解一元一次方程教案

时间:2022-11-30 03:23:56 作者:yin93756 教案 收藏本文 下载本文

“yin93756”通过精心收集,向本站投稿了16篇解一元一次方程教案,下面是小编收集整理后的解一元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

篇1:《解一元一次方程》优秀教案

一、教学目标

(一).知识与技能

会利用合并同类项解一元一次方程.

(二).过程与方法

通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.

(三).情感态度与价值观

开展探究性学习,发展学习能力.

二、重、难点与关键

(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.

(二).难点:会列一元一次方程解决实际问题.

(三).关键:抓住实际问题中的数量关系建立方程模型.

三、教学过程

(一)、复习提问

1.叙述等式的两条性质.

2.解方程:4(x- )=2.

解法1:根据等式性质2,两边同除以4,得:

x- =

两边都加 ,得x= .

解法2:利用乘法分配律,去掉括号,得:

4x- =2

两边同加 ,得4x=

两边同除以4,得x= .

(二)、新授

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.

问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.

题目中的相等关系为:三年共购买计算机140台,即

前年购买量+去年购买量+今年购买量=140

列方程:x+2x+4x=140

如何解这个方程呢?

2x表示2x,4x表示4x,x表示1x.

根据分配律,x+2x+4x=(1+2+4)x=7x.

这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.

下面的框图表示了解这个方程的具体过程:

x+2x+4x=140

合并

7x=140

系数化为1

x=20

由上可知,前年这个学校购买了20台计算机.

上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.

例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.

问:本题中相等关系是什么?

答:甲组人数+乙组人数+丙组人数=60.

解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:

2x+3x+5x=60

合并,得10x=60

系数化为1,得x=6

所以2x=12,3x=18,5x=30

答:甲组12人,乙组18人,丙组30人.

请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.

(三)、巩固练习

1.课本第89页练习.

(1)x=3.

(2)可以先合并,也可以先把方程两边同乘以2.

具体解法如下:

解法1:合并,得( + )x=7

即 2x=7

系数化为1,得x=

解法2:两边同乘以2,得x+3x=14

合并,得 4x=14

系数化为1,得 x=

(3)合并,得-2.5x=10

系数化为1,得x=-4

2.补充练习.

(1)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)

解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个.

列方程 3x+2x=32

合并,得 8x=32

系数化为1,得 x=4

黑色皮块为43=12(个),白色皮块有54=20(个).

(2)设全书共有x页,那么第一天读了( x+2)页,第二天读了( x-1)页.

本问题的相等关系是:第一天读的`量+第二天读的量+还剩23页=全书页数.

列方程: x+2+ x-1+23=x.

四、课堂小结

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.

合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.

五、作业布置

1.课本第93页习题3.2第1、3(1)、(2)、4、5题.

2.选用课时作业设计.

合并同类项习题课(第2课时)

一、解方程.

1.(1)3x+3-2x=7; (2) x+ x=3;

(3)5x-2-7x=8; (4) y-3-5y= ;

(5) - =5; (6)0.6x- x-3=0.

二、解答题.

2.育红小学现有学生320人,比1995年学生人数的 少150人,问育红小学1995年学生人数是多少?

3.甲、乙两地相距460千米,A、B两车分别从甲、乙两地开出,A车每小时行驶60千米,B车每小时行驶48千米.

(1)两车同时出发,相向而行,出发多少小时两车相遇?

(2)两车相向而行,A车提前半小时出发,则在B车出发后多少小时两车相遇?相遇地点距离甲地多远?

4.甲、乙二人从A地去B地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B地,求A、B两地之间的距离.

5.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?

答案:

一、1.(1)x=4 (2)x=4 (3)x=-5 (4)x=- (5)x=30 (6)x=11

二、2.705人,设育红小学1995年学生人数为x人,列方程320= x-150.

3.(1)4 小时,设出发后x小时相遇,列方程60x+48x=460.

(2)3 小时,设B车开出后x小时两车相遇,列方程60 +60x+48x=460.

4.3千米,设A、B两地间的距离为x千米, - = .

5.1 分钟,设经过x分钟两人首次相遇,列方程550x-250x=400.

篇2:《解一元一次方程》优秀教案

──移项(第3课时)

一、教学内容

课本第89页至第91页.

二、教学目标

(一).知识与技能

理解移项法,并知道移项法的依据,会用移项法则解方程.

(二).情感态度与价值观

鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.

三、重、难点与关键

(一).重点:运用方程解决实际问题,会用移项法则解方程.方程的各项应包括前面的符号

(二).难点:对立相等关系.

(三).关键:理解移项法则的依据,以及寻找问题中的等量关系.

四、教学过程 (一)、复习提问

1.运用方程解决实际问题的步骤是什么?

2.解方程: + =10.

(二)、新授

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系.

1.每人分3本,那么共分出多少本?(3x本)

2.共分出3x本和剩余的20本,可知道什么?

答:这批书共有(3x+20)本.

根据第二种分法,分析已知量与未知量之间的关系.

3.每人分4本,那么需要分出多少本?(4x本)

4.需要分出4x本和还缺少25本那么这批书共有多少本?

答:这批书共有(4x-25)本.

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?

这批书的总数是一个定值(不变量)表示它的两个式子应相等.

根据这一相等关系,列方程:

3x+20=4x-25

本题还可以画示意图,帮助我们分析:

从示意图中容易得到这批书的总数与分出书、剩下书的关系是:

这批书的总数=3x+30

这批书的总数与需要分出的书的数量、还缺少书的数量关系是:

这批书的总数=4x-25

根据两种分法,这批书的总数是相等的.

所以,列方程3x+20=4x-25.

注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:表示同一个量的两个不同式子相等.

思考:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?

要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即

3x+20 -4x-20 =4x-25 -4x-20

即 3x-4x=-25-20

将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.

像上面那样,把等式一边的某项变号后移到另一边,叫做移项.

方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.

下面的框图表示了解这个方程的具体过程.

3x+20=4x-25

移项

3x-4x=-25-20

合并

-x=-45

系数化为1

x=46

由此可知这个班共有45个学生.

思考:上面解方程中移项起了什么作用?

答:移项使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为x=a形式.

在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?

解方程时经常要合并和移项,前面提到的古老的代数书中的对消和还原,指的就是合并和移项.

如果把上面的问题2的条件不变,这个班有多少学生改为这批书有多少本?你会解吗?试试看.

解法1:从原问题的解答中,已求的这个班有45个学生,只要把x=45代入3x+20(或4x-25)就可以求得这批书的总数为:

345+20=135+20=155(本)

解法2:如果不先求学生数,直接设这批书共有x本,又如何布列方程?这时该用哪个相等关系列方程呢?

这批书共有x本,余下20本,共分出(x-20)本,每人分3本,可以分给 人,即这个班共有 人.

这批书有x本,每人分4本,还缺少25本,共需要(x+25)本,可以分给 人,即这个班共有 人.

这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程.

= (你会解这个方程吗?)

即 - = +

移项,得 - = +

合并,得 =

系数化为1,得x=155.

答:这批书共有155本.

(三)、巩固练习

1.课本第91页练习.

(1)解:移项,得6x-4x=-5+7

合并,得 2x=2

系数化为1,得x=1

(2)解:移项,得 x- x=6

合并,得- x=6

系数化为1,得x=-24

2.补充练习.

下列移项对不对?如果不对,错在哪里?应当怎样改正?

(1)从3x+6=0得3x=6;

(2)从2x=x-1得到2x-x=1;

(3)从2+x-3=2x+1得到2-3-1=2x-x.

解:(1)错,移项忘了要变号,应改为3x=-6.

(2)错.原方程中的-1仍然在方程右边,并没有移项,所以不要变号,应改为2x-x-=-1.

(3)正确.

四、课堂小结

1.列一元一次方程解决实际问题的关键是审题、读懂题意和找相等关系,今天解决的这个问题的相等关系不明显,隐含在问题中,表示同一个量的两个式子是相等.这个相等关系可以作列方程的依据.

2.正确理解移项法则,移项中常犯的错误是忘记变号,还要注意移项与在方程的一边交换两项的位置有本质区别,移项的依据是等式性质,在方程的一边交换两项的位置是根据交换律.

五、作业布置

1.课本第93页至第94页习题3.2第2、3(3)(4)、6、7、8题.

2.选用课时作业设计.

移项习题课(第4课时)

一、填空题.

1.在方程的两边加上或减去同一项,相当于把原方程中的项______后,从方程的一边移到另一边,这种变形叫做________,其依据是________,移项要注意_____.

2.在方程的一边交换两项的位置______改变项的符号,而移项______改变符号.

3.解方程x+21=36得x=________;由10x-3=9得x=______.

二、判断题.(对的打,错的打)

4.移项就是把方程中的某一项移到等号的另一边.( )

5.从6x=1,移项,得x=1-6,x=-5. ( )

6.由方程-4+x=7移项得x=7-4. ( )

三、解方程.

7.(1)8=7-2y; (2) = - ;

(3)5x-2=7x+8; (4)1- x=3x+ ;

(5)2x- =- +2; (6)- x+6=4x+1;

(7) -x=0.5x-3.

四、解答题.

8.设m=3x-2,n=-2x+3,当x为何值时m=n?

9.甲粮仓存粮1000吨,乙粮仓存粮798吨,现要从两个粮仓中运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?

答案:

一、1.合并 移项 合并同类项 变号 2.不 要 3.15 1.2

二、4. 5. 6.

三、7.(1)y=- (2)x= (3)x=-5 (4)x=-

(5)x=1 (6)x= (7)x=3

四、8.x=1 9.207,5,设从甲粮仓运出x吨,1000-x=798-(212-x)

篇3:解一元一次方程的教案

解一元一次方程的教案

一、教材分析

1、地位和作用

地位:本节位于青岛版七年级上册第八章第4节第三课时,在研究了解简单的一元一次方程的基础上进行的,其后是第5节一元一次方程的应用。

作用:是一元一次方程解应用题的基础,也是解其他方程的基础。

2、教学目标

(1)知识与技能:让学生掌握解一元一次方程的基本步骤,会解一元一次方程。

(2)过程与方法:让学生经历解一元一次方程的探索过程,总结出解一元一次方程的一般步骤。

(3)情感、态度与价值观:通过自主学习、合作交流,培养学生的自信心与团结互助精神,让学生体会到解方程中分析与转化的思想方法。

3、重难点与关键

重点:解一元一次方程的一般步骤。

难点:解一元一次方程的一般步骤的归纳。

关键:每一步的`依据及应注意的问题。

二、学情分析

学生已经历了两节简单的解一元一次方程,大部分学生应已经初步了解了去括号、移项、合并同类项、系数化为1等方法,对本节学习大有帮助,但在去分母及其余各步骤中都有易错点,是学生难以全面掌握的。

三、教学思想

新课改理念强调学生的主体地位,把课堂还给学生,学生是每一环节的主体。数学是思维的体操。这节课的目的是让学生真正思考,将知识与技能内化成自己的东西,同时养成良好的行为、学习习惯。

四、教学过程教学环节 教师活动 学生活动 设计目的 一、师生定向

明确目标 出示目标 阅读目标 让学生清楚本节课应学习什么内容,学到什么程度达到什么要求 二、复习检测

了解学情 出示上节

习题 练习了解具体学情确定新旧知识的衔接点 三、自主预习

预习检测 布置任务

巡视督导

板书例题

预习检测

抽查学生

指导学生自改自评

自学课本内容,思考解方程的每一步变化的名称及具体做法,思考易错点

闭卷答题

自改、自评预习效果

教师指明做法,帮学生走进教材,理解文本,把握重点。

通过学生阅读思考让学生将部分知识内化。

检查预习情况,暴晒问题

让学生将技能内化,培养学生独立学习能力

四、合作探究

展示交流 指导学生互评

引导学生讨论总结步骤及具体做法,易错点 小组合作解决自学未能解决的问题

由会的同学展示

小组讨论总结每一步的易错点 兵教兵

在互动中提高学生的分析能力、判断能力,培养团结互助精神 五、达标自测

拓展应用 引导学生完成相应学案上的问题

独立完成

自评互评

小组交流后当堂完成 检验学生学习成果用以确定课后作业 六 简谈收获

布置作业 引导学生谈谈这节课的收获

布置作业

从知识、方法、情感等方面谈课堂收获 了解学生收获情况

布置课下任务,让学生继续牢固学习成果

篇4:解一元一次方程课件

一、教学目标:

1、知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2、能力目标:培养学生的运算能力与解题思路。

3、情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

二、教学的重点与难点:

1、重点:了解一元一次方程的.概念,解含有括号的一元一次方程的解法。

2、难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

三、教学方法:

1、教 法:讲课结合法

2、学 法:看中学,讲中学,做中学

3、教学活动:讲授

四、课 型:新授课

五、课 时:第一课时

六、教学用具:彩色粉笔,小黑板,多媒体

七、教学过程

1、创设情景:

今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她

心里想一个数

将这个数+2

将所得结果

最后+7

将所得的结果告诉老师

(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)

老师:同学们知道老师是怎样猜到的吗?

同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。

2、探究新知:

一元一次方程的概念:

前面我们遇到的一些方程,例如 3

老师:大家观察这些方程,它们有什么共同特征?

(提示:观察未知数的个数和未知数的次数)

(抽同学起来回答,然后再由老师概括)

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程

老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?

再次强调特征:

(1)只含一个未知数;

(2)未知数的次数为1;

(3)是一个整式。

(注意:这几个特征必须同时满足,缺一不可)

3、例题讲解:

例1判断如下的式子是一元一次方程吗?

(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由)

① ② ③

④ ⑤⑥

准确答案:①③

下面我们再一起来解几个一元一次方程。

例2、解方程

(1)

解法一:解法二:

提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)

(2)

解:

提示

1)在我们前面学过的知识中,什么知识是关于有括号的、

2)复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。

3)问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。

4)问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。

5)一起回顾合并同类项的法则:未知数的系数相加。

6)系数化为1,运用了等式的性质。

(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式、)

方程(1)该怎样解?由学生独立探索解法,并互相交流。

篇5:解一元一次方程课件

去括号,移项,合并同类项,系数化为1。

4、巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5、小结:和同学们一起回顾我们这节课学习了什么?

篇6:七年级数学解一元一次方程的教案

关于七年级数学解一元一次方程的教案

教学目标:

1.知识目标

(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2.能力目标

(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3.情感目标:

(1)激发学生浓厚的'学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

(2)培养学生严谨的思维品质;

(3)通过学生间的互相交流、沟通,培养他们的协作意识。

教学重点:1.弄清列方程解应用题的思想方法;

2.用去括号解一元一次方程。

教学难点:1.括号前面是“-”号,去括号时,应如何处理,括号前面是“-”号的,去括号时,括号内的各项要改变符号。

2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

教学过程:

一、创设情境,提出问题

问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:解方程5(x-2)=8

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

(教学说明:给学生充分的交流空间,在学习过程中体会“取长补短”的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)

二、探索新知

1.情境解决

问题1:设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

问题2:教师引导学生寻找相等关系,列出方程。

根据全年用电15万度,列方程,得6x+6(x-2000)=150000.

问题3:怎样使这个方程向x=a的形式转化呢?

6x+6(x-2000)=150000

去括号

6x+6x-12000=150000

移项

6x+6x=150000+12000

合并同类项

12x=162000

系数化为1

x=13500

问题4:本题还有其他列方程的方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解题)

归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号。)

去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号。

2.解一元一次方程――去括号

例题:解方程3x-7(x-1)=3-2(x+3)

解:去括号,得3x-7x+7=3-2x-6

移项,得3x-7x+2x=3-6-7

合并同类项,得-2x=-10

系数化为1,得x=5

三、课堂练习

1.课本97页练习

2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

四、总结反思

1.本节课你学习了什么?

2.通过今天的学习,你想进一步探究的问题是什么?

(由学生自主归纳,最后老师总结)

四、作业布置

1.课本102页习题3.3第1、4题

2.配套资料相关练习

教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习

篇7:3.3解一元一次方程二

3.3解一元一次方程(二) -―去括号与去分母(第1课时)教案

3.3解一元一次方程(二) ―――去括号与去分母(第1课时) 教学目标: (1)知识目标: 在具体情境中体会去括号的必要性,能运用运算律去括号。 (2) 能力目标: 探索总结去括号法则,并能利用法则解决简单的问题。 重点:去括号法则及其运用。 难点:括号前面是“―”号,去括号时,应如何处理。 教学过程: (一)创设情景,导入新课 问题  某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度。这个工厂去年上半年每月平均用电多少度?   (三)典例教学  例1.解方程 3x-7(x-1)=3-2(x+3)   例2.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的`速度是3千米/小时,求船在静水中的平均速度.   例3.某车间22名生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?   (四)课堂练习1.(1)4x+3(2x-3)=12-(x+4) (2)   2.同步P79自我尝试 (五)课堂小结  去括号法则 (六)作业 P102 习题3.3 第2题 ,  同步学习P80开放性作业 教后思:      

篇8:解一元一次方程数学课件

解一元一次方程数学课件

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

教学过程:

一、复习

1、什么叫一元一次方程?

2、解一元一次方程的理论根据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。

分析:设应从A盘内拿出盐x,可列表帮助分析。

等量关系;A盘现有盐=B盘现有盐

完成后,可让学生反思,检验所求出的解是否合理。

(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)

培养学生自觉反思求解过程和自觉检验方程的'解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

引导学生弄清题意,疏理已知量和未知量:

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了400块。

2.求什么?

初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=400

如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程

6x+8(65-x)=400

也可以按照教科书上的列表法分析

三、巩固练习

教科书第12页练习1、2、3

第l题:可引导学生画线图分析

等量关系是:AC十CB=400

若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再

由等量关系就可列出方程:

6(65-x)+8x=400

四、小结

本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业

篇9:解一元一次方程优秀教案设计

一、教学目标

①经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.

②学会合并(同类项),会解“ax+bx=c”类型的一元一次方程.

③能够找出实际问题中的已知数和未知数,分析它们之间的`数量关系,列出方程.

④初步体会一元一次方程的应用价值,感受数学文化.

二、教学难点

重点:建立方程解决实际问题,会解 “ax+bx=c”类型的一元一次方程.

难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.

三、教学过程

(一)设置情境,提出问题

(出示背景资料)约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.

出示教科书76页问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍。前年这个学校购买了多少台计算机?

(二)探索分析,解决问题

引导学生回忆:

实际问题——设未知数列方程——一元一次方程

设问1:如何列方程?分哪些步骤?

师生讨论分析:

① 设未知数:前年购买计算机x台

② 找相等关系:前年购买量+去年购买量+今年购买量=140台

③ 列方程:x+2x+4x=140

设问2:怎样解这个方程?如何将这个方程转化为x=a的形式?学生观察、思考:

根据分配律,可以把含 x的项合并,即x+2x+4x=(1+2+4)x=7x.

老师板演解方程过程:

x+2x+4x=140

合并同类项,得

7x=140

系数化为1,得

x=20

设问3:以上解方程“合并”起了什么作用?每一步的根据是什么?

学生讨论、回答,师生共同整理:

“合并”是一种恒等变形,它使方程变得简单,更接近x=a的形式。

(三)例题讲解

例1 解方程7x-2.5x+3x-1.5x=-15×4-6×3.

解:合并同类项,得

6x=-78.

系数化为1,得

x=-13.

(四)课堂练习

教科书第89页练习

(五)拓广探索比较分析

对于问题1还有不同的未知数的设法吗?

学生思考回答:若设去年购买计算机x台,得方程

x÷2+x+2x=140

若设今年购买计算机x台,得方程

x÷4+x÷2+x=140

(六)综合应用巩固提高

一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?

学生思考、讨论出多种解法,师生共同讲评。

(七)课堂小结

提问:

1、你今天学习的解方程有哪些步骤,每一步依据是什么?

2、今天讨论的问题中的相等关系有何共同特点?

学生思考后回答、整理:

① 解方程的步骤及依据分别是:合并和系数化为1.

② 总量=各部分量的和

(八)课后作业

教科书第93页习题3.2中1、3①②、4、6.

篇10:解一元一次方程2课件

解一元一次方程2课件

解一元一次方程2课件

一、课题名称:

去括号与去分母

二、教学目的和要求:

1、知识目标

(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2、能力目标

(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3、情感目标

(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

(2)培养学生严谨的思维品质;

(3)通过学生间的相互交流、沟通,培养他们的协作意识。

三、教学重难点:

重点:

去分母解方程。

难点:

去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。

四、教学方法与手段:

运用引导发现法,引进竞争机制,调动课堂气氛

五、教学过程:

1、创设情境,提出问题

问题1:

我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:

解方程5(x-2)=8

解:

5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

问题3:

某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

2、探索新知

(1)情境解决

问题1:

设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。

问题2:

教室引导学生寻找相等关系,列方程。

根据全年用电15万度,列方程,得6x+6(x-2000)=150000.

问题3:

怎样使这个方程向x=a的形式转化呢?

6x+6(x-2000)=150000

↓去括号

6x+6x-12000=150000

↓移项

6x+6x=150000+12000

↓合并同类项

12x=162000

↓系数化为1

x=13500

问题4:

本题还有其他列方程的方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+2000)=150000.

(学生自己进行解决)

归纳结论:

方程中有带括号的式子时,根据乘法分配率和去括号法则化简。 (见“+”不变,见“—”全变)

去括号时要注意:

(1)不要漏乘括号内的任何一项;(2)若括号前面是“—”号,记住去括号后括号内各项都变号。

(2)解一元一次方程——去括号

例题、解方程:

3x—7(x—1)=3—2(x+3)。

解:

去括号,得3x—7x+7=3—2x—6

移项,得3x—7x+2x=3—6—7

合并同类项,得—2x=—10

系数化为1,得x=5

3、变式训练,熟练技能

(1)解下列方程:

(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);

(2)3(2-3x)-3[3(2x-3)+3]=5;

(3)2 (x+1)+3(x+2)-3=-4(x+3).

(2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

(3)学校田径队的.小刚在400米跑测试时,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?

4、总结反思,情意发展

(1)本节课你学习了什么?

(2)本节课你有哪些收获?

(3)通过今天的学习,你想进一步探究的问题是什么?

可以归纳为如下几点:

①本节主要学习用去括号的方法解一元一次方程。

②主要用到的思想方法是转化思想。

③注意的问题:

括号前是“—”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。

5、布置作业

(1)必做题:

课本第98页习题3.3第1、2题。

(2)选做题:

①解方程:

3x-2[3(x-1)-2(x+2)]=3(18-x)。

②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?

六、课后小结:

本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开

思考、讨论,进行学习。

强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。

从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。

篇11:《解一元一次方程》教学方案设计

《解一元一次方程》教学方案设计

A卷:基础题

一、选择题

1.判断下列移项正确的是( )

A.从13-x=-5,得到13-5=x B.从-7x+3=-13x-2,得到13x+7x=-3-2

C.从2x+3=3x+4,得到2x-4=3x-3 D.从-5x-7=2x-11,得到11-7=2x-5x

2.若x=m是方程ax=5的解,则x=m也是方程( )的解

A.3ax=15 B.ax-3=-2 C.ax-0.5=- D.ax= -10

3.解方程 =1时,去分母正确的是( )

A.4x+1-10x+1=1 B.4x+2-10x-1=1

C.2(2x+1)-(10x+1)=6 D.2(2x+1)-10x+1=6

二、填空题

4.单项式- ax+1b4与9a2x-1b4是同类项,则x-2=_______.

5.已知关于x的方程2x+a=0的解比方程3x-a=0的解大5,则a=_______.

6.若关于x的一元一次方程 =1的解是x=-1,则k=______.

三、计算题

7.解一元一次方程.

(1) -7=5+x; (2) y- = y+3;

(3) (y-7)- [9-4(2-y)]=1.

四、解答题

8.利用方程变形的依据解下列方程.

(1)2x+4=-12; (2) x-2=7.

9.关于x的方程kx+2=4x+5有正整数解,求满足条件的k的正整数值.

10.蜻蜓有6条腿,蜘蛛有8条腿,现有蜘蛛,蜻蜓若干只,它们共有360条腿,且蜘蛛数是蜻蜓数的3倍,求蜻蜓,蜘蛛各有多少只?

五、思考题

11.由于0. =0.999…,当问0. 与1哪个大时?很多同学便会马上回答:“当然0. 1,因为1比0. 大0.00…1.”如果我告诉你0. =1,你相信吗?请用方程思想说明理由.

B卷:多彩题

一、提高题

1.(一题多解题)解方程:4(3x+2)-6(3-4x)=7(4x-3).

2.(巧题妙解题)解方程:x+ [x+ (x-9)]= (x-9).

二、知识交叉题

3.(科内交叉题)已知(a2-1)x2-(a+1)x+8=0是关于x的一元一次方程.

(1)求代数式199(a+x)(x-2a)+3a+4的值;

(2)求关于y的方程a│y│=x的解.

三、实际应用题

4.小彬和小明每天早晨坚持跑步,小彬每秒跑6米,小明每秒跑4米.

(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?

(2)如果小彬站在百米跑道的起点处,小明站在他前面10米处,两人同时同向起跑,几秒后小彬追上小明?

四、经典中考题

5.(2008,重庆,3分)方程2x-6=0的解为________.

6.(2008,黑龙江,3分)如图,某商场正在热销北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃的价格是________元.

7.(2008,北京,5分)京津城际铁路将于208月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?

C卷:课标新型题

一、开放题

1.(条件开放题)写出一个一元一次方程,使它的解是-11,并写出解答过程.

二、阅读理解题

2.先看例子,再解类似的题目.

例:解方程│x│+1=3.

解法一:当x0时,原方程化为x+1=3,解方程,得x=2;当x0时,原方程化为-x+1=3,解方程,得x=-2.所以方程│x│+1=3的解是x=2或x=-2.

解法二:移项,得│x│=3-1,合并同类项,得│x│=2,由绝对值的意义知x=2,所以原方程的解为x=2或x=-2.

问题:用你发现的规律解方程:2│x│-3=5.(用两种方法解)

三、图表信息题

3.(表格信息题)4月18日是全国铁路第六次大提速的第一天,小明的爸爸因要出差,于是去火车站查询列车的开行时间,下面是小明的爸爸从火车站带回家的时刻表:

204月18日起次列车时刻表

始发站 发车时间 终点站 到站时间

A站 上午8:20 B站 次日12:20

小明的爸爸找出以前同一车次的时刻表如下:

次列车时刻表

始发站 发车时间 终点站 到站时间

A站 14:30 B站 第三日8:30

比较了两张时刻表后,小明的爸爸提出了如下两个问题,请你帮小明解答:

(1)提速后该次列车的运行时间比以前缩短了多少小时?

(2)若该次列车提速后的平均速度为每小时200千米,那么,该次列车原来的平均速度为多少?(结果精确到个位)

4.解关于x的方程:kx+m=(2k-1)x+4.

参考答案

A卷

一、1.C 点拨:A.-x从左边移到右边变成x,但-5从右边移到左边没有改变符号,不正确;B.-7x没有移项,不能变号,不正确;C.3移项变号了,4移项变号了,正确;D.-5x移项没变号,不正确.

拓展:(1)拓展是从方程一边移到另一边,而不是在方程的一边交换位置;

(2)移项要变号,不变号不能移项.

2.A 点拨:因为x=m是方程ax=5的解,所以am=5,再将x=m分别代入A,B,C,D中,哪个方程能化成am=5,则x=m就是哪个方程的`解.

3.C 点拨:去分母,切不可漏乘不含分母的项,不要忽视分数线的“括号”作用.

二、4.0 点拨:根据同类项的概念知x+1=2x-1,解得x=2.

5.-6 点拨:方程2x+a=0的解为x=- ,方程3x-a=0的解为x= ,由题意知- = +5,解得a=-6.

6.1 点拨:把x=-1代入,求关于k的一元一次方程.

三、7.解:(1)移项,得 -x=5+7,合并同类项,得- =12,系数化为1,得x=-24.

(2)去分母,得2y-3=3y+18,移项,得2y-3y=18+3,

合并同类项,得-y=21,系数化为1,得y=-21.

(3)去分母,得9(y-7)-4[9-4(2-y)]=6,

去括号,得9y-63-4(9-8+4y)=6,9y-63-36+32-16y=6.

移项,得9y-16y=6+36+63-32,合并同类项,得-7y=73.

系数化为1,得y=- .

点拨:按解一元一次方程的步骤,根据方程的特点灵活求解.移项要变号,去分母时,常数项也要乘分母的最小公倍数.

四、8.解:(1)方程两边都减去4,得2x+4-4=-12-4,2x=-16,

方程两边都除以2,得x=-8.

(2)方程两边都加上2,得 x-2+2=7+2, x=9,

方程两边都乘以3,得x=27.

点拨:解简单一元一次方程的步骤分两大步:

(1)将含有未知数一边的常数去掉;(2)将未知数的系数化为1.

9.解:移项,得kx-4x=5-2,合并同类项,得(k-4)x=3,

系数化为1,得x= ,

因为 是正整数,所以k=5或k=7.

点拨:此题用含k的代数式表示x.

10.解:设蜻蜓有x只,则蜘蛛有3x只,依据题意,得6x+83x=360,

解得x=12,则3x=312=36.

答:蜻蜓有12只,蜘蛛有36只.

点拨:本题的等量关系为:蜻蜓所有的腿数+蜘蛛所有的腿数=360.此题还可设蜘蛛有x只,列方程求解,同学们不妨试一下.

五、11.解:理由如下:设0. =x,方程两边同乘以10,得9. =10x,即9+0. =10x,所以9+x=10x,解得x=1,由此可知0. =1.

B卷

一、1.分析:此题可先去括号,再移项求解,也可先移项,合并同类项,再去括号求解.

解法一:去括号,得12x+8-18+24x=28x-21,

移项,得12x+24x-28x=-21+18-8,

合并同类项,得8x=-11,系数化为1,得x=- .

解法二:移项,得4(3x+2)+6(4x-3)-7(4x-3)=0,

合并同类项,得4(3x+2)-(4x-3)=0.

去括号,得12x+8-4x+3=0.

移项、合并同类项,得8x=-11,

系数化为1,得x=- .

点拨:此方程的解法不唯一,要看哪种解法较简便,解法二既减少了负数,又降低了计算的难度.

2.分析:此题采用传统解法较繁,由于(x-9)= (x-9),而右边也有 (x-9),故可把 (x-9)看作一个“整体”移项合并.

解:去中括号,得x+ x+ (x-9)= (x-9),

移项,得x+ x+ (x-9)- (x-9)=0,

合并同类项,得x=0,所以x=0.

点拨:把 (x-9)看作一个“整体”移项合并,能化繁为简,正是本题的妙解之处.

二、3.分析:由于所给方程是一元一次方程,

故x2项的系数a2-1=0且x项的系数-(a+1)0,

从而求得a值,进而求得原方程的解,最后将a,x的值分别代入所求式子即可.

解:由题意,得a2-1=0且-(a+1)0,所以a=1且a-1,

所以a=1.故原方程为-2x+8=0,解得x=4.

(1)将a=1,x=4代入199(a+x)(x-2a)+3a+4中,

得原式=199(1+4)(4-21)+31+4=1997.

(2)将a=1,x=4代入a│y│=x中,得│y│=4,解得y=4.

点拨:本题综合考查了一元一次方程的定义、解一元一次方程及代数式求值等知识.

三、4.分析:(1)实际上是异地同地相向相遇问题;

(2)实际上是异地同时同向追及问题.

解:(1)设x秒后两人相遇,依据题意,得4x+6x=100,解得x=10.

答:10秒后两人相遇.

(2)设y秒后小彬追上小明,依据题意,得4y+10=6y,解得y=5.

答:5秒后小彬能追上小明.

点拨:行程问题关键是搞清速度、时间、路程三者的关系,分清是相遇问题还是追及问题.

拓展:相遇问题一般从以下几个方面寻找等量列方程:

(1)从时间考虑,两人同时出发,相遇时两人所用时间相等;(2)从路程考虑,①沿直线运动,相向而行,相遇时两人所走路程之和=全路程.②沿圆周运动,两人由同一地点相背而行,相遇一次所走的路程的和=一周长;(3)从速度考虑,相向而行,他们的相对速度=他们的速度之和.追及问题可从以下几个方面寻找等量关系列方程:(1)从时间考虑,若同时出发,追及时两人所用时间相等;(2)从路程考虑,①直线运动,两人所走距离之差=需要赶上的距离.②圆周运动,两人所行距离之差=一周长(从同一点出发); (3)从速度考虑,两人相对速度=他们的速度之差.

四、5.x=3

点拨:2x-6=0,移项,得2x=6,系数化为1,得x=3.

6.145 点拨:设一盒福娃x元,则一枚奥运徽章的价格为(x-120)元,

所以x+(x-120)=170,解得x=145.

7.解:设这次试车时,由北京到天津的平均速度是每小时x千米,

则由天津返回北京的平均速度是每小时(x+40)千米.

依题意,得 = (x+40),解得x=200.

答:这次试车时,由北京到天津的平均速度是每小时200千米.

点拨:本题相等关系为:北京到天津的路程=天津到北京的路程.采用间接设未知数比较简单.

C卷

一、1.分析:只要写出的方程是一元一次方程,并且其解是-11即可.

解: .去分母,得3(x+1)-12=2(2x+1),

去括号,得3x+3-12=4x+2,移项,得3x-4x=2+12-3,

合并同类项,得-x=11.系数化为1,得x=-11.

拓展:此类问题答案不唯一,只要合理即可.有利于培养同学们的逆向思维及发散思维.

二、2.分析:解答此题的关键是通过阅读,正确理解解题思路,然后仿照给出的方法解答新的题目即可.

解:法一:当x0时,原方程化为2x-3=5,解得x=4;

当x0时,原方程化为-2x-3=5,解得x=-4.

法二:移项,得2│x│=8,系数化为1,得│x│=4,

所以x=4,即原方程的解为x=4或x=-4.

点拨:由于未知数x的具体值的符号不确定,

故依据绝对值的定义,分x0或x0两种情况加以讨论.

三、3.分析:分别求出该次列车提速前后的运行时间,再求差,求列车原来的平均速度,需求出A,B两站的距离.

解:(1)提速后的运行时间:24+12:20-8:20=28(小时),

提速前的运行时间:24:00-14:30+24+8:30=42(小时),

所以缩短时间:42-28=14(小时).

答:现在该次列车的运行时间比以前缩短了14小时.

(2)设列车原来的平均速度为x千米/小时,

根据题意得,20028=42x,解得x=133 133.

答:列车原来的平均速度为133千米/时.

点拨:弄懂表格给出的信息,求出各段相应的时间是解答本题的关键.

4.分析:由于未知数x的系数含有字母,因此方程解的情况是由字母系数及常数项决定的.

解:化简原方程,得(k-1)x=m-4.

当k-10时,有唯一解,是x= ;

当k-1=0,且m-40时,此时原方程左边=0x=0,而右边0,故原方程无解;

当k-1=0,且m-4=0时,原方程左边=(k-1)x=0x=0,而右边=m-4=0,故不论x取何值,等式恒成立,即原方程有无数解.

合作共识:将方程,经过变形后,化为ax=b的形式,由于a,b值不确定,

故原方程的解需加以讨论.

点拨:解关于字母系数的方程,将方程化为最简形式(即ax=b),需分a0,a=0且b=0,a=0且b0三种情况加以讨论,从而确定出方程的解.

篇12:七年级解一元一次方程教案设计

一、素质教育目标

(一)知识教学点

1.要求学生学会用移项解方程的方法.

2.使学生掌握移项变号的基本原则.

(二)能力训练点

由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.

(三)德育渗透点

用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.

(四)美育渗透点

用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.

二、学法引导

1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.

2.学生学法:练习→移项法制→练习

三、重点、难点、疑点及解决办法

1.重点:移项法则的掌握.

2.难点:移项法解一元一次方程的步骤.

3.疑点:移项变号的掌握.

四、课时安排:3课时

五、教具学具准备

投影仪或电脑、自制胶片、复合胶片.

六、师生互动活动设计

教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.

七、教学步骤

(一)创设情境,复习导入

师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.

(出示投影1)

利用等式的性质解方程

(1) ;X-7=5 (2) ;7X=6X-4

解:方程的两边都加7, 解:方程的两边都减去 ,

得 ,X=5+7 得 ,7X-6X=-4

即 .X=12 合并同类项得 .X=-4

【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.

提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?

(二)探索新知,讲授新课

投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.

(出示投影2)

师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?

2.改变的项有什么变化?

学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.

师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的 项从右边移到了左边;②这些位置变化的项都改变了原来的符号.

【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.

师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.

(三)尝试反馈,巩固练习

师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.

学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.

【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.

对比练习:(出示投影3)

解方程:(1) ;X+4=6 (2) ;3X=2X+1

(3) ;3-X=0 (4) .9X=8X-3

学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.

师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)

【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.

巩固练习:(出示投影4)

通过移项解下列方程,并写出检验.

(1) ;X+12=34 (2) ;X-15=74

(3) ;3X=2X+5 (4) .7X-3=6X

【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.

(四)变式训练,培养能力

(出示投影5)

口答:

1.下面的移项对不对?如果不对,错在哪里?应怎样改正?

(1)从 ,7+X=13 得到 ;X=13+7

(2)从 ,5X=4X+8 得到 ;5X-4X=8

(3)从 ,3X=2X+5 得到 ;3X-2X=5

2.小明在解方程 X-4=7 时,是这样写的解题过程:X-4=7→X=7+4→X=11;

(1)小明这样写对不对?为什么?

(2)应该怎样写?

【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式。

一元一次方程的解法并不困难,这类题型相对来说还是很简单的。希望教师能够备好解一元一次方程教案,教给同学们更多的知识点,取得一个好成绩。

[七年级解一元一次方程教案设计]

篇13:《解一元一次方程》教学反思

《解一元一次方程》教学反思

本节课是《一元一次方程》的第三节的教学内容。解含有括号的一元一次方程既是本章的重点内容也是今后学习其他方程、不等式及函数的基础。前面学生已学习了合并同类项、移项以及整式的计算中的去括号等内容,会解“ax+b=cx+d”类型的一元一次方程,本节通过去括号为解方程起承上启下作用,但去括号时,学生容易弄错,是本章的重点,初步解决实际问题是本章的难点。

在进行本节课的教学中,我利用导学案引导学生做去括号的练习题,回顾去括号及规律,再试着去做含有括号的方程,让学生体会含有括号的`方程在去括号时,与以前学的去括号的规律相同,解方程的过程也与前面学的相近,只不过多了去括号的这一步。我利用变式训强化训练,同时让学生初步感受利用方程解决实际问题。

本节课的教学中还存在一下几点不足之处:

1.语言衔接不够顺畅。

2.教师亲和力不够,不能充分调动学生的热情,课堂气氛不够活跃。

3.不能及时表扬和鼓励学生。

4.应用题的处理不够简洁。

在今后的教学中,我将努力改进自己的不足,力争取得更大的进步。

篇14:一元一次方程教案

一、教材分析

1、本节内容的地位和作用

(1)本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要学习用一元一次方程解决路程问题。通过上两节课的学习,学生已经初步掌握了用一元一次方程解决实际问题的方法,本节课在此基础上,结合路程问题,进一步学习如何从实际问题中分析数量关系,用一元一次方程解决实际问题。对学习函数、不等式与其他方程解实际问题都具有重要的意义和作用。

2、教学目标(认知、能力、情感)

(1)知识目标

能借助“列表”的方法审题、找等量关系,进而用一元一次方程解决路程问题。

(2)能力目标

进一步培养学生分析问题,解决实际问题的能力。

(3)情感目标

通过实际问题的解决,让学生认识数学的价值和学习数学的必要性;通过问题情境的设置,让学生热爱生活、热爱体育。

3、教学重点:

引导学生经历借助“列表法”找等量关系,用一元一次方程模型解决路程问题的过程。

知识、方法重要,其获取过程更重要,在教学中不能只重结果而忽视过程中学生经历的观察、分析、交流等活动,不然学生就不具备主动建构知识的能力和持续发展的动力,只会成为解题工具,所以我把方法获取过程作为本课的重点。

4、教学难点

掌握用列表的方法审清题意,抽象具体问题中的数学背景,建立数量间的等量关系。

用一元一次方程解决实际问题的关键是找到等量关系。体会“列表法”在把握路程问题等量关系的优越性,进而掌握这种方法是学生感到困难的,所以把它是本节课的难点。

5、教法学法

优选教法

本节课主要采用“学生主体性学习”的教学模式。通过多媒体创设情境,激发学生兴趣,问题让学生想,设计问题让学生做,方法技巧让学生归纳。教师的作用在于组织、引导、点拨,促进学生主动探索,积极思考,归纳,充分发挥学生的主体作用,让学生真正成为课堂的主人、

指导学法

学生不是被动的接受信息,而是在“结合具体情景、设计解决策略、与他人合作交流、自我反思”的过程中学习。

二、教学环节

我把本节课设计为5个环节:

1、情境引入相遇问题,初步感知列表方法

张叔叔和他的朋友们开着越野车一同去森林探险,他们来到了森林不久不幸被一条毒蛇咬了,这种毒性在8小时就会发作,他们知道离森林大约600千米的地方有一个大医院,本医院的救护车60千米/小时,可他们开的越野车40千米/小时,你们想想,用什么办法就可以救张叔叔呢?

通过救人情境的创设,既对学生已有知识的检测,又激发学生解决问题的兴趣,在不知不觉中引入路程问题――相遇问题。

引入问题后,学生独立思考如何确定问题中的等量关系,然后课堂交流理清题意、找到等量关系的方法(画图或列表)。在此基础上,引导学生探究如何用列表的方法理清题目中的数量,让学生初步感受“列表”表示数量关系的优越性。

本环节让学生在独立思考、交流探讨中感受“列表法”,让学生参与的`知识获取过程,真正体现了学生是数学学习的主人。

2、感悟故事中的追及问题,拓展提高对列表的认识

第二场龟兔赛跑:兔子为了体现自己的速度确实比乌龟快的多,他们约定兔子让乌龟先行40分钟,并且在比赛中兔子和乌龟都每跑1分钟,停1分钟,如果乌龟以每分钟1.2米的速度爬行,兔子以每分钟12米的速度行进,试问兔子追上乌龟需要多长时间?追上的地点距出发点有多远?

以同学们熟悉的故事为背景,配以形象生动的动画,引入路程问题――追击问题。然后让学生应用列表法表示追击问题的数量关系,思考解决问题的多种方法(根据不同等量关系,设不同未知数,列出不同的方程),进一步体会“列表”表示数量关系的威力。

教学过程不能简单地重复,学习过程也不能使机械地模仿,而应在螺旋上升的过程中不断提高。由相遇问题到追击问题,由一种方法到两种方法,就是这一理念的直接体现。学生在应用“列表”法的过程中,提高对“列表”法表示数量关系优越性的认识。

3、回归现实,梳理新知

浙江奥运健儿孟关良,在雅典奥运会上的夺冠为水上项目获得了第一枚金牌,掀开了水上项目的新章。金牌后面是无数的汗水,在千岛湖,孟关良是这样艰苦训练的:一艘快艇与孟关良的皮艇在同一起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?

本环节让学生应用所学知识解决现实生活中的问题。

本题以“奥运”为背景,不仅反映了数学来源于实际生活,同时也体现了知识的实用价值,而且解决问题的过程也是一个“数学化”的过程。这一环节既对路程问题进行了巩固练习又渗透了爱国主义教育。

4、合作互动,深化提高

编写一道应用题,使它的题意适合一元一次方程60x=40x+100,要求题意清楚、联系生活、符合实际、有一定的创意。

本环节让学生以小组为单位编写题目。

前面的环节是由实际问题到数学模型,现在是由数学模型到实际问题,不仅有利于学生获取知识,而且也有利于学生展示聪明才智、形成独特个性和发展创新。以小组为单位编写题目不仅可以发挥学生的集体智慧,而且还可以培养他们的合作和团队意识。

5、畅谈收获,内化提高

这节课体验到了什么?

让学生本节学习收获和感受,全体同学交流。

对学生数学学习的既要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,课后设计的畅谈收获,把课堂还给了学生,他们收获,交流疑问,当堂消化本节内容,让每一个学生都体验到成功的喜悦,学生的主体地位得以充分体现。

设计亮点

(1)本节课在情境的创设上,突出了现实性、趣味性和挑战性,学生喜闻乐见,使他们能快速进入问题的解决。

(2)让学生经历实践―C认识――再实践――再认识的过程,在这个过程中,学生分析问题和解决问题的能力螺旋上升,符合学生学习数学的心理规律。

篇15: 一元一次方程教案

教学设计示例

教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察潜力,提高他们分析问题和解决问题的潜力;

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点

一元一次方程解简单的应用题的方法和步骤.

课堂教学过程设计

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并透过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们明白方程是一个内含未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中带给的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就透过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原先有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)

3.若设原先面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原先有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42500,

所以x=50000.

答:原先有50000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)

教师应指出:(1)这两种相等关系的表达形式与“原先重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,能够任意选取其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:

(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.那里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有好处.

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个.

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

(设第一小组共摘了x个苹果,则依题意,得)

三、课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款到达3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.

四、师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些资料?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答状况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选取变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆.

五、作业

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数

篇16: 一元一次方程教案

教学目标:

1.使学生明白一元一次方程的概念

2.会熟练地解一元一次方程,并总结解一元一次方程的一般步骤

3.培养学生观察、分析、概括的潜力以及准确而迅速的运算潜力

教学重点:

一元一次方程的概念与解法

教学难点:

解一元一次方程

教学过程设计:

一.从学生原有的认知结构提出问题:

1.什么叫方程?方程的解?解方程?

2.方程的同解原理

3.解方程中常见的变形有哪些?(以上问题口答)

4.(幻灯片)某数的4倍减去9等于3,列出方程、解方程、并检验

(让一名学生在黑板上板演本题,其余学生在练习本上完成,教师巡视,发现问题,及时纠正)

5.(幻灯片)观察方程:44x+64=328;13+x=(45+x);=+1请找出它们具有的特点:(①只内含一个未知数;②未知数的次数都是一次;③含未知数的式子都是整式)

二、在学生回答完上述问题的基础上引出课题

我们将具备上述特点的方程叫做一元一次方程。请学生回答:什么叫一元一次方程?根据学生的回答,教师板书一元一次方程的概念

教师强调:“元”是指未知数的.个数;“次”是指方程中内含未知数的项的最高次数;未知数的系数不能为0

学生练习并反馈矫正(课堂练习一)

三、师生共同探索解一元一次方程的方法与步骤:

解方程:例43(x-2)+1=x-(2x-1)

例5-=1

例4:

分析:解这个方程用到哪些变形?(去括号、移项、合并同类项、化系数为1)(一学生口述,教师板书)

解:去括号,得3x-6+1=x-2x+1

移项,得3x+2x-x=6-1+1

合并同类项,得4x=6

化系数为1,得x=

)(让学生自己小结本题的解题步骤

师强调注意问题:①去括号时,括号前“—”要变号;

②移项时,改变符号

(练习并反馈矫正,一生板演其余练习,课堂练习2)

例5(让学生类比例4先请三名学生板演,师生共同讲评)

引导学生观察例4、例5的解题过程总结解一元一次方程的一般步骤⑴去分母⑵去括号⑶移项⑷合并同类项⑸化系数为1

四课堂练习(幻灯片)

1.如果x3n+1-3=0是一元一次方程,则n=______

2.已知(m-1)x-(m+1)x-8=0是关于x的一元一次方程,则代数式199(2m+3)(1-m)+10m+1的值为__________

3.解方程:⑴(x+1)-2(x-1)=1-3x

⑵2(x-2)-(4x-1)=3(1-x)

=

-122

4.列方程求解:当y取何值时,2(3y+4)的值比5(2y-7)的值大3(学生独立完成,并针对存在问题加以矫正

)

五、学生自我小结:1.学生自己针对本堂课谈收获和体会

2.师生共同补充完善六布置作业:p121②2②③

解一元一次方程练习题

一填空题:

1.方程5x=11x的解是________

2.当x=_____时,代数式2(x-1)-3的值等于-9

3.当k=______时,关于x的方程1-=的解是0

4.当m=______时,代数式与互为相反数

23x-52x-325.-mn与nm是同类项,则x=__________6.(m+2)x|m|-1-5=0是一元一次方程,则m的值为_______

7.3x∶2=4.5∶0.8则x=________

8.x=1是方程2x-a=7的解,则a=_________

9.如果2kx-5=7x-k是关于x的一元一次方程,则k≠________

10.若(a-6)2+|a-b+2|=0,则a-2b=_____________

二解下列方程:

1.2(x-2)-3(4x-1)=9(1-x)

2.

3.(x-2)-3=(x+3)-(2x-5)

4.[x-(x-1)]=(x-1)

-4=-=1.05

5.

6.|x-2|-1=1

四解关于的方程:

ax+b-

=1.

2.m(n+3x)-n=(m+1)x+mn

五已知关于x的方程xm+2+3=0是一元一次方程求的值

一元一次方程教案

4.2 解一元一次方程的算法

花都区云山中学张志斌-教案9-解一元一次方程的习题课

初中数学第一册一元一次方程教案

一元一次方程教案设计

一元一次方程练习题

第一册一元一次方程

《一元一次方程》教学设计

一元一次方程练习题及答案

解聘书模板

解一元一次方程教案(共16篇)

欢迎下载DOC格式的解一元一次方程教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档