第一册一元一次方程

时间:2025-02-18 03:34:33 作者:hwakang 综合材料 收藏本文 下载本文

【导语】“hwakang”通过精心收集,向本站投稿了6篇第一册一元一次方程,以下是小编整理后的第一册一元一次方程,仅供参考,希望能够帮助到大家。

篇1:第一册一元一次方程

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1. 重点:

一元一次方程及方程的解的基本概念。

篇2:第一册一元一次方程

会用一元一次方程解决实际问题。

2. 难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】

例1.

分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

解一:设车的速度为x m/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为x m

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的.等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为19.2元。

【模拟试题】

一. 填空题。

1. 已知方程 的解比关于x的方程 的解大2,则 _________。

2. 关于x的方程 的解为整数,则 __________。

3. 若 是关于x的一元一次方程,则k=_________,x=_________。

4. 若代数式 与 的值互为相反数,则m=_________。

5. 一元一次方程 的解为x=0,那么a、b应满足的条件是__________。

二. 解方程。

1.

2.

3.

4.

三. 列方程解应用题。

1. 一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

【试题答案】

一. 填空题。

1.                     2.

3. 1,1                     4.                   5.

二. 解方程。

1.

篇3:第一册一元一次方程 利用等式的性质解方程

一、目的要求     使学生会用移项解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程               7x-2=6x-4

时,用移项可直接得到  7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x;       (2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的.正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到                     x=5+7,

x=12。

又如方程                           7x=6x-4

的两边都减去6x,就可以得到      7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程   3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.

利用移项解前面提到的方程   3x-2=2x+l

解:移项,得              3x-2x=1+2。①

合并,得                      x=3。

检验:把x-3分别代入原方程的左边和右边,得

左边=3×3-2=7,   右边=2×3+1=7,  左边=右边,

所以x=3是原方程的解。

在上面解的过程中,由原方程①的移项是指:

(l)方程左边的-2,改变符号后,移到方程的右边;

(2)方程右边的2x,改变符号后,移到方程的左边。

在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

课堂练习:教科书第73页  练习

课堂小结:

1.解方程需要把方程中的项从一边移到另一边,移项要变号。

2.检验要把数分别代入原方程的左边和右边。

四、课外作业

习题2.1  P73 复习巩固

篇4:第一册列一元一次方程解工程问题的应用题

教学目标 :

1、              使学生会列一元一次方程解有关应用题。

2、              培养学生分析解决实际问题的能力。

复习引入:

1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

(1)__________ (2)_________  (3)_________

人们常规定工程问题中的'工作总量为______。

2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。

讲授新课:

1、例题讲解:

一件工作,甲单独做20小时完成,乙单独做12小时完成。

问:甲乙合做,需几小时完成这件工作?

(1)首先由一名至两名学生阅读题目。

(2)引导

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、练习:

有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

此题的处理方法:

Ⅰ:先由一名学生阅读题目;

Ⅱ:然后由两名学生板演;

3、变式练习:

丙管改为排水管,且单独开丙管18分钟可把满池的水放完,问三管齐开,几分钟可注满空水池?要求学生口头列出方程。

4、继续讲解例题

一件工作,甲单独做20小时完成,乙单独做12小时完成。

若甲先单独做4小时,剩下的部分由甲、乙合做,问:还需几小时完成?

(1)             先由学生阅读题目

(2)             引导:

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3)             由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

5、练习:

(1)一件工作,甲单独做20小时完成,乙单独做12小时完成。

若乙先做2小时,然后由甲、乙合做,问还需几小时完成?

(2)一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?

以上两题的处理方法:

Ⅰ:先由两名学生阅读题目;

Ⅱ:然后由两名学生板演;

Ⅲ:其他学生任选一题完成。

Ⅴ:评讲后对第一题提出:这项工程共需几天完成?

Ⅵ:第一题还可根据什么等量关系列出方程呢?根据此相等关系列出方程(学生口答)。

6、编应用题:

(1)        根据方程:3/12+x/12+x/6=1,编应用题。

(2)        事由:打一份稿件。

条件:现在甲、乙两名打字员,若甲单独打这份稿件需6小时打完,若乙单独打这份稿件需12小时打完。

要求:甲、乙两名打字员都要参与打字,并且要打完这份稿件。

处理方法:由学生编出应用题,并设出未知数,列出方程。

课堂总结:

工程问题中的三个量的关系。

课堂作业 :

见作业 本

选做题:

一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?

篇5:一元一次方程的应用之追及问题 ―― 初中数学第一册教案

一元一次方程的应用之追及问题 ―― 初中数学第一册教案

第16课 4.4一元一次方程的应用之追及问题

教学目的

1、使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

2、使学生加强了解列一元一次方程解应用题的方法步骤。

教学分析

重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。

难点:寻找相遇问题中的相等关系。

突破:同时出发到相遇时,所用时间相等。注重审题,从而找到相等关系。

教学过程

一、复习

1、列方程解应用题的一般步骤是什么?

2、路程、速度、时间的关系是什么?

3、慢车每小时行驶48千米,x小时行驶 千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了 千米。

二、新授

1、引入

列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。

例(课本P216例3)题目见教材。

分析:(1)可以画出图形,明显有这样的相等关系:

慢车行程+快车行程=两站路程

设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450

(2)再分析快车先开了30分两车相向而行的'情形。

同样画出图形,并按课本讲解,(见教材P217~218)

由学生完成求解过程,并作出答案。

解:略

说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。

(2)不是同时出发的,要注意时间的关系。

三、练习

P220练习:1,2。

四、小结

1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。

2、相向而行的相遇问题中,要注意时间的关系。

五、作业

1、P222 4.4A:13,14,15。

2、基础训练:同步练习3。

篇6:第四章 一元一次方程 利用等式的性质解方程 ―― 初中数学第一册教案

第四章 一元一次方程 利用等式的性质解方程 ―― 初中数学第一册教案

第四章 一元一次方程 利用等式的性质解方程

一、目的要求使学生会用移项解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程               7x-2=6x-4

时,用移项可直接得到  7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x;       (2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到                     x=5+7,

x=12。

又如方程                           7x=6x-4

的`两边都减去6x,就可以得到      7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程   3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.

利用移项解前面提到的方程   3x-2=2x+l

解:移项,得              3x-2x=1+2。①

合并,得                      x=3。

检验:把x-3分别代入原方程的左边和右边,得

左边=3×3-2=7,   右边=2×3+1=7,  左边=右边,

所以x=3是原方程的解。

在上面解的过程中,由原方程①的移项是指:

(l)方程左边的-2,改变符号后,移到方程的右边;

(2)方程右边的2x,改变符号后,移到方程的左边。

在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

课堂练习:教科书第73页  练习

课堂小结:

1.解方程需要把方程中的项从一边移到另一边,移项要变号。

2.检验要把数分别代入原方程的左边和右边。

四、课外作业

习题2.1  P73 复习巩固

初中数学第一册一元一次方程教案

一元一次方程教案

一元一次方程教案设计

一元一次方程练习题

第一册教案

第一册《为 学》

《一元一次方程》教学设计

解一元一次方程教案

一元一次方程练习题及答案

新概念英语第一册语法分析

第一册一元一次方程(共6篇)

欢迎下载DOC格式的第一册一元一次方程,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档