中考数学考前知识点

时间:2024-03-04 03:35:28 作者:ziyan99999 综合材料 收藏本文 下载本文

【导语】“ziyan99999”通过精心收集,向本站投稿了6篇中考数学考前知识点,以下是小编为大家准备了中考数学考前知识点,欢迎参阅。

篇1:2021中考数学考前知识点

2021中考数学考前知识点汇总

三角函数关系

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以“上弦、中切、下割;左正、右余、中间1”的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;sinA=a/c

余弦(cos)等于邻边比斜边;cosA=b/c

正切(tan)等于对边比邻边;tanA=a/b

余切(cot)等于邻边比对边;cotA=b/a

正割(sec)等于斜边比邻边;secA=c/b

余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

圆的定理:

1不在同一直线上的三点确定一个圆。

2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3圆是以圆心为对称中心的中心对称图形

4圆是定点的距离等于定长的点的集合

5圆的内部可以看作是圆心的距离小于半径的点的集合

6圆的外部可以看作是圆心的距离大于半径的点的集合

7同圆或等圆的半径相等

8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

篇2:中考数学考前知识点资料

1. 概念:数轴上某个数与原点的距离叫做这个数的绝对值。

2. 代数意义:

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数;

③有理数的绝对值都是非负数。

3. 如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零。

篇3:中考数学考前知识点资料

1. 相反数的概念:只有符号不同的两个数叫做互为相反数。

2. 相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

3. 多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

4. 规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

篇4:中考数学考前知识点资料

1. 数轴的概念:

在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

数轴的三要素:原点、单位长度、正方向。

2. 数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)

3. 用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

篇5:中考数学考前知识点资料

1.掌握有理数的减法法则.

2.熟练地进行有理数的减法运算.

3.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.

知识重点

有理数减法法则:减去一个数,等于加这个数的________,即a-b=a+(-b).

精典范例

知识点一有理数减法法则

例1下列运算正确的是

A.(-3)-(+5)=(+5)-(-3)=+2

B.(+3)-(-5)=(+3)+(+5)=+8

C.(-3)-(-5)=(-3)+(+5)=-2

D.(-3)-(+5)=(-3)+(-5)=-2

例2(1)(教材P23练习第1题节选)计算:

①(+4)-(-7);②(-5)-(-8);③0-(-5).

(2)(教材P25习题1.3第4题节选)计算:

①21-31;②(-2)-32;

③43-41-21.

知识点二有理数减法法则的实际应用

例3某矿井下A,B,C三处的海拔分别为-32.5米,-120.7米,-63.8米.

(1)B处比C处高多少米?

(2)A处比C处高多少米?

变式练习

变式1计算:

(1)0-2=0+________=________;

(2)7-9=7+________=________;

(3)3-(-3)=3+________=________;

(4)-7-9=-7+________=________.

变式2(1)(2019·台湾)算式-35-(-61)之值为何?()

A.-23B.-34

C.-611D.-94

(2)(2018·山东淄博)计算21-21的结果是()

A.0B.1

C.-1D.41

(3)计算:-5-(-3)-(-4)-[-(-2)].

变式3某同学在计算时-387-N,误将-N看成了+N,从而算得结果是543,请你帮助算出正确结果.

巩固练习

1.(2019·河池)计算3-4,结果是()

A.-1B.-7

C.1D.7

2.(2019·遵义)遵义市6月1日的最高气温是25℃,最低气温是15℃,遵义市这一天的最高气温比最低气温高()

A.25℃B.15℃

C.10℃D.-10℃

3.下列说法正确的是()

A.0减去一个数,仍得这个数

B.负数减去负数,结果是负数

C.正数减去负数,结果是正数

D.被减数一定大于差

4.有下列计算:①(-4)-|-4|=0;②41-21=-21;③0-(+5)=-5;④(-5)-(-4)=-1.其中正确的有()

A.1个B.2个

C.3个D.4个

5.(2019·玉林)计算:(-6)-(+4)=________.

6.(2018·四川南充)某地某天的最高气温是6℃,最低气温是-4℃,则该地当天的温差为________℃.

7.计算:

(1)(-61)-(-71)-|-8|-(-2);

(2)(-20)-(+3)-(-5)-(+7);

(3)0-(+3)-(-5)-(-7)-(-3);

(4)(+20)-(-10)-(-12)-(+5)-(+26).

8.下列结论错误的是()

A.若a>0,b<0,则a-b>0

B.a0,则a-b<0

C.若a<0,b<0,则a-(-b)<0

D.若a<0,b<0,且|a|>|b|,则a-b>0

9.有理数a,b在数轴上对应的点的位置如图,则计算|a-b|的结果为()

A.a+bB.a-b

C.b-aD.-a-b

10.若数轴上A,B两点表示的有理数分别是-621和743,则A,B两点之间的距离为________.

11.已知a,b互为相反数,且|a-b|=6,求b-1的值.

12.已知|m|=37,|n|=31,且|m+n|=-(m+n),求m-n的值.

篇6:中考数学考前知识点资料

1.掌握有理数大小的比较法则.

2.能利用数轴及绝对值的知识,比较两个有理数的大小.

重难点:

重点:掌握有理数大小的比较法则.

难点:比较有理数的大小

学法指导:

交流讨论,归纳类比

教学过程:

预习课本:

第12到第13页有理数大小比较

下面是我国5座城市某天的最低温度:

武汉-5℃,北京-10℃,上海0℃,哈尔滨-20℃广州10℃

(1)将这5座城市这一天的最低气温按照由低到高的顺序排列出来.

(2)这5座城市这一天的最低气温在温度计上对应的位置有什么规律?

(3)将这5座城市这一天的最低气温在数轴上表示出来,这些数的大小与它们在数轴上所表示的点的位置有什么关系?

归纳在数轴上表示的两个数,右边的数总比左边的数.

正数0,0负数,正数负数.

(4)比较下列两座城市之间最低气温的高低(填“高于”或“低于”)

北京__________武汉;北京__________哈尔滨.

(5)求出下列各数的绝对值:-5-10-20,并比较它们绝对值的大小.

(6)由上你发现了什么?

思考:结合绝对值,两个负数之间如何比较大小?

归纳两个负数,绝对值大的反而.

中考八年级上册数学知识点

中考数学三角形知识点总结

中考知识点

数学知识点

高二语文考前必看知识点

高一生物考前必看知识点

地理必修一期末考前知识点

高考前如何复习数学

中考化学知识点

中考语文知识点

中考数学考前知识点(共6篇)

欢迎下载DOC格式的中考数学考前知识点,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档