的选择。此系统监测真实故障气体含量,结合“专家系统”诊断将无害情况与危险事件加以区分,保证变压器的安全运行。

4结束语

变压器是电网中的重要设备之一。虽配有避雷器、差动、接地等多重保护,但由于内部结构复杂、电场及热场不均等诸多因素,事故率仍然很高。中国在70年代的10年中,110kV及以上变压器的年平均绝缘事故率约为17.66台次,恶性事故和重大损失也时有发生。因此借鉴国外经验,利用先进在线监测设备,加强状态维护模式,以使电力供应更加安全可靠。

篇11:数控机床故障判断与维护论文

关于数控机床故障判断与维护论文

1.数控机床的维护

对于数控机床来说,合理的日常维护措施,可以有效的预防和降低数控机床的故障发生几率。

首先,针对每一台机床的具体性能和加工对象制定操作规程建立工作、故障、维修档案是很重要的。包括保养内容以及功能器件和元件的保养周期。

其次,在一般的工作车间的空气中都含有油雾、灰尘甚至金属粉末之类的污染物,一旦他们落在数控系统内的印制线路或电子器件上,很容易引起元器件之间绝缘电阻下降,甚至倒是元器件及印制线路受到损坏。所以除非是需要进行必要的调整及维修,一般情况下不允许随便开启柜门,更不允许在使用过程中敞开柜门。

另外,对数控系统的电网电压要实行时时监控,一旦发现超出正常的工作电压,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件的损坏。所以配电系统在设备不具备自动检测保护的情况下要有专人负责监视,以及尽量的改善配电系统的稳定作业。

当然很重要的一点是数控机床采用直流进给伺服驱动和直流主轴伺服驱动的,要注意将电刷从直流电动机中取出来,以免由于化学腐蚀作用,是换向器表面腐蚀,造成换向性能受损,致使整台电动机损坏。这是非常严重也容易引起的故障。

2.数控机床一般的故障诊断分析

2.1检查

在设备无法正常工作的情况下,首先要判断故障出现的具体位置和产生的原因,我们可以目测故障板,仔细检查有无由于电流过大造成的保险丝熔断,元器件的烧焦烟熏,有无杂物断路现象,造成板子的过流、过压、短路。观察阻容、半导体器件的管脚有无断脚、虚焊等,以此可发现一些较为明显的故障,缩小检修范围,判断故障产生的原因。

2.2系统自诊断

数控系统的自诊断功能随时监视数控系统的工作状态。一旦发生异常情况,立即在CRT上显示报警信息或用发光二级管指示故障的大致起因,这是维修中最有效的一种方法。近年来随着技术的发展,兴起了新的接口诊断技术,JTAG边界扫描,该规范提供了有效地检测引线间隔致密的电路板上零件的能力,进一步完善了系统的自我诊断能力。

2.3功能程序测试法

功能程序测试法就是将数控系统的常用功能和特殊功能用手工编程或自动变成的方法,编制成一个功能测试程序,送人数控系统,然后让数控系统运行这个测试程序,借以检查机床执行这些功能的准确定和可靠性,进而判断出故障发生的可能原因。

2.4接口信号检查

通过用可编程序控制器在线检查机床控制系统的接回信号,并与接口手册正确信号相对比,也可以查出相应的故障点。

2.5诊断备件替换法

随着现代技术的发展,电路的集成规模越来越大技术也越来越复杂,按常规方法,很难把故障定位到一个很小的区域,而一旦系统发生故障,为了缩短停机时间,在没有诊断备件的情况下可以采用相同或相容的模块对故障模块进行替换检查,对于现代数控的'维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作,尽最大可能缩短故障停机时间。上述诊断方法,在实际应用时并无严格的界限,可能用一种方法就能排除故障,也可能需要多种方法同时进行。最主要的是根据诊断的结果间接或直接的找到问题的关键,或维修或替换尽快的恢复生产。3数控机床故障诊断实例

由于数控机床的驱动部分是强弱电一体的,是最容易发生问题的。因此将驱动部分作简单介绍:驱动部分包括主轴驱动器和伺服驱动器,有电源模块和驱动模块两部分组成,电源模块是将三相交流电有变压器升压为高压直流,而驱动部分实际上是个逆变换,将高压支流转换为三相交流,并驱动伺服电机,完成个伺服轴的运动和主轴的运转。因此这部分最容易出故障。以CJK6136数控机床和802S数控系统的故障现象为例,主要分析一下控制电路与机械传动接口的故障维修。

如在数控机床在加工过程中,主轴有时能回参考点有时不能。在数控操作面板上,主轴转速显示时有时无,主轴运转正常。分析出现的故障原因得该机床采用变频调速,其转速信号是有编码器提供,所以可排除编码器损坏的可能,否则根本就无法传递转速信号了。只能是编码器与其连接单元出现问题。两方面考虑,一是可能和数控系统连接的ECU连接松动,二是可能可和主轴的机械连接出现问题。由此可以着手解决问题了。首先检查编码器与ECU的连接。若不存在问题,就卸下编码器检查主传动与编码器的连接键是否脱离键槽,结果发现就是这个问题。修复并重新安装就解决了问题。

数控机床故障产生的原因是多种多样的,有机械问题、数控系统的问题、传感元件的问题、驱动元件的问题、强电部分的问题、线路连接的问题等。在检修过程中,要分析故障产生的可能原因和范围,然后逐步排除,直到找出故障点,切勿盲目的乱动,否则,不但不能解决问题。还可能使故障范围进一步扩大。总之,在面对数控机床故障和维修问题时,首先要防患于未燃,不能在数控机床出现问题后才去解决问题,要做好日常的维护工作和了解机床本身的结构和工作原理,这样才能做到有的放矢。

参考文献

[1]陈蕾、谈峰,浅析数控机床维护维修的一般方法[J],机修用造,2004(10)

[2]邱先念,数控机床故障诊断及维修[J],设备管理与维修,2003(01)

[3]王超,数控机床的电器故障诊断及维修[J],芜湖职业技术学院学报,2003(02)

[4]王刚,数控机床维修几例[J],机械工人冷加工,2005(03)

[5]李宏慧、谢小正、沙成梅,浅谈数控机床故障排除的一般方法[J],甘肃科技,2004(09)

[6]万宏强、姚敏茹,基于网络的数控机床设备远程故障诊断技术的框架研究[J],精密制造与自动化,2004(04)

摘要:数控技术是用数字信心对机械运动和工作过程控制的技术。数控技术的应用不但给传统制造业带来了革命性的变化,更使制造业成为工业化的象征。

关键词:数控技术;数控机床;故障;维护

变压器故障统计分析以及维护措施论文

故障分析报告

浅谈石油化工技术创新与展望论文

石油化工自荐信

广播电视安全播出机房维护技术分析论文

石油化工实习总结

石油化工专业个人简历

电力系统变电所故障处理研讨相关论文

高压断路器故障及产生原因论文

光纤传输维护有线电视论文

石油化工离心泵的故障分析及维护探讨论文(锦集11篇)

欢迎下载DOC格式的石油化工离心泵的故障分析及维护探讨论文,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档