“翻翻西”通过精心收集,向本站投稿了9篇四年级数学《商不变规律》评课稿,下面小编为大家带来整理后的四年级数学《商不变规律》评课稿,希望大家喜欢!
- 目录
篇1:四年级数学《商不变规律》评课稿
四年级数学《商不变规律》评课稿
今天听了建芳的商不变的规律一课,感觉她的成长很快,是位很上进,很钻研的老师。她的课很少形式上的东西,更多的是学生和老师的真情流露。
一、从故事引入,激发兴趣。
在故事读完后,提问“谁的一笑是聪明的`一笑”引发孩子们的思考,在学生的交流中学生对本节课所学的规律有了初步的感知。
二、处处体现“以学生为主体的”的教学思想。
1、在规律的总结上,教师没有直接呈现规律,也没有引导学生说出规律,而是相信同学们,让他们逐步总结,不断完善。培养了学生的概括表达的能力。
2、在理解0除外这一关键词时,教师用练习的形式呈现,小红的算式是等于2吗?引发学生的思考,从而让学生补充规律。
3、在学完规律后教师出现一组易混练习,让学生在交流中发现规律中的关键词。
整个学习过程中,教师从没有显出着急的样子,始终耐心的引导学生自己总结、归纳、叙述想法,给了孩子机会和时间,处处都体现了以学生为主体的思想。
三、对于重点词语的强调非常有必要。
例如“同时”“相同的数”以及为什么0除外等。
四、练习形式多样有层次,突出了重点,在练习中深化了对规律的理解。
同时也对学生练习会出现的问题做了很好的预设。如判断题中4题,让学生发现了商不变不是余数也不变。
建议:
在举例验证时可给学生提示思路,让学生的例子在广一些。
篇2:数学 - 商不变的规律
教学内容:原人教版第七册教材,现在编入第六册第66页例15。
教学目标:
1.记住商不变的规律的具体内容;理解为什么被除数和除数同时扩大(或缩小)相同的倍数,商不变的道理。
2.学会观察的方法;能用商不变的规律解决一些实际问题。
3.通过课内外有联系的练习活动,培养学生爱思索、会思考的习惯。
教具准备:多媒体课件一套。
教学过程:
一.引入:(动画演示,教师解说)
同学们!请看大屏幕,这是花果山,这里山清水秀、景色宜人。漫山遍野的桃树上,结满了又大又甜的桃子。真是人间仙境。
孙悟空和猴儿们正在忙着摘桃子。看,谁来了。哦!原来是猪八戒。
孙悟空说:“师弟来得正好,请你帮我给猴儿们分桃子吧?”
“这是8个桃子,平均分给4只猴子”。猴儿们一听,小声说:“太少了、太少了”。
“那就给你80个桃子,平均分给40只猴子。”猴儿们喊到:“还少、还少”。
“还少呀?那就给你800个桃子,平均分给400只猴子。”这下该满意了吧。还不满意,行!那就给你8000个桃子,要求平均分给4000只猴子。
请同学们计算一下:这四种分的方法,每只猴子各能得到几个桃子?
被除数
除数
商
第一组
8
4
2
第二组
80
40
2
第三组
800
400
2
第四组
8000
4000
2
从这个表中,你发现了什么?
同学们,我们这节课还是研究除法,研究在除法里,被除数、除数是怎样变化时,商不变。
篇3:数学 - 商不变的规律
出示教学目标:
二.(出示表格)观察:被除数、除数怎样变化时,商不变?
被除数
除数
商
第一组
8
4
2
第二组
8×10
4×10
2
第三组
8×100
4×100
2
第四组
8×1000
4×1000
2
1.你准备怎样来观察?找学生说出:观察方法
2.小结观察方法:
①从上往下看,第2、3、4组同第一组比较,被除数、除数各有什么变化?商有什么变化?
②从左往右看,被除数、除数是不是同时在变化?
2.分组讨论:分成四人小组,前三个同学每人说一道题,第四个同学总结。
3.小结:找一组学生回答:
在除法里,被除数和除数同时扩大相同的倍数,商不变。
4,继续观察:相信你会有新的发现?
从下往上看,第3、2、1组同第四组比较,被除数、除数各有什么变化?商有什么变化?
被除数
除数
商
第一组
8
4
2
第二组
80÷10
40÷10
2
第三组
800÷100
400÷100
2
第四组
8000÷1000
4000÷1000
2
然后小结:
在除法里,被除数和除数同时缩小相同的倍数,商不变。
把上面的两句话合成一句,总结出商不变的规律:
在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
在这一句话中,你认为哪些语句比较重要?
同时是什么意思?(同一时候,一起,要么一起扩大、要么一起缩小)。
相同的倍数,(指扩大或缩小的倍数要一样)。
三.通过下面几个题的练习,相信同学们会进一步地理解商不变的规律。
1.填数:20÷5=4
(20×6)÷(5×□)=4
(20÷□)÷(5÷5)=4
(20×□)÷(5×8)=4
(20×2)÷5=□
提问:为什么这样填?你是怎样想的?
它们的商都一样吗?
最后一个题的商变了,为什么?
2.在下面等式中的○里填上运算符号,在□里填上适当的.数:
16÷8=2
(16÷□)÷(8○2)=2
(16○3)÷(8×□)=2
(16÷□)÷(8÷□)=2
提问:为什么这样填?
最后一个题:还有别的填法吗?能填0吗?为什么不能?
3.用商不变的规律判断:(对的打“√”、错的打“×” )
48÷12=4
(48×5)÷(12×5)=4 ( )
(48÷3)÷(12÷4)=4 ( )
第2题,要求只改一个数谁能把它填对?
4.填空:
(1)如果被除数乘以20,要使商不变,除数也应当( )。
(2)如果除数除以10,要使商不变,被除数也应当( )。
(3)如果被除数除以5,除数也除以5,商( )。
(4)一道除法式题的商是14,如果被除数乘以2,除数也乘以2,这时商是( )。
四.学了商不变的规律可以使一些计算简便:
1. 例题,口算:
3600÷600=(3600÷100)÷(600÷100)=36÷6=6
48000÷400= (48000÷100)÷(400÷100)=480÷4=120
2. 练习:直接写出下面各题的得数:
480÷20= 9300÷300= 400÷80= 2700÷90=
960÷60= 250÷50= 6000÷30= 1000÷200=
3. 想一想:此题是根据什么规律来计算的?
200÷25
=(200×4)÷(25×4)
=800÷100
=8
五.利用商不变的规律可以解决一些实际问题:
1.请你当裁判:(观看动画演示):看小明、小华谁跑得快?你怎样想的?为什么这样判断?应该怎样比?
2.我们四二班有40个同学,如果平均分成8组,每组有5个同学
我们四年级有80个同学,如果平均分成( )组,每组也有5个同学。
你是怎样想的?为什么这样做?
3.想一想:(动画演示,教师解说)。
猪八戒说:“猴哥!这次该你来分桃子了”
“第一次,给你9个桃子,要求平均分给4只猴子,剩下的一个吗,就归你了”,
“第二次,给你90个桃子,要求平均分给40只猴子,剩下的,还归你”,
“第三次,给你900个桃子,要求平均分给400只猴子,剩下的,也归你”,
“第四次,给你9000个桃子,要求平均分给4000只猴子,剩下的,仍然归你所有”。
请同学们考虑一下,下次上课时告诉老师:孙悟空第1次、第2次、第3次、第4次能分别得到多少个桃子?
板书设计:
篇4:小学数学四年级《商不变规律》测试题
小学数学四年级《商不变规律》测试题
1. 抢答。
( 1 )在一道除法算式里,如果被除数除以 5 ,除数也除以 5 ,商( )。
( 2 )在一道除法算式里,如果被除数乘 10 ,要使商不变,除数( )。
( 3 )在一道除法算式里,如果除数除以 100 ,要使商不变,被除数( )。
2 、根据每组第一个算式的'结果,直接写出第二、第三个算式的得数。
( 1 ) 18 ÷6=3
(18×2)÷(6×2)=
(18×3)÷(6×3)=
( 2 ) 480÷10=48
(480÷2)÷(10÷2)=
(480÷5)÷(10÷5)=
3 、在 ○ 里填运算符号,在 □ 里填适当的数。
24÷8 =( 24×2 ) ÷ ( 8×□ )
360÷60=(360÷10)÷(60○10)
96÷6 =( 96○□ ) ÷ (6○□)
4 、列竖式计算: 7800÷600 = 540÷60 = 8800÷80 =
5 . 40 秒竞赛。
240÷30=
80÷20=
360÷90=
4800÷400=
440÷20=
9600÷800=
120÷40=
2400÷60=
6、两个因数相乘,如果一个因数缩小 5 倍,另一个因数扩大 5 倍,积有什么变化?
3 、被除数扩大 3 倍,除数不变,商( )
4 、被除数缩小 3 倍,除数不变,商( )
5 、被减数减少 15 ,减数减少 5 ,差( )
6 、被减数增加 15 ,减数减少 5 ,差( )
7 、两个加数都扩大了 8 倍,则和扩大( )倍
8 、两数相减 , 被减数、减数都扩大了 8 倍,则差扩大( )倍
篇5:《商不变规律》说课稿
《商不变规律》说课稿
一、说课内容:
说课的内容是北师大版小学数学教材第七册第五单元第六节《商不变的规律》。
二、教材分析:
商不变的规律是在学生熟练掌握了除数是两位数的除法的基础上安排的,让学生掌握这部分知识,既为学习简便运算做好准备, 商不变的规律是小学数学中十分重要的基础知识。教学时,引导学生先计算,然后依次按照从上到下和从下到上的顺序去观察、比较,从而发现商不变的规律。
三、教学目标:
根据教材的特点、要求和小学生的认识规律,我确定了如下的教学目标:
1、知识目标:(1)探索的过程,理解、掌握商不变的规律。
(2)能用商不变的规律进行除法的简便运算。
2、能力目标:培养学生观察、比较、概括、表述等能力。
3、情感目标:向学生渗透事物之间相互联系的观点。
四、教学重、难点:
理解、掌握商不变的规律;能用商不变的规律进行除法的简便运算。
五、教学关键:
经历探索的过程,发现被除数、除数的.变化规律。
六、教具准备:课件
七、教学过程:
根据本课教学内容的特点以及学生的 认知规律,将本课的教学过程分为四大环节。即准备、探究新知、巩固练习、全课总结。
第一环节:复习准备:
出示一组口算:
如:24÷12=2 说出被除数、除数、商
由于商不变的规律是借助整数除法计算引出的重要运算规律,是除法有关简便运算的依据。由此,在准备环节出示书上的两组题目进行口算,为接下来的探索新知创设了情境,做好了铺垫。
第二环节:探究新知:
1、引导学生观察这两组除法算式中的每一组除法算式。思考:他们都是什么发生了变化,什么没变?
通过观察,学生可能回答出:每组除法算式中被除数和除数都变了,商没有变。
学生通过初步观察感知,每组算式中发生变化的是被除数和除数,而商没有变。这样先引出现象,再探究原因的方法,实际上 鼓励学生积极发现,感受成为学习主人的乐趣。这时候我会说,那他们是按照什么规律变化的?这节课我们就来共同研究这个变化规律。
2、比较归纳,总结规律。
(1)以第一组除法算式为例,让学生从上往下看,观察第1个表格除法算式与第一个比较被除数和除数各有什么变化?
(2)小组讨论,汇报。
学生可能会回答出:第一个算式中的被除数8和除数2都乘10就得到第二个算式中的被除数和除数;第一个算式中的被除数8和除数2都乘100就得到第三个算式中的被除数和除数……它们的商不变。
教师引导学生口述:被除数8和除数2都乘相同的数,商不变。
教师可指出,都乘可以叫做同时乘
(3)在另一组算式中,我们也按这样的顺序来观察,被除数和除数的变化规律怎样?学生回答后,要学生试着归纳变化规律:被除数和除数同时乘相同的数,商不变。同桌俩互相说,以此来进一步强化,被除数和除数的这一变化规律。
以上是探究环节中的第二个小环节,总结出被除数和除数同时乘相同的数,商不变的规律。接着继续往下探究。
(4)从下往上看,第2、3个表格里除法算式与第1个比较,你发现了什么?通过观察、比较,学生能够得出:被除数和 除数同时除以相同的数,商不变。
(5)归纳商不变的规律:谁能用一句话概括这两个规律?引导学生说出:被除数和除数同时乘或除以相同的数,商不变。
进一步引导学生:你认为这句话有没有问题?学生可能回答要填“0”除外;如果学生答不出来,教师可适当的做引导。为什么“0”除外?学生可能回答出因为除数不能为0;被除数和除数同时乘0,算式没有意义。
这一小环节的设计,既让学生在合作学习过程中,发挥了主体地位,又在学生的汇报中体现了教师的主导作用。让学生在观察中发现,在比较中归纳,遵循了小学生的认知规律
(6)揭示课题,强化记忆:
这就是我们这节课所学的知识。 同桌互相说,指名说商不变的规律来强化记忆。
(7)根据规律,解决问题
A、a、出示950÷50 怎样计算简便?
学生试做时,不做统一要求。目的在于,不拘束学生的思维能力,提倡算法多样化。再指出愿意用哪种方法做,就用哪种方法做。
同步练习:440÷20 3600÷900
在此设计针对性比较强的同步练习的目的是让学生独立思考,动笔练习,进而巩固比较商不变的规律
B、a、出示400÷25 用商不变的规律计算
(8)看书质疑
整个探究环节,充分发挥了学生的主体地位。小组合作学习更是培养了学生团结协作的集体主义精神。引导学生用眼观察,比较相关算式的内在联系;动脑思考,抽象出规律;动口去说,概括出商不变的规律。让学生在多种感官的协同活动中主动获取知识,进而培养他们的观察、发现、概括、表达的能力。
第三环节:巩固练习
练习是学生内化和巩固新知识、达到能较熟练、灵活运用新知的重要途径,也是学习过程的重要环节。因此,我设计了如下的练习题:
一、填空:
1、在一道除法算式里,如果被除数除以5,除数也除以5,商( )。
2、在一道除法算式里,如果被除数乘22,要使商不变,除数( )。
3、在一道除法算式里,如果除数除以14,要使商不变,被除数( )。
这道题是口头叙述性练习,及时强化了学生对商不变的规律的理解和记忆
二、根据第一个算式的结果直接写得数。
(1)18÷6=3 (2) 480÷10=48
(18×2)÷(6×2)= (480÷2)÷(10÷2)= (18×15)÷(6×15)= (480÷5)÷(10÷5)=
三、用商不变的规律计算
120÷40 800÷25 9000÷125
通过综合练习,让学生在实际运用中进一步巩固商不变的规律,提高综合运用知识的能力
第四环节:课堂总结:
这节课你有什么收获?
让学生汇报本课学习的主要内容――商不变的规律。
由于在上课时前面的时间没有处理好,导致后面两个环节没有很好的进行,没有达到预设的效果。
篇6:商不变的规律
教学内容:教材84-85页例10、例11、例12.85页做一做:练习二十的1-4题.
素质教育目标
(一)知识教学点
1.使学生理解和掌握被除数、除数同时、(扩大)或缩小相同的倍数,商不变.
2.能运用商不变的规律进行被除数、除数末尾有零的口算除法和笔算除法的计算.
(二)能力训练点
1.培养学生初步的抽象概括总结规律的能力.
2.提高学生运用知识解决实际问题的能力.
(三)德育渗透点
通过引导学生揭示知识间的联系,探索规律,渗透函数思想,培养学生对科学知识的探索精神.
教学重点:理解和掌握商不变规律.
教学难点 :运用商不变规律进行计算.
教具、学具准备:投影片、投影仪.
教学步骤
一、铺垫孕伏
1.口算(投影出示)
288÷400 3600÷300 5400÷900 8000÷800
1200÷200 4200÷700 1500÷500 6000÷600
2.提问:扩大几倍是什么意思?缩小几倍是什么意思?
3.填空(投影片出示)
(1)把24扩大10倍是( )
(2)把4800缩小200倍是( )
(3)70扩大( )倍是490
(4)4800缩小( )倍是120.
4.填表(小黑板出示)
提问:从表中发现了什么?
二、探究新知
1.导入 新课:表中被除数,除数变了,商为什么不变呢?你想知道其中的奥秘吗?这节课我们就来研究这个问题.(板书课题)
2.教学例10,引导学生总结商不变的规律
(1)教师引导学生观察:
①2组同1组比较,被除数有什么变化?除数有什么变化?商有什么变化?
②学生汇报,教师引导准确表述:被除数,除数同时扩大了5倍,商不变.
③让学生分别照上面的样子总结出:3组同1组比较,4组同1组比较,5组1组比较被除数、除数、商的.变化.
④教师提问:如果被除数,除数同时扩大30倍,100倍3000倍商会怎样?
教师提问:通过观察讨论你发现了什么规律?学生总结.教师板书:被除数除数同时扩大相同的倍数,商不变.
(2)教师提问
①我们把2、3、4、5组同1组比较发现了以上规律,如果我们把4、3、2、1组同5组比较又会发现什么?
②学生认真观察思考并说给同桌.
③师生一起订正讨论结果:
第4组与第5组比较,被除数和除数同时缩小2倍,商不变.
第3组同第5组比较,被除数和除数同时缩小20倍,商不变.
第2组同第5组比较,被除数和除数同时缩小了200倍,商不变.
第1组同第5组比较,被除数和除数同时缩小了200倍,商不变.
教师板书:缩小了2倍、20倍、40倍、200倍.
④如果同时缩小20倍、50倍、500倍,商会有什么变化?板书:被除数、除数同时缩小相同倍数,商不变.
(3)概括规律:你能用一句话来总结今天学到的规律吗?
(4)看书理清重点词语.
①如果被除数扩大100倍,要使商不变,除数应该怎样?
②如果被除数缩小100倍,要使商不变,除数应该怎样?
③如果除数扩大了10倍,要使商不变,被除数应怎样?
④如果除数缩小了10倍,要使商不变,被除数应怎样?
3.教学商不变规律的应用.
(1)出示例11,说明式题特点.3600÷600,启发怎样利用所学规律算出商?(板书)
3600÷600=6
想:把3600和600同时缩小100倍变成36÷6,得6
4800÷400得多少?怎样想?
把4800和400同时缩小100倍,变成48÷4=12
尝试练习(投影出示)
420÷60 660÷6 4800÷800 5400÷900 6000÷3000
53000÷1000(提问1-2个是怎样想的?)完成书上85页做一做
(2)出示例12 8760÷120
提问:被除数、除数有什么特点?根据刚才的口算方法,怎样算更简便?在竖式上怎样表示呢?请观察老师怎样做? (老师演示)提问:老师怎样做的,表示什么?如果同时划出2个0, 3个0呢? 876表示的是什么?(876个十),12表示什么?(12个十)
学生完成笔算部分,一生板演.
练习(投影出示)
①判断:(投影)划的0对不对,为什么?
②计算:
8060÷620 13500÷270(2人做投影片,其余做练习本)
三、巩固发展
1.根据商不变的规律判断(投影片)
48÷12=4
(4×5)÷(12×5)=4
(48×6)÷(12÷6) =4
(48÷3)÷(12÷4)=4
(4÷2)÷( 12÷2) =4
48÷(12÷3)=4
2.填空:
在除法里,被除数和除数( )扩大(或缩小)( )倍数,( )不变.
3.下面计算对吗?(投影出示)
4.87页1、2题在书上完成.
四、全课小结
今天你学得了什么知识?(学会了商不变规律和运用规律口算除法和笔算除法).
五、布置作业 :87页3题.
六、板书设计
篇7:商不变的规律
例10:
在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.
例11: 3600÷600=6 4800÷400=12
想:把3600和600同时缩小100倍,变成36÷6=6
例12:8760÷120=73
篇8:商不变的规律
例10:
在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.
例11: 3600÷600=6 4800÷400=12
想:把3600和600同时缩小100倍,变成36÷6= 6
例12:8760÷120=73
篇9:小学四年级数学《商不变的规律》教案
【教学目标】
1、知识与技能
学生通过观察,能够发现并总结商的变化规律、会灵活运用商的变化规律。
培养学生用数学语言表达数学结论的能力。
2、过程与方法
使学生经历引导学生思考发现商的变化规律的过程,灵活运用商的变化规律。
3、情感态度与价值观
培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
【教学重点】
探究商不变的规律和运用规律进行一些除法运算。
【教学难点】
引导学生自己发现并总结商的变化规律。
【教学方法】
启发式教学、自主探索、合作交流、讨论法、讲解法。
【课前准备】
多媒体
【课时安排】
1课时
【教学过程】
(一)故事导入
师:同学们,喜欢看《西游记》吗?最喜欢西游记里的什么人物?谁最贪吃?
一天,孙悟空拿来一些饼,猪八戒想去抢,孙悟空说:“我分给你吧,我给你8块饼,平均分2天吃完,怎么样?”猪八戒说:“太少了!”孙悟空灵机一转说:“那我就给你80块饼,平均分20天吃完。”猪八戒笑着说:“太好了!太好了!这回每天我可以多吃些了!”
提问:你认为小猪说的有道理吗?同桌交流。
师;相信同学们学了今天的知识就会明白其中的道理。
(二)探究新知
1、探索商不变的规律。
(1)观察下面两组算式,你发现了什么?你能照样子再写一组吗?
8÷2=480÷20=4800÷200=4
48÷24=224÷12=26÷3=2
小组比赛:比一比看谁写得又对又快。
(2)根据算式找出规律。
8÷2=4
80÷20=4
800÷200=4
出示自学提纲,学生自主观察探究。
①从上到下观察,被除数和除数是按照什么规律变化而商不变的?
②再从下到上观察,被除数和除数是按照什么规律变化而商不变的?
(3)汇报交流:从上到下观察,你发现了什么?
8÷2=4
(8×10)÷(2×10)=4
(8×100)÷(2×100)=4
被除数和除数同时乘10或乘100……商不变。
从下到上观察,你发现了什么?
800÷200=4
(800÷10)÷(20÷10)=4
(800÷100)÷(200÷100)=4
被除数和除数同时除以10或100……商不变。
2、尝试用自己的语言说出其中的规律。
学生交流后师小结:
被除数和除数同时乘或者除以相同的数,商不变。
讨论:这个“相同的数”,可以是0吗?为什么?
3、验证规律。
每人举出一组有这种规律的算式进行验证。
4、试一试。
用不同的方法计算350÷50。
师:我们男女生进行比赛吧。
汇报交流:
师:你能解释一下他们这样计算的理由吗?
5、回顾故事,总结提升。
师:刚才的故事中,小猴子是运用什么规律教育贪吃的小猪的呢
生交流:商不变的规律。
(三)课堂练习
谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?
1、想一想,算一算。
45÷3=88÷8=65÷5=
450÷30=880÷80=650÷50=
4500÷300=8800÷800=6500÷500=
2、用商不变的规律进行简算。
200÷25
400÷25
(四)拓展提高
根据476÷17=28,你能写出多少个商是28的算式?
全班比赛:看谁写得最多。
学生比赛后集体交流。
(五)课堂总结
师:通过学习,你有什么收获?
生交流:被除数和除数同时乘或除以一个相同的数(0除外),商不变。这就是商不变的规律。
(六)板书设计
商不变的规律
8÷2=4
80÷20=4
800÷200=4
被除数和除数同时乘或除以一个相同的数(0除外),商不变。这就是商不变的规律。
【教学反思】
在教学《商不变的性质》时,尝试从学生感兴趣的实例引入,从学生的反应来看比我原来直接出现一些数学算式,让他们直接计算的效果更好。课的开始我首先给学生讲了一个小故事:一天,孙悟空拿来一些饼,猪八戒想去抢,孙悟空说:“我分给你吧,我给你8块饼,平均分2天吃完,怎么样?”猪八戒说:“太少了!”孙悟空灵机一转说:“那我就给你80块饼,平均分20天吃完。”猪八戒笑着说:“太好了!太好了!这回每天我可以多吃些了!”这个关键引导学生从被除数和除数之间的变化得出“商不变”的规律,期间教师扶得少,学生创造的多;学生学会的不仅仅是一条数学性质,更重要的是,学生在自主学习中,学会了独立思考,学会了进行合作,还学习了“像数学家一样进行研究、创造”。同学们学习积极性很高,人人参与互动学习,通过列式、比较、讨论,学生自己总结出了商不变的规律,培养了学生的学习能力,使学生真正成为学习的主人。
★ 数学评课心得体会
★ 小学数学评课稿
★ 初中数学评课稿
四年级数学《商不变规律》评课稿(精选9篇)




