一、复习圆柱 教案教学设计(人教新课标六年级下册)

时间:2021-04-05 09:20:27 作者:巴纳纳 教案 收藏本文 下载本文

“巴纳纳”通过精心收集,向本站投稿了19篇一、复习圆柱 教案教学设计(人教新课标六年级下册),下面就是小编给大家整理后的一、复习圆柱 教案教学设计(人教新课标六年级下册),希望您能喜欢!

篇1:一、复习圆柱 教案教学设计(人教新课标六年级下册)

3、整理和复习

教学内容:P29页第1-3题,完成练习五。

教学目的:

复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

学生认真的学习态度。

教学重点:圆柱、圆锥表面积、体积的计算

教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别

教学过程:

1、圆柱的特征

(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.)

(2)做第29页第1题:指出几个图形中哪些是圆柱。

2、圆柱的侧面积和表面积

(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)

(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)

(3)第29页第2题中求圆柱表面积的部分。

3、圆柱的体积

(1)圆柱的体积怎样计算?(底面积×高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)

(2)做第29页第2题中关于圆柱体积的部分。

4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)

二、复习圆锥

1.圆锥的特征

(1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)

(2)做第91页第1题的下半题和第2题的第(3)小题.

让学生将圆锥的特征自己用简单的词汇填写在表中.教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物.

2.圆锥的体积.

(1)怎样计算圆锥的体积?(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V= Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

(2)做第29页第2题中有关圆锥体积的部分。

三、课堂练习

1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)

2、做练习五的第2题。

(1)学生审题后思考:求用多少彩纸是求圆柱的什么?

(2)指名板演,其他学生独立完成于课堂练习本上。

3、做练习五第5题。(可建议学生用方程解答)

四、作业

练习五的第3、4、6题。

三、比例

1、比例的意义和基本性质

第一课时

教学内容:P32~34  比例的意义和基本性质

教学目的:1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。

3、使学生初步感知事物间是相互联系、变化发展的。

教学重点;比例的意义和基本性质

教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

教学过程:

一、回顾旧知,复习铺垫

1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

教师把学生举的例子板书出来,并注明比的各部分的名称。

2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。

12:16      :       4.5:2.7      10:6

学生求出各比的比值后,再提问:哪两个比的比值相等?

(4.5:2.7的比值和10:6的比值相等。)

教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)

二、引导探究,学习新知

1、教学比例的意义。

(1)出示P32例1。

每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。

5:      2.4:1.6    60:40      15:10

每面国旗长和宽的比值有什么关系?(都相等)

5: =2.4:1.6    60:40=15:10      2.4:1.6=60:40

象这样表示两个比相等的式子叫做比例。

比例也可以写成: =      =

(2)我们也学过不同的两个量也可以组成一个比,如:

一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时) 2 5

路程(千米) 80 200

指名学生读题。

教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。   这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问     边填写表格。)

“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:

第一次所行驶的路程和时间的比是80:2

第二次所行驶的路程和时间的比是200:5

让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)

教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。

“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)

(3)比较“比”和“比例”两个概念。

教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

(4)巩固练习。

①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)

6:3和12:6    35:7和45:9     20:5和16:8     0.8:0.4和0.3:0.6

学生判断后,指名说出判断的根据。

②做P33“做一做”。

让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。

③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。

④P36练习六的第1~2题。

对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。

第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。

2、教学比例的基本性质

(1)教学比例各部分的名称。

教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。

指名让学生指出板书中的比例的外项、内项。

(2)教学比例的基本性质。

教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

两个外项的积是80×5=400

两个内项的积是 2×200=400

“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。

通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?

最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成: =

“这个比例的外项是哪两个数呢?内项呢?”

“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

3.巩固练习。

前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。 学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

(1)应用比例的基本性质判断3:4和6:8能不能组成比例。

(2)P34“做一做”。

三、巩固深化,拓展思维

1、说说比和比例有什么区别?

2、填空

5:2=80:(    )      2:7=(    ):5     1.2:2.5=(    ):4

3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。

(1) 6:9和 9:12   (2)1.4:2 和 7:10     (3) 0.5:0 .2和 :

4、下面的四个数可以组成比例吗?把组成的比例写出来。

2 、3 、4和6

四、全课小结,提高认识

通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

五、课堂练习,辅助消化

P36~37第3~6题。

六、课外补充,拓展延伸

1、判断。

(1)如果3×a=5×b,那么5:a=3:b。

(2) : 和 : 中,能与 : 组成比例的是 : 。

(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。

2、用 、8、 、12四个数分别作为比例的项,你能组成几个比例?

3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。

篇2:和复习(一) 教案教学设计(人教新课标六年级下册)

P26页第1-4题,第6题,完成练习七1、2、6题。

复习目标:

1、通过复习,使学生进一步理解分数乘法的意义,掌握分数乘法的计算法则,并能正确、熟练地进行计算。理解整数运算定律同样适用于分数,并能应用这些运算定律进行简便计算。理解倒数的意义并掌握求倒数的方法。

2、进一步提高学生计算分数乘法的熟练程度和灵活进行计算的能力。培养学生对知识的整理归类意识。

复习重点:

复习分数乘法的计算法则。

复习难点:

提高计算的正确率。

复习过程:

一、复习分数乘法的意义

1.启发学生回忆整数乘法的意义:5个12是多少?怎样列式。

2.启发学生回忆本单元学过的分数乘法的意义:

8/15×5,5个8/15的和,

8/15+8/15+8/15+8/15+8/15=8/15×5

3.一个数乘以分数的意义,就是求这个数的几分之几是多少?

4.以上几道题都是分数乘整数,想想,分数乘整数的意义同整数乘法的意义相同吗?能说说分数乘整数表示的意义是什么吗?

口算75 × =  × =     × =     36× =

以上几道题有的是整数乘分数,有的是分数乘分数,都可以看成是一个数乘分数,一个数乘分数的意义是什么?分别说出以上几道题的意义

二、复习分数乘法的计算法则

4、P26第1题。

板书:

让学生看教材第26 页的第1题,问:为了计算简便,在分数乘法中应该先做什么?(先约分,再做乘法)在本题中,都有一个因数是整数,约分的时候要注意什么?(整数与分数的分母约分)

三、复习分数乘法混合运算及简算

问:我们学过哪些乘法定律?它们在分数乘法中适用吗?然后独立完成第26 页第2题,练习七第1、4题,再请个别学生说说自己是怎样做的,着重说说在进行简便运算时运用了什么定律。

5、P27页第4题。

6、复习倒数:整理和复习第6题。什么是倒数?怎样求一个数的倒数?完成教材第26 页第4题及27 页第7题。

四、练习

1、口算,完成练习七第1题。

2、完成练习七第2题、第6题。

五、作业

课后作业:必做作业本P13/1、2、3、

选做作业本P13/4、

回家作业:必做课时特训P26-P27/1、2、3、

选做课时特训P27 /4、5、思维拓展

板书设计

整理和复习(一)

分数乘以整数求几个相同加数的和的简便运算

分子相乘的积作分子, 分母相乘的积作分母

一个数乘以分数

求一个数的几分之几是多少

整理和复习(二)

整理和复习(二)(分数乘法应用题)

复习目标:

1、复习分数乘法应用题,进一步加深学生对分数乘法意义的认识,使学生会分析解答分数应用题(找准单位“1”),能正确解答分数乘法应用题;复习倒数的知识。

2、进一步提高学生解答应用题的能力。

3、培养学生对知识的整理归类意识。

复习重点:复习分数乘法应用题,掌握解题方法。

复习难点:找准单位“1”

复习过程:

一、复习铺垫

1、复习解答分数乘法应用题的步骤:

(1)找到题目中的分率句,确定单位“1”。

(2)根据题目中的数量关系,求出所要求的部分量。

2、P26第3题

(1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?

(2)根据题意分析数量关系,然后列式计算,全班讲评。

3、练习:练习七第6题。

二、复习分数乘法应用题

1、出示P26页3题。

六年级参加数学小组的有36人,语文小组的人数是数学小组的 ,体育小组的人数是语文小组的 倍。体育小组有多少人?

2、把谁看作单位“1”

(1)先把数学小组的人数看作单位“1”,36×

(2)再把语文小组的人数看作单位“1”,36× ×

3、结合讲解,进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就要把那个数量作为单位“1”。在解答两步计算的分数应用题时,更要注意每一步是把什么数量看作单位“1”,每一步中的单位“1”可能是不同的

三、综合练习

1:看题解答。

(1)农贸公司要运192吨化肥到农村,其中 用船运。余下的用卡车运,卡车每次运 吨,剩下的化肥卡车还要运多少次?

(2)某电视机厂五月份计划生产电视机5000台,结果上半月完成 ,下半月与上半月完成的一样多。实际比原计划多生产多少台?

(3)某人骑自行车从甲地到乙地,行了全程的 ,正好是75千米,这时离乙地还有多少千米?

2:看题讨论。

一本书84页,同学们已学过33页。小林说:“剩下的页数比这本书的页数的 少5页。”小红说:“剩下的页数比这本书的页数的 还多3页。”小林和小红说得对吗?

3:根据算式提问题。

六(一)班共有学生48人,其中男生人数占全班总人数 。              ?

48×

48×(1- )

48×[ -(1- )]

四、练习

1.做练习七的第9题.

求二班修补多少本时,是用什么作为单位“1”的?求三班修补的本数时,又是用什么作为单位“1”的?

2.做练习七的第7题.

3、练习七的第3、4、5题。

五、全课总结

今天我们学习了应用题,解答这类应用题要先找准数量关系,画出线段图,然后列式计算。先定单位“1”确定算法,找准分率

六、作业

课后作业:必做作业本P14/1、2、3、

回家作业:必做课时特训P28-P30/1、3、4、5、

选做课时特训P30 /思维拓展

篇3:和复习教案教学设计(人教新课标六年级下册)

教学内容:P29页第1-3题,完成练习五。

教学目的:

1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

3、学生认真的学习态度。

教学重点:圆柱、圆锥表面积、体积的计算

教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别

教学过程:

一、复习圆柱

1、圆柱的特征

(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.)

(2)做第29页第1题:指出几个图形中哪些是圆柱。

2、圆柱的侧面积和表面积

(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)

(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)

(3)第29页第2题中求圆柱表面积的部分。

3、圆柱的体积

(1)圆柱的体积怎样计算?(底面积×高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)

(2)做第29页第2题中关于圆柱体积的部分。

4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)

二、复习圆锥

1.圆锥的特征

(1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)

(2)做第91页第1题的下半题和第2题的第(3)小题.

让学生将圆锥的特征自己用简单的词汇填写在表中.教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物.

2.圆锥的体积.

(1)怎样计算圆锥的体积?(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V= Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

(2)做第29页第2题中有关圆锥体积的部分。

三、课堂练习

1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)

2、做练习五的第2题。

(1)学生审题后思考:求用多少彩纸是求圆柱的什么?

(2)指名板演,其他学生独立完成于课堂练习本上。

3、做练习五第5题。(可建议学生用方程解答)

四、作业

练习五的第3、4、6题。

篇4:百分数和复习(一) 教案教学设计(人教新课标六年级下册)

吴兴区学校         (幼儿园)具体课时备课表(成熟型教师用)

单元(章)主题 任课教师与班级

本课(节)课题 整理和复习(一) 第       课时 / 共     课时

教学目标(含重点、难点)

及设置依据 1.通过复习进一步理解百分数的意义,掌握百分数的写法。

2.掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。

重点:熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。

难点:百分数意义的理解

教学准备 多媒体课件。

教  学  过  程

内容与环节预设 个人二度备课 课后反思

一、基本练习

1.完成下面表格。

内容与环节预设 个人二度备课 课后反思

小数 0.16

分数

百分数 24.5% 0.9%

2.只列式,不计算。

(1)40占50的几分之几?   (2)50是40的百分之几?

(3)5比8少百分之几?     (4)8比5多百分之几?

二、知识梳理

1.百分数和分数在意义上有什么不同?百分数写法有什么特点?

2.说一说百分数和小数互化的方法,百分数和分数互化的方法?

3.求一个数是另一个数的百分之几的应用题用什么方法解答?

如:甲数是200,乙数是150。

(1) 甲数是乙数的百分之几,算式:_____________,把________看作单位“1”。

(2) 乙数是甲数的百分之几,算式:_____________,把________看作单位“1”。

(3) 甲数比乙数多百分之几,算式:_____________,把________看作单位“1”。

(4)  乙数比甲数少百分之几,算式:_____________,把________看作单位“1”。

三、深化练习:

1.李师傅加工一批零件,其中合格率是95%,这里的95%表示什么?

2.一条水渠已修的比未修的长25%,这里的25%表示什么?未修的比已修的短百

内容与环节预设 个人二度备课 课后反思

分之几?

四、小结:这节课复习了什么?

板书

设计

整理和复习(一) 个人二度备课: 课后反思:

作业布置或设计 P104第1、2、3题。

课后反思:

教后整体反思

篇5:《圆柱的体积》 教案教学设计(人教新课标六年级下册)

江西省寻乌县城关小学  杜桂红

教学内容

人教版义务教育课程标准实验教科书六年级下册P19-20。

教学目标

1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

教学重点、难点

1、圆柱体积计算公式的推导过程并能正确应用。

2、借助教具演示,弄清圆柱与长方体的关系。

教具、学具准备

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

教学设想

《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

教学过程

一、创设情境,激疑引入

“水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

(2)讨论后汇报:

生1:用量筒或量杯直接量出它的体积;

生2:用秤称出水的重量,然后进一步知道体积;

生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

生1:把水到入长方体容器中……

生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

2、创设问题情境。

师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验,探究新知

1、回顾旧知,帮助迁移

(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

生1:圆柱的上下两个底面是圆形

生2:侧面展开是长方形……

生3:说明圆柱和我们学过的圆和长方形有联系

师:请同学们想想圆柱的体积与什么有关?

生1:可能与它的大小有关

生2:不是吧,应该与它的高有关

[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

配合学生回答演示课件。

[设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

2、小组合作,探究新知

(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

(2)学生以小组为单位操作体验。

把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的           越接近         ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)

[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

(3)学生小组汇报交流:

近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

教师根据学生汇报,用教具进行演示。

(4)概括板书:根据圆柱与近似长方体的关系,推导公式:

长方体的体积  =     底面积  ×   高

↓↓ ↓

圆柱的体积     =      底面积  ×   高

用字母表示计算公式V= sh

[设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践操作,动画演示,验证了学生的发现,从学生的认识和发现中,围绕着圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识--公式)]

三、实践应用,巩固新知。

1、火眼金睛判对错。

(1)长方体、正方体、圆柱的体积都等于底面积乘高。(    )

(2)圆柱的高越大,圆柱的体积就越大。(   )

(3)如果两个圆柱的体积相等,则它们一定等底等高。(   )

[设计意图:加深对刚学知识的分析和理解。]

2、计算下面各圆柱的体积。

(1)底面积是30平方厘米,高4厘米。

(2)底面周长是12。56米,高是2米。

(3)底面半径是2厘米,高10厘米。

[设计意图:让学生灵活运用公式进行计算。]

3、实践练习。

提供在创设情景中圆柱形接水容器的内底面直径和高。

这个圆柱形容器,内底面直径是10厘米,高12厘米,水面高度10厘米。

[设计意图:让学生领悟数学与现实生活的联系。]

4、课堂作业。

为了美化环境,阳光小区在楼前的空地上建了四个同样大小的圆柱形花坛。花坛的底面内直径为4米,高为0、6米,如果里面填土的高度是0、4米,这四个花坛共需要填土多少立方米?

[设计意图:使学生进一步感受到生活中处处有数学,同时培养学生的环保意识。]

四、反思回顾

师:通过本节课的学习,你有什么收获吗?

[设计意图:让不同层次的学生谈学习收获,可使每个学生都体验到成功的喜悦。这样,学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习的乐趣,增强了学好数学的信心。]

板书设计:

圆柱的体积

根据圆柱与近似长方体的关系,推导公式:

长方体的体积  =     底面积  ×   高

↓↓ ↓

圆柱的体积     =      底面积  ×   高

用字母表示计算公式V= sh

教学反思:

本节的教学从生活的实际创设情境,提出问题,让学生学习有用的数学,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识(长方体体积的计算)经验(圆面积公式的推导)解决新的问题,在新旧知识的联系上,巧妙的利用想象、课件演示将圆和圆柱有机的联系到一起,使学生想象合理、联系有方。在探究新知中,通过想象和操作,让学生充分经历了知识的形成过程,为较抽象的理论概括提供了必要而有效的感性材料,加强了实践与知识的联系,并创造性的补充了一些与学生身边实际生活相联系的练习题,提高了学生的学习兴趣。

篇6:圆柱的体积 教案教学设计(人教新课标六年级下册)

导学目标:

1.通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2.初步学会用转化的数学思想和方法,解决实际问题的能力

3.渗透转化思想,培养学生的自主探索意识。

导学重难点:

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

导学准备:圆柱教具

导学过程:

预习学案:

1.什么叫物体的体积?

2.长方体、正方体的体积公式是什么?

导学案:

(一)小组交流汇报预习情况

(二)学生共同探究例5。

1.圆柱体积计算公式的推导。

(1)教师演示学具,学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等许多扇形,把它们拼成一个近似长方体的立体图形.

(2)学生讨论:长方体的底面积和高于圆柱的什么有关?

(3)通过观察讨论,学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=sh)

2.学生讨论:如果知道圆柱底面的半径r和高h,圆柱的体积公式还可以写成: V=πr2h

3.分组讨论完成例6. 新课标第一网

(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

(2)指名口答,讲解订正。

例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

答:502.4大于498,所以这个杯子能装下这袋奶。

4.课堂小结,学生谈收获。

课堂检测:xkb1.com

1.学校建了两个同样大小的圆柱形花坛。花坛的地面内直径是3米,高是0.8米,如果里面填土的高度是0.5米,两个花坛中共需要填土多少方?

2.一个圆柱的体积是80立方厘米,底面积是16平方米。它的高是多少厘米?

板书设计:

圆柱的体积

例5:圆柱的体积=底面积×高V=sh或V=πr2h

例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

答:502.4大于498,所以这个杯子能装下这袋奶。

导学反思:

www.xkb1.com

篇7:圆柱的表面积 教案教学设计(人教新课标六年级下册)

导学目标:

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

导学重难点:

教学重点:掌握圆柱侧面积和表面积的计算方法。

教学难点:运用所学的知识解决简单的实际问题。

导学准备:圆柱侧面展开图

导学过程:

预习学案:

1.指名学生说出圆柱的特征.

2.口头回答下面问题.

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

(3)长方形,正方形的表面积怎样计算?

导学案:

(一)小组交流汇报预习情况。

(二)共同探究例3. xkb1.com

1.圆柱的侧面积。

(1)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?(学生观察看到这个长方形的面积等于圆柱的侧面积)

(2)圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.理解圆柱表面积的含义。

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+2个底面的面积

3.小组交流,合作学习例4

(1)学生汇报,集体讲解订正。www.xkb1.com

(2)师板书:①侧面积:3.14×20×28=1758.4(平方厘米)

②底面积:3.14×(20÷2)2=314(平方厘米)

③表面积:1758.4+314=2072.4≈2080(平方厘米)

答:需要用2080平方厘米的面料。

4.课堂小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.

课堂检测:

1. 求下面各圆柱的侧面积。

(1) 底面周长是1.6米,高0.7米。

(2) 底面半径是3.2米,高5分米。

2.一个圆柱形铁皮水桶(无盖),高12分米,底面直径是高的3/4.做这个水桶大约要多少铁皮?

课外拓展:xkb1.com

一个圆柱的侧面积是188.4平方分米,底面半径是2分米。它的高是多少?

板书设计:

圆柱的表面积

例3:圆柱的侧面积=底面周长×高

圆柱的表面积=圆柱的侧面积+2个底面的面积

例4: ① 侧面积:3.14×20×28=1758.4(平方厘米)

②底面积:3.14×(20÷2)2=314(平方厘米)

③表面积:1758.4+314=2072.4≈2080(平方厘米)

答:需要用2080平方厘米的面料。

导学反思:

篇8:圆柱的体积 教案教学设计(人教新课标六年级下册)

教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

1、渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形--课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

2、教学补充例题

(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

(2)指名学生分别回答下面的问题:

① 这道题已知什么?求什么?

② 能不能根据公式直接计算?

③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)出示下面几种解答方案,让学生判断哪个是正确的.

①V=Sh

50×2.1=105(立方厘米)

答:它的体积是105立方厘米。

②2.1米=210厘米

V=Sh

50×210=10500(立方厘米)

答:它的体积是10500立方厘米。

③50平方厘米=0.5平方米

V=Sh

0.5×2.1=1.05(立方米)

答:它的体积是1.05立方米。

④50平方厘米=0.005平方米

V=Sh

0.005×2.1=0.0105(立方米)

答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

(4)做第20页的“做一做”。

学生独立做在练习本上,做完后集体订正.

3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

4、教学例6

(1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

(2)学生尝试完成例6。

① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

三、巩固练习

1、做第21页练习三的第1题.

2、练习三的第2题.

这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

四、布置作业

练习三第3、4题。

板书:

圆柱的体积=底面积×高     V=Sh或V=πr2h

例6:① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

篇9:应用题复习教案教学设计(人教新课标六年级下册)

简单应用题

简单应用题只需要一步计算就能求得答案的应用题。

简单应用题都是由两个己知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的,也就是说,都可以由已知条件经过一步计算直接求出答案。至于在不同的题目里用什么方法计算.则需要认真分析题中的数量关系(已知条件和问题的关系),然后根据四则运算的意义,以及已知的是哪两个条件来确定。

练习:               xkb1.com

一 、根据问题找出需要的条件,写出数量关系。

①平均每月生产多少台?

②剩下的是全长的几分之几?

③这个长方形的面积是多少?

④男生比女生多百分之几?

⑤实际比计划每小时多走多少米?

⑥圆柱的侧面积是多少?

⑦三角形面积是多少?

⑧出勤率是百分之几?

二、关山小学六(1)班有男生40人, 女生20人。(根据两个条件,提出不同

问题,编成简单应用题,并解答。)

①共有学生多少人?                            ②男生比女生多多少人?(女生比男生少多少人?)

③男生是女生的几倍?(男生是女生的百分之几?)   ④女生是男生的几分之几?(女生是男生的百分之几?)

三、解答后比较问题的不同。

一辆汽车3小时行180千米。

① 平均每小时行多少千米?                    ②行1千米需要多少小时?

复合应用题

复合应用题就是不能一步计算求得答案,而需要两步或者两步以上的计算才能求得答案的应用题。

一. 解答复合应用题分析方法一般有两种:

①分析法: 问题 →条件                ②综合法; 条件 →  问题

二.解答应用题-般步骤:

①弄清题意,找出题中已知条件和所求问题。

②分析题中数量关系,确定先算什么,再求什么,然后算什么。

③列式求得结果。

④检验是否正确,写出答语。

三.解答方法:⑴  分步列算式解答。   ⑵列综合算式解答。

四.练习;

1. 修一条高速公路,原计划每月修3600米,10个月完成任务,实际每月修900米,实际几个月完成了任务?

2. 从甲地到乙地共行13千米,前1.5小时,平均每小时行4千米,后在山地行走,平均每小时行3.5千米。在山地行走了多少小时?

3.学校举行科技节,学生制做航模250件,海模150件,航模件数是总件的百分之几?海模件数是总件的百分之几?

4 .一桶汽油重25千克,用去 ,剩下多少千克?

5 .李师傅一天共生产300个零件,经检验有3个不合格产品,求产品的合格率。

6. 某化工厂采用新技术后, 每天用料14吨。这样,原来7天用的原料,现在可以用10天。这个厂现在比原来每天节约百分之几?

列方程解应用题

列方程解应用题的一般步骤:

①弄清题意,找出题中已知条件和所求问题。

②分析题意,找出题中等量关系式。

③用x表示未知数量,列出方程,解方程。

④检验是否正确,写出答语 。

列方程解应用题的关键是找出题中的等量关系式。有的应用题,等量关系式很明显,直接可得到;有的应用题等量关系式不明显,要分析题意才能找出;有的应用题等量关系式隐藏,如周长公式、面积公式、体积公式不会出现在题目中,所以熟记学过所有的字母公式很重要。

练习:

1.找等量关系把方程列完整。

(1) 小思看一本96页的科幻小说。她每天看X页,看了5天还剩24页没看。

=96

或                                =24

(2妈妈买了2千克白菜,每千克2.4元,又买了X千克萝卜,每千克2.8元。一共用去

13.6元。

=13.6

或                                     =2.4×2

(3)通讯班铺设一条全长X千米光缆线路,工作15天架设了全长的93.75%。再用同样的工效工作1天,铺设1.5千米。

=1.5×15

2.列方程解下列各题。

(1)长方形周长30cm,长8cm。宽是多少cm?    (2)某田径队有男队员30人,比女队员的 少3人。

女队员有多少人?

(3)海滨县兴隆农场种小麦189公顷,小麦播种面积是玉米的112.5%,种玉米多少公顷?

(4)商店运来苹果750㎏,比运来橘子的2倍多250㎏,运来橘子多少吨?

(5)一支工程队修一条公路。第一天修了38米,第二天修了42米。第二天比第一天多修的是这条路全长的 。这条路全长多少米?

用不同方法解答应用题

把题中的关键条件转化成另一种说法是难点,我们要克服思维定势,提倡最佳解法。

练习:

1.图书室新购了文学书和科技书共750本,己知文学书是科技书的2倍,文学书和科技书各有多少本?

2.西山村去年收晚稻30000千克,相当于早稻谷的   。去年共收稻谷多少千克?

3.水是由氢和氧按1:8的质量比化合成的。如果要化合7.2千克的水,需要氢和氧各多少千克?

4.学校买来62.5米电线,每12.5米可做5根插头线。照这样计算,买来的电线能做多少根插头线?

xkb1.com

5.学校买来乒乓球60个,比买来的篮球少  ,买来乒乓球和篮球共多少个?

6.养鸡场肉用鸡是蛋用鸡的5倍,蛋用鸡比肉用鸡少1800只。蛋用鸡比肉用鸡各养多少只?

7.一个长方体棱长和是72㎝,已知长宽高的长度比是3:2:1,这个长方体体积是多少?

8.一批零件,前3天完成总任务的 。照这样计算,再过几天可以完成任务?

9. 一个长方形的周长是7.8cm,长和宽的比是2:1,这个长方形面积是多少?

篇10:比例尺(一) 教案教学设计(人教新课标六年级下册)

导学内容:P48--49页例1,完成做一做及练习八1--3题

导学目标

使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

导学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

导学难点:设未知数时长度单位的使用。

预习学案

一、什么叫比例尺?怎样求比例尺?

二、填空。

1、( ):( )=比例尺

2、甲、乙两地相距45千米,在图上用3厘米长的线段表示甲乙两地的距离,这幅地图的比例尺是(           )。

3、如果实际距离是图上距离的1000000倍,那么这幅地图的比例尺是(         ),图上1厘米实际表示(     )千米。

4、图上距离是实际距离的10倍,这幅图的比例尺是(  ),如果在图上量得20厘米的距离,实际长度是(       )厘米。

导学案

同学们见过地图吗?中国地图实际上是把实际距离按一定比例缩小画在地图上的。在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上,这时就要确定图上距离和相对应的实际距离的比。

一幅图的图上距离和实际距离的比,叫做比例尺。

图上距离:实际距离=比例尺

或图上距离实际距离 =比例尺

看课本48页两幅图,你发现了什么?

(1)比例尺有两种:数值比例尺和线段比例尺

(2)数值比例尺和线段比例尺可以互化。

(3)在生产中,有时由于机器零件比较小,需要把实际尺寸扩大一定的倍数以后,再画在图纸上。

你知道比例尺2:1表示什么吗?

为了计算方便,通常把比例尺写成前项或后项是1的比。

学习例1

把线段比例尺改成数值比例尺。

1cm:1km=1cm :5000000km=1:5000000

练习

考考你

篮球场长28米,宽15米。把它画在比例尺是的图纸上,长和宽各应画多长?(计算后画出平面图来。)

独立完成,然后小组交流。

课堂检测

填空

一幅地图的比例尺是   1:0,它表示实际距离是图上距离的(       ),图上距离是实际距离的(            )它还表示图上1厘米的距离代表实际的(                 )千米。

判断。新课标第一网

1、图上距离一定比实际距离小。(     )

2、实际距离和图上距离的比,叫做比例尺。(    )

3、图上距离5厘米表示实际距离5千米,这幅图的比例尺是1:1000.(    )

4、比例尺的前项总是1。(        )

5、比例尺的用途和直尺一样。(      )

课后拓展

张华家在学校正北方向,距学校450m;王红家在学校正东方向,距学校400m;李明家在王红家正西方向,距王红家600m。先确定比例尺,再画出上述地点的平面图。

板书设计

比例尺

比例尺:图上距离与实际距离的比。

图上距离:实际距离=比例尺

或   图上距离实际距离 =比例尺

篇11:《圆柱的表面积》的教学设计 (人教新课标六年级下册)

彭月秋供稿

【教学内容】P13-14页例3、例4,完成“做一做”及练习二的部分习题。

【教学目标】

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

【教学重点】掌握圆柱侧面积和表面积的计算方法。

【教学难点】运用所学的知识解决简单的实际问题。

【教学准备】多媒体课件

【自学内容】

学习提示:

(1)长方体、正方体的表面积指的是什么?

(2)圆柱的表面积指的是什么?

(3)圆柱的底面积你会计算吗?侧面积呢?

(4)你知道侧面的形状以及长、宽与圆柱的关系吗?

【教学预设】

一、自学反馈

1、求下面各圆柱的侧面积

(1)底面周长2.5分米,高0.6分米

(2)底面直径8厘米,高12厘米

2、求下面各圆柱的表面积

(1)底面积是40平方厘米,侧面积是25平方厘米

(2)底面半径是2分米,高是5分米

二、关键点拨

1、圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2、侧面积练习:练习七第5题

(1)学生审题,回答下面的问题:

① 这两道题分别已知什么,求什么?

② 计算结果要注意什么?

(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3、理解圆柱表面积的含义。

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4、教学例4

(1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

①侧面积:3.14×20×28=1758.4(平方厘米)

②底面积:3.14×(20÷2)2=314(平方厘米)

③表面积:1758.4+314=2072.4≈2080(平方厘米)

5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

三、巩固练习

1、做第14页“做一做”。(求表面积包括哪些部分?)

2、练习七第6题。

四、分享收获  畅谈感想

这节课,你有什么收获?

五、板书: 圆柱的侧面积=底面周长×高

圆柱的表面积=圆柱的侧面积+底面积×2

例4:①侧面积:3.14×20×28=1758.4(平方厘米)

②底面积:3.14×(20÷2)2=314(平方厘米)③表面积:1758.4+314=2072.4≈2080(平方厘米) 听课随想

反思与体会

《圆柱表面积练习》教学设计

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册P15-18页练习二。

【教学目标】

1、进一步巩固圆柱的特征和侧面积、表面积的计算方法,提高计算的熟练程度以及运用知识解决实际问题的能力。

2、用生活的眼光看数学问题,理解生活中圆柱物体侧面积、表面积的计算方法。

3、培养学生认真仔细的计算习惯。。

【教学重点】:圆柱表面积的实际应用。

【教学难点】:圆柱表面积的实际应用。

【教学准备】:多媒体课件

【自学内容】:尝试完成练习二习题。

【教学预设】

一、自学反馈

1、什么是圆柱的表面积?怎么求圆柱的表面积?底面积怎么算?侧面积呢?

圆柱的表面积=(         )+(          )

圆柱的侧面积=(       )×(          )

圆柱的底面积=(            )

2、引入:这节课,我们要运用所学的有关知识,解决生活中的相关问题

二、基本练习

1、联系生活实际,说说生活中的问题与哪些面积有关?(填A、B、C、D)

(1)圆形水池的占地面积。(     )

(2)做一节烟囱所需铁皮面积。(     )

(3)求易拉罐上商标纸的面积。(     )

(4)做茶叶桶所需铁皮面积。(     )

(5)做一个无盖水桶所需铁皮面积。(     )

(6)往大厅的柱子上涂漆,求涂漆部分面积。(     )

(7)在水池的内壁和底面抹水泥,求抹水泥部分的面积。(     )

(8)做一个油桶所需铁皮面积。(     )

(9)压路机的滚筒转动一周,求压路面积。(     )

(10)做一个塑料笔筒所需塑料面积。(     )

A求底面积   B求侧面积   C求1个底面积与侧面积  D求表面积

学生小组讨论后小结: 在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。

2、独立完成课本第16页第5、6题后反馈交流。

三、对比练习

算一算,再比一比。

(1)一种圆柱形铁皮通风管,横截面的直径是10厘米,长1米,做这样的通风管需要多少平方厘米的铁皮?

(2)做一个高5分米、底面半径1分米的无盖圆柱形铁皮水桶,大约要铁皮多少平方分米?(得数保留整数)

(3)一个圆柱的汽油桶,底面直径是10分米,高是20分米,做这样一个汽油桶需要铁皮多少平方分米?

学生计算,大组交流,说说要注意些什么?

四、拓展练习

1、小组讨论切圆柱,其表面积的变化情况。

(1)横切,切去一段。表面积有什么变化?

(2)横切,切成几段。表面积之和有什么变化?

(3)纵切,沿着它的底面直径和高,从上到下切成相等的两块。表面积增加了哪些部分?

2、练一练。(学生口答)

(1)一段圆柱形木材的底面半径是20厘米,高是2米,将这段木材从中间锯成两个-样大小的圆柱,表面积增加了多少?

(2)一根圆柱形状的木料,底面直径是4厘米,高是20厘米。沿着它的底面直径和高,从上到下把这块木料分成相等的两块,这根圆柱木料表面积增加了是多少?

(3)一根圆柱形状的木料,截去10厘米长的一小段后,剩下圆柱形木料的表面积比原来减少了62.8平方厘米。这根木料的底面积是多少平方厘米?

3、引导小结

五、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会

练习课是小学数学教学中最难驾驶的课型之一。它需要教师对教材、学生的实际了如指掌,这样才能恰到好处地选择练习时机,确定练习内容,安排课堂结构。因而本节课的练习的设计围绕如下四点进行:

1、这一节是圆柱表面积计算的练习课。学生对刚学的知识还不够熟练,往往容易将侧面积公式,表面积公式,圆周长公式,圆面积公式等等混合在一起。针对学生的这个问题,我首先让学生回顾圆柱表面积计算的方法,进一步让学生明白求圆柱表面积的不同方法,再通过填表让学生得到巩固。

2、在实际生活中,所求面的面积要根据具体问题来灵活确定,因而设计了让学生根据具体问题来确定所求问题是求哪些面的面积这一环节,从而使学生在具体问题中理解解答问题的方法。在这一环节中,还安排了让学生小组讨论:解答这些问题的注意点,使学生在交流和讨论的过程中明白解答这些问题时要注意以下三点:(1)要注意所求问题是求哪些面的面积;(2)要注意统一单位;(3)要弄清楚采取哪种方法取近似值。

3、将圆柱采取不同的切法其表面积的变化不同,因而要让学生理解其变化规律。在这节课上,我设计了让学生通过讨论来理解变化规律的环节,这一环节的设计为学生解答有关表面积变化的问题打下了牢固的基础。

4、在练习中,除了有单纯计算圆柱侧面积和表面积的问题外,更多的是一些生活中的实际问题,通过这样的综合练习使学生解题能力得以提高。

本节练习课,在让学生进行基本练习的基础上,通过小组交流、讨论,使学生进一步认识了圆柱的形体特征,使得学生利用公式进行熟练的计算。大部分的问题都是引导学生自己开动脑筋,积极思考,获取知识,这种做法,对学生掌握基础知识,领悟数学思想和方法,提高数学能力起到了积极的促进作用。

篇12:《圆柱的体积》教学设计 (人教新课标六年级下册)

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册第19至20页例5、例6及“做一做”。

【教学目标】

1、探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

【教学重点】:掌握和运用圆柱体积计算公式。

【教学难点】:圆柱体积公式的推导过程。

【教学准备】:多媒体课件

【自学内容】:见预习作业

【教学预设】

一、自学反馈

如图,一根圆柱形木料,底面半径是5分米,长10分米。它的体积是多少?

1、学生独立解答,教师巡视指导。

2、汇报交流:3.14×52×10=785(立方分米)

3、你为什么这么算?你是怎么想的?

4、圆柱的体积=底面积×高,3.14×52是求圆柱的底面积,因为圆柱的底面是圆。

5、为什么圆柱的体积可以用底面积乘高来计算?

二、关键点拨

1、回顾旧知,帮助迁移

请大家想一想,在学习圆的面积时,我们是怎样把圆转化成已学的图形,来推导圆面积的计算公式的?

配合学生的回答,课件动态演示:把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积的计算公式。

2、小组合作,实践迁移

(1)启发:我们能不能把圆柱转化成我们已学过的立体图形,来计算它的体积?

学生相互讨论,思考应如何转化,而后组织全班汇报。

(2)操作:学生操作学具,进行拼组。

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……)让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

(3)讨论:圆柱与所拼成的近似长方体之间有什么联系?

学法指导:长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积就是圆柱的体积,长方体的体积等于底面积乘高,所以圆柱的体积也等于底面积乘高。

(4)概括:试着让学生根据圆柱与近似长方体的关系,推导公式,用字母表示计算公式。

出示推导图示:

长方体的体积=底面积 ×  高

圆柱的体积=底面积  ×  高

用字母表示公式:V=sh

(6)深化:要用这个公式计算圆柱的体积,必须知道什么条件?

三、巩固练习

1、填表。

必须条件 计算公式 体  积

底面半径3厘米 高5厘米 V=sh

底面直径8分米 高10分米 V=sh

底面周长18.84米 高4米 V=sh

2、判断正误,对的画“√”,错误的画“×”。

(1)圆柱体的底面积越大,它的体积越大。(   )

(2)圆柱体的高越长,它的体积越大。(    )

(3)圆柱体的体积与长方体的体积相等。(    )

(4)圆柱体的底面直径和高可以相等。(     )

3、一根圆柱形木料,底面积为75平方厘米,长90厘米。它的体积是多少?

4、一个圆柱形水桶(厚度不计),底面周长12.56分米,高30厘米。这个水桶最多能装多少升水?

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

板书设计:

反思与体会:

《圆柱的体积练习》教学设计

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册第21至22页练习三。

【教学目标】

1、使学生能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

3、渗透转化思想,培养学生的自主探索意识。

【教学重点】:能熟练正确的计算圆柱的体积。

【教学难点】:灵活应用圆柱的体积公式解决实际问题。

【教学准备】:多媒体课件

【自学内容】:见预习作业www.xkb1.com

【教学预设】

一、自学反馈

如图,一根圆柱形木料,底面半径是6分米,长12分米。它的体积是多少?

1、学生独立解答,教师巡视指导。

2、汇报交流:3.14×62×12=1356.48(立方分米)

3、你是怎样算圆柱的体积的?圆柱的体积=底面积×高,即V=Sh。

二、关键点拨

1、要求圆柱的体积必须知道什么条件?

(1)底面积和高;(2)底面半径和高;(3)底面直径和高;(4)底面周长和高。

2、如果知道底面半径和高,怎样求圆柱的体积?

V柱=圆周率×半径的平方×高。

3、如果知道底面直径和高,怎样求圆柱的体积?

V柱=圆周率×(直径÷2)的平方×高。

4、如果知道圆柱的底面周长和高,怎样求体积?

V柱=圆周率×(周长÷圆周率÷2)的平方×高。

5、如果知道圆柱的体积和底面积,怎样求高?

圆柱的高=圆柱的体积÷底面积

三、解决实际问题

1、一个圆柱形水桶,底面直径是4分米,高80厘米,桶中水面高60厘米。桶中装了多少升水?

(1)学生独立解答并反馈交流。

(2)追问:如果往桶中放入一块小石头,水面上升到70厘米。则石头的体积是多少立方厘米?

2、练习三第7题。

(1)学生思考:要求粮囤所能装的玉米的重量,需先知道什么?新课标第一网

(2)然后独立完成。

3、练习三第5题。

(1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

4、练习三第8题。

(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

5、练习三第9、10题

(1)学生独立审题,完成9、10两题。

(2)第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)

(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

6、学生尝试完成练习三第11题:求空心圆柱钢材的体积。

外圆直径10厘米,内圆直径8厘米,长80厘米。

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

篇13:圆柱的体积 教案 (人教新课标六年级下册)

课题 圆柱的体积 课时 第一课时

◆教学目标↓(知识与技能、过程与方法、情感态度与价值观)

知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积。

过程与方法: 初步学会用转化的数学思想和方法,解决实际问题的能力渗透转化思想,培养学生的自主探索意识。

情感态度与价值观:初步学会用转化的数学思想和方法,解决实际问题的能力

◆教学重难点↓

教学重点:1、掌握圆柱体积的计算公式。

2、应用圆柱的体积计算公式解决简单的实际问题。

教学难点:圆柱体积的计算公式的推导。

◆教学准备↓

电子白板、圆柱体积公式推导教具

◆教学过程预设↓(含各环节中的教师活动和学生活动以及设计意图)

一、旧知铺垫

1.计算下列长方体的体积。

15cm                           20cm

8cm

30cm                               5cm  5cm

2.长方体的体积公式是什么?

二、导入新课

教师:请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?

先让学生回忆,同桌的相互说说。然后指名学生说一说圆面积计算公式的推导过程:

教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?

让学生相互讨论,思考应怎样进行转化。

教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱体的体积)

1.圆柱体积计算公式的推导。(教学例5)

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形--课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(3)通过观察,归纳公式。

①拼成的长方体的体积与圆柱的体积有什么关系?

②长方体的底面积与高与圆柱的底面积、高有什么关系?

③长方体的体积等于什么?圆柱呢?

学生通过讨论、交流,归纳出计算公式,教师板书。

长方体的体积 = 底面积 × 高

圆柱体的体积 = 底面积 × 高

④如果用V表示圆柱的体积,S表示底面积,h表示高,那么圆柱的体积公式该怎样表示?(板书:V=Sh)

2.练习:教材第20页的做一做

3.课堂小结:本节课你学到了什么知识?计算圆柱体积需要哪几个条件?

三、巩固练习:完成课本练习三第1题。

四、布置作业

◆板书设计↓

圆柱的体积

长方体的体积 = 底面积 × 高

圆柱体的体积 = 底面积 × 高

V     =   S      h

◆教学反思

本课时教学,让学生运用已有的知识,通过操作、讨论、交流,利用转化的思想,推导出圆柱的体积计算公式。并能运用公式进行解决有关的问题。

篇14:圆柱的认识1 教案教学设计(人教新课标六年级下册)

导学目标:

1.借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

2.培养学生细致的观察能力和一定的空间想像能力。

3.激发学生学习的兴趣。

导学重难点:

教学重点:认识圆柱的特征。

教学难点:看懂圆柱的平面图。

导学准备:圆柱学具

导学过程:

预习学案:

1.已知圆的半径或直径,怎样计算圆的周长?

2.求下面各圆的周长

(1)半径是1米(2)直径是3厘米

(3)半径是2分米(4)直径是5分米

导学案:

(一)小组交流,全班内汇报预习情况。

(二)共同探究。

1.整体感知圆柱

(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。

(2)找找圆柱,请同学找出生活中圆柱形的物体。

2.圆柱的面

(1)摸摸圆柱。请同学摸摸自己手中圆柱的面,说说发现了什么?

(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)xkb1.com

3.圆柱的高

讨论交流:什么是圆柱的高?圆柱的高的特点。

归纳小结:圆柱的高有无数条,高的长度都相等。

4.圆柱的侧面展开(例2)

(1)动手操作,合作交流。新课标第一网

圆柱的侧面剪开得到一个什么图形?(长方形)

(2)展开的长方形的长和宽与圆柱有什么关系?

同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

(3)想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?学生交流后得出:正方形

5、课堂小结

这节课我们学习了哪些内容?你有什么收获?

课堂检测:

1.做第11页“做一做”的第2题。

2.做第15页练习二的第3题。www.xkb1.com

教师行间巡视,对有困难的学生及时辅导。

课外拓展:

按照附页1的图样,用硬纸做一个圆柱,量出它的底面直径和高。

板书设计:

圆柱的认识

例1:圆柱: 侧面 底面  高

例2:长方形的长等于圆柱的底面周长

长方形的宽等于圆柱的高

导学反思:

篇15:(2)圆柱的表面积 教案教学设计(人教新课标六年级下册)

教学内容:P13-14页例3-例4,完成“做一做”及练习二的部分习题。

教学目标:

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

教学重点:掌握圆柱侧面积和表面积的计算方法。

教学难点:运用所学的知识解决简单的实际问题。

教学过程:

一、复习

1.指名学生说出圆柱的特征.

2.口头回答下面问题.

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

板书:长方形的面积=长×宽.

二、新课

1.圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习七第5题

(1)学生审题,回答下面的问题:

① 这两道题分别已知什么,求什么?

② 计算结果要注意什么?

(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3. 理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.教学例4

(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

① 侧面积:3.14×20×28=1758.4(平方厘米)

②  底面积:3.14×(20÷2)2=314(平方厘米)

③  表面积:1758.4+314=2072.4≈2080(平方厘米)

5.小结:

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

三、巩固练习

1.做第14页“做一做”。(求表面积包括哪些部分?)

2. 练习七第6题。

板书:

圆柱的侧面积=底面周长×高

圆柱的表面积=圆柱的侧面积+底面积×2

例4:① 侧面积:3.14×20×28=1758.4(平方厘米)

②  底面积:3.14×(20÷2)2=314(平方厘米)

③ 表面积:1758.4+314=2072.4≈2080(平方厘米)

篇16:圆柱(1)圆柱的认识 教案教学设计(人教新课标六年级下册)

教学内容:教科书第10-12页圆柱的认识,练习二的第1-4题.

教学目标:

1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

2、培养学生细致的观察能力和一定的空间想像能力。

3、激发学生学习的兴趣。

教学重点:认识圆柱的特征。

教学难点:看懂圆柱的平面图。

教学过程:

一、复习

1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)

2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)

(1)半径是1米(2)直径是3厘米

(3)半径是2分米 (4)直径是5分米

二、认识圆柱特征

1.整体感知圆柱

(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)

(2)找找圆柱,请同学找出生活中圆柱形的物体。

2.圆柱的表面

(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?

(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)

3.圆柱的高

(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?

(2)引导小结:水柱的高低和水柱的高有关.

(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)

(4)讨论交流:圆柱的高的特点。

①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?

②初步感知:面对圆柱的高,你想说些什么?

归纳小结并板书:圆柱的高有无数条,高的长度都相等。

③深化感知:面对这数不清的高,测量哪一条最为简便?

老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.

4.圆柱的侧面展开(例2)

(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.

反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

┌长方形

板书:沿高剪┤斜着剪:平行四边形

└正方形

强调:我们先研究具有代表性的长方形与圆柱的关系.

(2)寻求发现.展开的长方形的长和宽与圆柱的关系.

①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)

③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。

①讨论:平行四边形能否通过什么方法转化成长方形?

课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。

②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?

③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.

三、巩固练习

1.做第11页“做一做”的第2题。

2.做第15页练习二的第3题。

教师行间巡视,对有困难的学生及时辅导。

3.做第15页练习二的第4题。

四、布置作业

完成一课三练P15的1、2题。

板书:

┌长方形

沿高剪┤斜着剪:平行四边形

└正方形

圆柱的底面周长 →  长方形的长

圆柱的高    →  长方形的宽

篇17:和复习教案教学设计(人教新课标六年级下册第三单元)

整理复习(1)

复习目标:

使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。

复习重点:分数除法的计算方法,化简比。

复习难点:正确计算分数除法。

复习过程:

一、复习分数除法的意义和计算法则

1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?

(1)分数除以整数,例如 ÷5;

(2)一个数除以分数,它又包括整数除以分数,例如20÷ ;和分数除以分数,例如     ÷ 。

(3)做第52页“整理和复习”的第2题。

2、分数除法的意义

(1)第52页“整理和复习”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)

(2)让学生说说是怎样题改写成两道分数除法算式的。

(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)

3、分数除法的计算法则

(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?

(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。

(3)完成P52“整理和复习”第2题。

(4)P53练习十三第2题。

二、复习比的意义和基本性质

1、比的意义

(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)

(2) 以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。

3蟆忙2 =1.5

┇  ┇  ┇ ┇

前  比  后 比

项  号  项笾

(3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式 ,但仍读作3比2。特别强调比的后项不能为0)

(4)比和除法、分数的联系

除法 被除数 ÷(除号) 除数 商

分数 分子 -(分数线) 分母 分数值

比 前项 :(比号) 后项 比值

2、比的基本性质

(1)复习概念及化简方法

①比的基本性质是什么?

②应用比的基本性质,怎样对整数比进行化简?

③不是整数的比应该怎样化简?

(2)学生做P52“整理和复习”第3题(指名学生说说自己是怎样想的)

三、课堂练习

1、练习十三的第1题(先让学生独立完成.订正时,要让学生说出判断正误的理由)

2、做练习十四的第2题.

3、做练习十四的第3题(学生独立完成.教师注意巡视,察看学生所用算法是否简便)

4、做练习十四的第7题.

整理复习(2)

教学目的:

使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力.

教学重点:正确解答分数乘除法应用题

教学难点:分数乘除法应用题的联系与区别

教学过程:

一、推理训练

1、男生占全班人数的 ,女生占全班人数的( )。

2、一堆煤,用去了 ,还剩下( )。

3、今年比去年增产 ,今年相当于去年的( )。

二、对比训练:

1、一步分数应用题

① 张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几?

② 张大爷养了200只鹅,鹅的只数是鸭的只数的 ,养了多少只鹅?

③ 张大爷养了200只鹅,鸭的只数是鹅的只数的 ,养了多少只鸭?

(1)比较相同点和不同点

引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数, 鹅的只数是鸭的几分之几;不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位“1”;不同的是需要根据已知、未知的变化确定该用什么方法解答。

(2)比较完后,学生将三道题的解答过程写在练习本上。

2、出示题组:

① 上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千米?

② 一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?

(1)学生自己画线段图,分析,解答。]

(2)对比:两题有什么异同?你是怎样分析的,如何区别的?

3、出示题组:

① 停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆?

② 停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆?

③ 停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆

④ 停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?

(1)学生独立画线段图,分析,解答。]

(2)对比:1、2两题有什么异同?3、4两题呢?你是怎样分析的,如何区别的?

(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么?

引导学生归纳出:

㈠ 分析“分率句”,判断单位“1”是哪个数量?

㈡ 画出线段图,找出“量”和“率”的对应关系。

㈢ 确定已知单位“1”用乘法,求单位“1”用除法或用方程解。

三、课堂练习:

1、第53页“整理和复习”的第4题(根据题目的条件应该确定把谁看作单位“1”? 单位“1”已知还是未知?)

2、练习十三第4、5题,独立完成,集体订正。

四、作业:

练习十四的第6--10题

篇18:百分数和复习(二) 教案教学设计(人教新课标六年级下册)

吴兴区学校         (幼儿园)具体课时备课表(成熟型教师用)

单元(章)主题 任课教师与班级

本课(节)课题 整理和复习(二) 第       课时 / 共     课时

教学目标(含重点、难点)

及设置依据 1.通过复习使学生进一步理解“求一个数的百分之几是多少”和已知一个数的几分之几是多少,求这个数的应用题的数量关系,能正确熟练地进行解答。

2.能正确熟练地解答有关税款、税后利息等实际应用问题。

重点:理解“求一个数的百分之几是多少”和“已知一个数的几分之几是多少,求这个数”的应用题。

难点:利用百分数的意义灵活的解决生活中的实际问题。

教学准备 多媒体课件。

教  学  过  程

内容与环节预设 个人二度备课 课后反思

一、基本练习(只列式不计算)

(1) 10万元的5%是多少? (2)一个数的80%是100,求这个数。

(3)500减少20%后是多少? (4)1000元增加2%后是多少?

(5)100比某数多10%,求某数?

内容与环节预设 个人二度备课 课后反思

二、知识梳理

1.某校男生人数比女生少10%。

①谁是单位“1”。

②男生人数是女生人数的百分之几?

③已知女生有500人,求男生有多少人?

④已知男生有450人,求女生有多少人?

2.把③、④两题进行比较,然后小结。

3.105页第1题,课本105页第4题,。

二、税款的计算方法,利息的计算公式。

1.复习税款的计算方法。

2.复习利息的计算公式:利息=本金×利率×时间(定期整存整取通常还要叫20%的利息税,因此所得利息只有80%)

3.什么利息不纳税?利息与税后利息有什么不一样?

三、巩固与深化练习

1.课本104页的第4题。

2.课本105页的第6题。

四、小结:这节课你有什么收获?

板书

设计 整理和复习(二) 个人二度备课: 课后反思:

作业布置或设计 课本105页练习二十四第2、3、5题 课后反思:

教后整体反思

篇19:六年级数学总复习教案教学设计(人教新课标六年级下册)

数和计算

思考并回答:

1、在小学里我们学过哪些数?

2、最小的非0的自然数是多少?有没有最大的自然数?自然数的基本单位是多少?

3、小数又可以怎样分类?

4、我们学过的整数和小数的计数单位有哪些?数位的顺序是怎样的?

5、读数时应注意什么?读出下面各数:36000、24050000、500900000、40.57、4.057、0.4057、15000300    比较40.57、4.057 、0.4057的大小,从中可以得到什么规律?

6、写数时应注意什么?用阿拉伯数字写出下面各数:七千零三十八、七亿零三十八万、

三亿零五十万六千、零点零四零六

练习:

1、在数位顺序表里,小数点左边第一位是(   )位,计数单位是(   );第五位是(  )位,计数单位是(    )。小数点右边第一位是(    )位,计数单位是(    );第三位是(    )位,计数单位是(    )位。

2、最高位是百万位的整数是(   )位数;最后一位是百分位的小数是(   )位小数。

3、5830070420读作(      )。“8”在(    )位上,表示( );“7”在( )位上,表示( )。

4、有一个四位数,加上“1”就变成五位数,这个四位数是( );有一个四位数,减去“1”就变成三位数,这个四位数( )。

5、地球有多大?请读出下面数据。

地球的半径 6378.14千米              赤道长 40073.92千米

地球表面积 510067860平方千米       地球海洋面积 361745300平方千米

思考并回答:

1、3.150=3.15 、7.8=7.8000,这是根据什么?

2、一个数的小数点向左移动两位,再向右移动一位,它的值有什么变化?

3、1÷3、70.7÷33,商的小数部分的数字有什么规律?

4、把453.647分别精确到十位、个位、十分位(保留一位小数)、百分位(保留两位小数)各是多少?

5、下面的循环小数,如果各保留三位小数取它的近似值,该怎样写?  . .       .          . .

0.72     0.3       3.150

6、以85400为例,省略万后面的尾数与写作以万为单位的数有什么区别?

7、下面各数省略万后面的尾数怎么写?改写成以万为单位的数又该怎么写?34820、408000、7136300、19800

8、三个连续的自然数的和是45,这三个数分别是(  )、(  )、(   )。

练习:

1、9035000以万为单位写作(   ),省略万后面的尾数写作(   )。408000000以亿为单位写作(   ),省略亿后面的尾数写作(   )。

2、7.85353……写作(    ),0.346346……写作(    )。

3、0.04×1000就是将0.04的小数点向(    )移动(    )位。

4、25.4÷100 就是把25.4的小数点向(    )移动(    )位。3.002的小数点左移两位,是原数的(    ),小数点右移三位,是原数的(    )倍。

5、两个数相除的商是3.45,如果把被除数的小数点向右移动一位,除数的小数点向左移动 一位,商是(    )。

数的整除

思考并回答:

1、下面的除式,哪些是整除关系?是整除关系的两个数要具备哪些条件?

32÷4、45÷7、12÷0.3、720÷90、2÷4

2、根据35、4、60、24、105、7、56、12这些数:(1)写出整除关系的除式,并分别说出谁是谁的因数,谁是谁的倍数。(2)这些数中,60的因数有哪几个?7的倍数有哪几个?(3)这些数中哪些能分别被2、3、5整除?

3、怎样判别一个自然数是质数还是合数?一个自然数不是质数,就一定是合数吗?质数是不是都是奇数?

4、什么叫质因数?什么叫分解质因数?

5、下面各题分解质因数是否正确?为什么?不对的应该怎样改正?

18=2×3×3、2×3×7=42、120=2×2×5×6、150=2×3×5×5×1

6、求下面各组数的最大公约数和最小公倍数:14和42、24和32、12和18

7、互质的两个数一定都是质数吗?怎样判别两个数是否是互质数?

练习:

1、在16、4、8、32、36、80、84、160这些数中,80的约数有(   ),16的倍数有(   )。

2、20的约数有(   ),32的约数有(   ),20和32的公约数有(    ),其中最大的公约数是(    )。

3、按照下面要求写出互质数:两个都是质数(  );两个都是合数(   );一个是质数,一个是合数(  )。

4、把下面的数填在图内。6、8、9、10、12、15、18、20、21、25、30、32、35

能被3整除的数

能被5整除的数      能被2整除的数

5、求下面各组数的最大公约数和最小公倍数:27和18、39和117、8和15

6、一个数用2、3、5除正好都是整数,这个数最小是(    );有一个数用它去除30、45、60正好都是整数,这个数最大是(    )。

7、判断题:

(1) 没有约数2的自然数一定是奇数。

(2) 一个自然数的约数总比它的倍数小。

(3) 两个质数相乘,积一定是合数。

(4) 一个奇数加上7,一定能被2整除。

(5) 2、3、5都是质因数。

(6) 两个合数不能成为互质数。

(7) 17的约数都是质数。

(8) 因为3、5、6的最大公约数是1,所以它们的最小公倍数是3×5×6=90。

分数和百分数

思考并回答:xkb1.com

1、先填空,在回答:4/5=1÷   ×   、4/5=   ÷   ;7/9=1÷   ×   、7/9=   ÷

什么叫分数?分数的分子、分母个表示什么?分数单位表示什么意思?

2、什么叫百分率?“9/100米”与“9﹪”在意义上有什么区别?

3、什么是分数的基本性质?分数的基本性质与

商不变的性质、比的基本性质有什么联系?

4、什么叫约分?什么叫通分?你能说出约分和通分的方法吗?

5、下面括号里应填什么数?其中哪一个分数是最简分数?为什么?

24/40=(  )/20=48/(   )=(   )/5=(    )/15=36/(   )

6、举例说明分数、小数、百分数的互化方法。

7、下面的分数哪些能化成有限小数?哪些不能化成有限小数?为什么?2/3、3/4、4/5、5/7、3/10、7/12、11/16、9/20、12/25、6/15

8、分数、小数、百分数混在一起,怎样比较它们的大小?比较0.6、2/3、61﹪的大小。

练习:

1、把3米长的钢管平均分成5段,每段钢管是全长的(  )/(   ),每段的长度是(   )/(   )米,3段占全长的(   )﹪。

2、生产500吨化肥,计划25天完成,平均每天完成计划的(   )﹪,每天生产(    )吨。

3、3里面有(   )个1/3,2/3里面有(   )1/12,1里面有11个2/(  ),100个1/7是(   )。

4、7/15的分数单位是(   ),添上(   )个这样的分数单位等于1,减去(    )个这样的分数单位等于1/5。

5、5/8的分母加上24,要使分数的大小不变,分子要(   );6/15的分母减去5,要使分数的大小不变,分子要(   )。

6、一个分数,它的单位是1/8,它有7个这样的单位,这个分数是(   ),化成小数是(    ),化百分数是(   )。

量和计量

思考并回答:

1、在小学里已经学过哪些量?它们各有哪些计量单位?

各种量 基本单位 各单位之间的关系

长度 1米 1千米=(     )米

1米=(    )分米

1分米=(    )厘米

1厘米=(    )毫米

面积 1平方米 1平方千米=(    )公顷

1平方千米=(    )平方米

1公顷=(    )平方米

1平方米=(    )平方分米

1平方分米=(    )平方厘米

体积 1立方米

1升 1立方米=(    )立方分米

1立方分米=(     )立方厘米

1升=(      )毫升

质量 1千克 1吨=(     )千克

1千克=(    )克

时间 1秒 1日=(     )时

1时=(     )分

1分=(     )秒

2、在进行单位之间的换算,或单名数与复名数之间的变换时,要注意什么?

练习:

1、填空:

(1)5米=(    )分米    3.2 分米=(    )厘米     5平方米=(     )平方分米

3.2平方分米=(       )平方厘米     52700平方米=(       )公顷

(2)4.8升=(       )毫升     1.6千克=(        )克   7.3米=(    )分米=(    )厘米

(3)4.2公顷=(    )平方米             0.8平方千米=(     )公顷

1.05立方米=(    )立方分米     1.45吨=(     )千克

(4)210秒=(     )分        1/6日=(       )时       1时20分=(     )分

2、选择:

(1)下列年份中,不是闰年的年份是(      )     A1980年   B2000年     C2100年

(2)25厘米×(    )=1米     A1/2     B4       C40

(3)面积是1平方米的正方形的边长是(    )   A10厘米    B100厘米     C10000厘米

(4)将1立方米的大立方体锯成体积是1立方厘米的小立方体,然后将它们一个一个地连接起来,总长度是(      )。      A1千米      B10千米       C100千米

3、判断题:xkb1.com

(1) 第一季度有91天的这一年是闰年。

(2) 一水池装了0.3立方米的水,这池水的容积是300升。

和复习教案教学设计(人教新课标六年级下册)

《圆柱的体积》教学设计 (人教新课标六年级下册)

抽屉原理 教案教学设计(人教新课标六年级下册)

第四单元圆 教案教学设计(人教新课标六年级下册)

空间与图形 教案教学设计(人教新课标六年级下册)

面积和面积单位 教案教学设计(人教新课标三年级下册)

第七--八课时和复习(复习课) 教案教学设计(人教新课标一年级下册)

《桃花心木》教学设计 (人教新课标六年级上册)

小学数学总复习讲解及训练(九)1 教案教学设计(人教新课标六年级下册)

小学数学总复习讲解及训练(五)1 教案教学设计(人教新课标六年级下册)

一、复习圆柱 教案教学设计(人教新课标六年级下册)(锦集19篇)

欢迎下载DOC格式的一、复习圆柱 教案教学设计(人教新课标六年级下册),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档