第二课时分数连乘应用题 教案教学设计(人教新课标六年级上册)

时间:2024-08-30 03:40:08 作者:爱杀爱拼 教案 收藏本文 下载本文

【导语】“爱杀爱拼”通过精心收集,向本站投稿了19篇第二课时分数连乘应用题 教案教学设计(人教新课标六年级上册),以下是小编收集整理后的第二课时分数连乘应用题 教案教学设计(人教新课标六年级上册),仅供参考,希望对大家有所帮助。

篇1:第二课时分数连乘应用题 教案教学设计(人教新课标六年级上册)

教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。

教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。

教学过程:

(一)、导入

1、说出下面各题算式所表示的意义,再口算各题

1/2×2=    2/5×3=    2/3× 1/2=     3/4× 5=

2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。

母牛的头数是公牛的 1/3,  公牛头数的2/3 和母牛相等。

母牛的头数相当于公牛头数的 3/4, 公牛的头数相当于母牛头数的 1/2。

小组完成,集体订正。

(二)、教学实施

1.板书:公牛有30头,母牛的头数相当于公牛的1/3 ,小牛的头数相当于木牛的2/5 ,小牛有多少头?(认真读题,弄清题意)

2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:

公牛: |   |   |   |   |   |   |   |   |   |   |

30头

母牛: |    |

小牛:

?头

3.分析数量关系:

求小牛有多少头,必须先求什么?(母牛的头数)求母牛的头数应该怎样做?解答这道题需要几步?

4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:

30× 1/3× 2/5=

根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。

(三)巩固练习

完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。

(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。

教学反思:

第三课时  求比一个数少几分之几的数是多少的实际问题

教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。

教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。

教学过程:(一)导入

板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的 2/5。

(二)、教学实施

1.根据以上两个条件,我们可以提出以下数学问题:

花生油有多少桶?豆油有多少桶?豆油不花生油多多少桶?这些问题中哪个问题可以一步解决?明确任务,重点研究第二个问题

2.能用图表示豆油的部分吗?板书:

“1”

花生油占总桶数的

|      |      |      |      |      |

豆油?桶

600桶

3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的 ,求豆油的桶数也就是在求600的 是多少,用乘法计算。

4.列式:   600×(1 – 2/5 )或 600 - 600× 2/5

后者方法很容易理解,主要是从“总桶数 - 花生油的桶数 = 豆油的桶数”这个数量关系入手分析,也就是“和 - 一个量 = 另一个量”

5.出事例2:  明确题意:降低是指什么意思?(比原来少)减少了哪个量的 ?现在听到的声音分贝是原来噪音的几分之几?请个别学生尝试板演画线段图

“1”

原来:|    |    |    |    |    |    |    |

85分贝

降低了

现在:|    |    |    |    |    |    |    |

?分贝

根据线段图想到了什么?

3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)

4.列式解答:

方法一:80 - 80× 1/8方法二: 80 ×(1 -1/8 )

=80-10       =80×  7/8

=70(分贝)   =70(分贝)

(三)、深化练习

完成教材20 页的“做一做”;完成练习五的第2、4、5、8、10题

(四)课堂小结

今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。

课后反思:

篇2:第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册)

教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

教具准备: 多媒体课件

教学过程:

一、复习引入

1、计算下列各题并说出计算方法。

×        ×        ×

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新知探究

1、课件出示教学目标

理解一个数乘分数的意义。

掌握分数乘以分数的计算法则。

学会分数乘分数的简便计算。

2、教学例3

(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”

(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。

(4)提出问题:  小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式:  × 。

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教具准备:多媒体课件

教学过程:

一、旧知铺垫

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)36×2+15    (2)5×6+7×3    (3)15×(34-27)

二、新知探究

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)

(1) + ×       (2) × -

(3) - ×     (4) × +

2、复习整数乘法的运算定律

(1)乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25×7×4    0.36×101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?

(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、课堂检测

练习三的第一题,第三题。

(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用

了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。

(2)小组内评比,解决疑难问题。

(3)教师讲解疑难。

四、课堂自我评价

每个学生对自己这节课的表现进行自我评价,并提出问题。

设计意图

体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。

教学后记

篇3:第二课时一个数除以分数 教案教学设计(人教新课标六年级上册)

【教学过程】:

一、复习巩固上节知识

1、怎样计算分数除以整数?

2、口算下面各题

1/6÷3         4/7÷2       3/5÷2    6/7÷2

二、探究新知

教学例三

1、出示例三  小明2/3小时走了2千米,小红5/12小时走了5/6千米,谁走的快些?

2、指导列式

(1) 谁走得快是比两人的什么?(速度)

(2) 怎样求二人的速度?(自己列出算式,并与你所在的小组的同学交流你的算式及列式依据)

(3) 汇报并板书:小明平均每小时走2÷2/3

小红平均每小时走5/6÷5/12

(4) 你能直接求出这两个算式商的大小吗?(不能)

(5) 你会求出这两个算式的商吗?为什么?(不能,因为除数是分数)

我们这一节就来探究一个数除以分数的计算的方法(板书:一个数除以分数)

3、探究计算法则:

探究计算2÷2/3

(1) 指导学生画线段示意图:

①你能用线段图表示这道题的信息吗?试试看(由于用2/3小时行2千米,求1小时行多少千米,学生在画图时有一定困难,画图前可让学生讨论以下问题

a、2/3小时表示什么?(1小时的2/3)

b、2/3小时行驶的路程和1小时所行路程有什么关系?(2/3小时行的路程=1小时所行路程的2/3即:1小时所行路程的2/3是2千米)

此时学生就可根据乘法应用题画图的方法画出线段图了。

②把你的画图与同组同学交流一下,看是否相同。如果不同,比比谁的画图能更好的反映信息。

③打开教材第30页,看看你们的图与教材的图是否相同。

(2) 探究怎样计算2÷2/3

独立阅读教材第30页,体会教材中的推导过程,并在小组内说一说

(3)师生互动

师生共同探究计算过程,分析算理

① 1小时走多少千米就是求3个1/3小时走多少千米,必须先求1个1/3小时走多少千米

② 由2/3小时行2千米,即2个1/3小时行2千米,可求1个1/3小时走多少千米,也就求2千米的1/2是多少 ?  2×1/2

③ 3个1/3就行2×1/2×3千米

④ 由此推出2÷2/3=2×1/2×3

⑤ 由于1/2中的分母2和第三个因数恰好是原来除法算式中的数,为了便于分析,可用乘法结合律让它先算,即

2÷2/3=2×1/2×3=2×(1/2×3)=2×3/2

⑥ 分析2÷2/3和2×3/2的特征,你们有什么发现?(引导学生得出除以一个不等于0的数,等于乘以这个数的倒数。)

4、你们能用这个规律计算5/6÷5/12吗?试一试,并把你的计算与同组人交流。

三、课堂练习:

1、教材第31页“做一做”

2、练习八第4题

四、板书设计:

一个数除以分数

2÷2/3=2×1/2×3=2×3/2=3(千米)

简写:2÷2/3=2×3/2=3(千米)

5/6÷5/12=5/6×12/5=2(千米)

第三课时    分数四则混合运算

【教学过程】:

一、复习:

1、一个数除以一个不等于0的数应怎样计算?

2、计算:

24÷5/6      2/3÷3/4      5/7÷25/14

二、探究新知:

1、教学例4(1):混合运算应用题

小红用长8米的彩带做了一些花,每朵花用2/3米的彩带。他把其中的4朵送给了同学,小红还剩几朵花?

(1) 讨论问题

① 你从题中获得了哪些信息?

② 要求小红还剩几朵花,先应求什么?

③ 怎样列式?

(2) 讨论要求:

① 先在小组内讨论问题

② 独立列算式,并在小组内交流

(3) 汇报讨论结果并板书

8÷2/3-4

=8×3/2-4

=12-4

=8(朵)

答:小红还剩8朵花。

2、教学例四(2)四则混合运算题

(2)计算1/5÷(2/3+1/5)×15

①先按运算顺序计算出题目的得数

③ 在上面的算式里。如果要先计算(2/3+1/50×15,就要用到中括号“[]”。在用到中括号后,就成了新算式,试一试,写出这个新算式。学生写出后教师板书:

1/5÷[(2/3+1/5)×15]

(1) 先议一议运算顺序,再独立计算,并在小组内交流。

(2) 议一议:一个算式里,如果既有小括号,又有中括号,应怎样计算?

(3) 在学生充分讨论归纳后,教师板书:

先算小括号里面的,再算中括号里面的。

三、课堂练习:

四、教科书第34页“做一做”

五、板书设计:

篇4:第二课时解决问题 教案教学设计(人教新课标六年级上册)

教学内容:教科书第39页的例2。

教学目标:

1. 学习运用线段图帮助分析数量关系。

2. 学习列出方程,解决已知一个数的几分之几是多少,求这个数的实际问题。

3. 在分析数量关系,列出方程解决实际问题的过程中,提高分析问题、解决的能力。

教学过程:

一、复习与准备

1. 根据题意,看图写出代数式。

(1)苹果有x kg,西瓜的质量比苹果重1/4。

西瓜比苹果重kg,西瓜重()kg。

(2)鸡有x只,鸭的只数比鸡少1/3。

鸭比鸡少()只,鸭有()只。

2. 根据题意列出方程。

(1)六(1)班有15人参加了合唱队,占全班人数的1/3,六(1)班有多少人?

(2)美术小组的人数比航模小组多1/4,美术组的人数比航模组多5人。航模组有多少人?

二、教学例2

出示例2。

1. 审题。

(1)看例题的插图,理解题目的意思。

复述题意,说说知道了什么,要求什么。

(2)分析题意,说说你对“美术小组的人数比航模小组多1/4”这一条件的理解。

(航模小组人数看作单位“1”,美术小组的人数多,多的人数相当于航模小组4等份中的1份。)

(3)理解数量关系,让学生自己试着画图表示两个小组的人数关系。(学生可以选用条形、线段或其他图形表示人数)

2. 分析、解答。

(1)出示线段图。

(2)说说数量关系。

根据已知条件“美术小组的人数比航模小组多1/4”直接得出数量关系:

航模小组的人数+美术小组比航模小组多的人数=美术小组的人数

或者:航模小组的人数+航模小组的人数×1/4=美术小组的人数

(3)学生根据得到的数量关系列方程解答。

(4)交流各自的解法。

(5)阅读课本,完成课本上的填空。

3. 改变例2。

出示:航模小组有20人,美术组的人数比航模小组多1/4,美术小组有多少人?

(1)根据题意改变线段图。(只要改变已知数与未知数的位置)

(2)根据图意解答。

(3)启发学生与例2进行比较,说说你发现什么?

(数量关系相同,已知条件与未知问题交换后,仍然可以根据例2的数量关系列式)

教师:上面用方程解例2的思路与分数乘法问题的思路统一,我们应该好好理解、掌握它。

4. 再次改变例2。

出示:美术小组有24人,美术小组的人数比航模小组少14,航模小组有多少人?

(1)根据题意改变线段图。

(2)改变方程,解方程。

5. 小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。

(三)运用新知,解决问题

1. 看图口头编实际问题。

(1)

(2)

2. 根据条件列方程。

(1)小红买了一本书和一枝钢笔,书的价格是10元,正好比钢笔价格少3/8,钢笔的价格是多少元?

(2)白兔的只数比黑兔多2/3,白兔有450只,黑兔有多少只?

(3)白兔的只数比黑兔多2/3,白兔比黑兔多180只,黑兔有多少只?

3. 根据所给方程口头编实际问题。(小组内交流)

四、全课总结(略)

篇5:(第二课时):环形面积 教案教学设计(人教新课标六年级上册)

教学目标:

1、使学生理解环形面积的含义,掌握环形面积的计算方法,并能正确地进行计算。

2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。

3、培养学生的逻辑思维能力。

教学重点:理解环形面积的含义。

教学难点:能根据已知条件准确地求环形面积。

教学过程:

一、复习。xkb1.com

1、口算:

32       42     52     82      92     202

2π   3π    6π   10π      7π      5π

2、思考:

(1)圆的周长和面积分别怎样计算?二者有何区别?

(2)求圆的面积需要知道什么条件?

(3)知道圆的周长能够求它的面积?

二新授:教学例4:

街心花园中圆形的花坛的周长是18.84米,花坛的面积是多少平方米?www.xkb1.com

板书课题:公式的运用。

第一步:弄清题意。

条件:圆周长C=18.84米

问题:圆面积S=?平方米

第二步:分析数量关系,列式计算。

明确:要求圆面积,需要知道什么?怎样由给的圆的周长这个条件求出圆的半径?

求出了半径,再怎样求花坛的面积?

全班齐练,教师巡视,个别辅导。

让学生看课本第95页例4的分析与解的过程,掌握解题格式,并做完书中的空。

练一练:课本第95页“做一做”中第2题。                                       教学例5:

A、什么是环形?

学生动手,每人拿出准备好的图形,用小剪刀剪去半径是10厘米的圆。

明确:剩下的图形是环形,剩下的面积就是环形的面积。

板书课题:环形面积。

b.怎样求环形的面积?

(1)老师演示教具(一个圆中间取出一个同圆心的小圆),让学生明确,求环形面积就是从外圆面积中减去内圆面积,因此先要分别求出内、外圆的面积,再求环形面积。

(2)自学课本第96页例5:新课标第一网

提问:

计算环形面积一般应该分几步做?先算什么?再算什么?最后算什么?谁会列综合算式?怎样列综合算式点名学生回答:

C.练一练:课本第96页“做一做”中的题。

三、巩固练习

1、 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

已知:R=6厘米  r=2厘米   求: s=?

3.14×62              3.14×22

=3.14×36             =3.14×4

=113.04(平方厘米)   =12.56(平方厘米)

113.04-12.56=100.48 (平方厘米)

第二种解法:3.14×(62-22)=100.48(平方厘米)

(2)小结:环形的面积计算公式:

S=πR2-πr2  或 S=π×(R2-r2)

2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

3、课堂小结。

(1)这节课的学习内容是什么?

(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积      S=πr2

已知直径求面积      S=π( )2

已知周长求面积      S=π( )2

(3)环形面积:       S=π(R2-r2)

四、作业

课本P70第4、6、7题。

篇6:第二单元分数乘法1 教案教学设计(人教新课标六年级上册)

1、分数乘法

第一课时     分数乘整数

教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

重难点、关键

分数乘整数的计算方法。

教学准备:电脑课件

教学过程: 一、旧知铺垫

1、计算下列各题

2/11  +2/11+2/11

过程要求

(1)  写出计算过程。

(2)  说一说分数加法的计算方法。

2、想一想,能不能把 2/11+2/11+2/11改写成乘法算式呢?

二、探索新知

1、教学例1

(1) 出示例题

根据题意,电脑课件呈现示意图。

(2) 根据题意列出解答算式:

2/11+ 2/11+2/11 = 2+2+2/11  =  6/11

2/11×3= 6/11

(3)探索分数乘整数的计算方法。

师:2/11×3= ,说一说你是怎么想的?

①   学生在小组交流各自的想法

②   小组讨论后反馈思维的过程和结果

教师板书:

③总结分数乘整数的计算方法。

A、学生口述分数乘整数的计算方法;

B、 教师整理并板书:

分数乘整数,整数与分子相乘的乘积作分子,分母不变。

2、教学例2

计算:3/8×6

(1)  学生独立计算。

(2)  交流计算方法和步骤。

(3)  比较计算过程,看一看哪一种更为简单

(3)归纳:能约分的要先约分,再计算。

三、巩固练习

1、  完成课本“做一做”。

(1) 学生独立完成,然后计算过程和结果。

(2)第3题,说一说你是怎样计算的?怎样想的?

一般要求学生列综合算式计算。如:

6/7×10×7==60(kg)

2、课本练习二第1、2题

四、课后作业设计

一、计算

7/8× 7     3/4×8     1/9×3  1/2×4

5/6×5      5/18×3    27× 2/3 3/8 16×

三、列式计算

1、3个5/8是多少?      2、2/3的6倍是多少?

3、5/14扩大7倍以后是多少?     4、5/6与24的积是多少?

课后反思:

第二课时   分数乘分数

教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题

教学目标:

1、理解一个数乘分数就是求一个数的几分之几是多少。

2、掌握分数乘分数的计算方法,并能正确地进行计算。

重难点、关键:

1、重难点:分数乘分数的计算方法。

2、  关键:理解一个数乘分数就是求一个数的几分之几是多少。

教学准备:实物投影或者电脑课件。

教学过程:

一、创设情境引入新课

教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

师:能提出什么问题?

学生提问题,教师板书。

以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

师:怎样列式?(板书1/5×4)

师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

让学生计算,并说说怎样计算。

师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

板书课题:分数乘分数

二、操作探究计算算理

1笔Γ合旅嫖颐抢刺教址质乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

学生操作。

学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

学生自己涂色。

师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

学生讨论交流汇报。

教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到 (板书)。

三、迁移延伸,归纳法则

提出问题:3/4小时粉刷这面墙的几分之几?

师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)

小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?

交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到 (板书)

根据板书的两个计算算式讨论归纳计算方法。

通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。

四、反馈提高,巩固计算

出示例4,读题。

师:怎样列式?依据什么列式?

由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。

让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

课堂总结:今天我们学习了什么?分数乘分数怎样计算?

课后反思:

篇7:第二单元分数乘法1 教案教学设计(人教新课标六年级上册)

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、分数乘法计算法则的推导。

第一课时 :分数乘整数

教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、  引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则

教具准备:多媒体课件、

教学过程:

一、复习引入

1.课件出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?   9个11是多少?  8个6是多少?

(2)计算:

+ + =     + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二:新知探究

1.出示课题明确学习目标。

2.课件出示自学题纲,让学生自学课本。

(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?

(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?

(3)分数乘以整数的意义。

3、 课件出示例1

教师引导学生画出线段图。

学生根据线段图列出不同的算式,并解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的

”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?

2/11  + 2/11   + 2/11   =

2/11   × 3  =

(3).分数乘以整数的法则。

A.导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)

B.归纳法则。

通过以上计算,想一想分数乘以整数怎样计算呢?

师:比一比,看哪个组的同学总结的语言准确又简练。

小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

C.应用法则计算。

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

4、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

三、当堂测评(课件出示)

1.看图写算式

2.先说算式意义,再填空。

3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

四、学生课堂自评

1、这节课你有什么收获?

2、每个学生给自己在课堂上的表现进行评价。

板书设计

分数乘以整数

意义:求几个相同加数 和的简便运算。

法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

2/11 ×3

= 2×3/11

= 6/11

教学后记

篇8:第二单元分数乘分数1 教案教学设计(人教新课标六年级上册)

主备人:王娟娟

第一课时    分数乘以整数

教学内容:第1~2页内容。

教学目标:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。

重点难点:分数乘整数的计算方法

教学过程:

一、展示教学目标:1、理解分数乘以整数的意义2、掌握分数乘以整数的计算法则。

二、自学:计算下面各题:

思考: 有什么特点?应该怎样计算?

出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

1、学生自学,教师巡视指导

2、两名学生用两种不同方法板演

3、用加法算: (块)

用乘法算:  (块)

学生思考:这里为什么用乘法?乘数表示什么意思?

得出:分数乘以整数的意义与整数乘法的意义相同,

都是求几个相同的和的简便运算。学生齐读一遍。

练习:说一说下面式子各表示什么意思?(做一做第3题。)

问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)

三、巩固练习。

1.第2页做一做。

2.练习一

第二课时   分数乘法

教学内容:教材第10页例3,第11页例4以及“做一做”练习二中的第3、4题

教学目标:1.理解一个数乘分数就是求一个数的几分之几是多少。2.掌握分数乘分数的计算方法,并能正确地进行计算。

重难点、关键1.重难点:分数乘分数的计算方法。

2.关键:理解一个数乘分数就是求一个数的几分之几是多少。

教学过程:

一、旧知铺垫

1.计算下面各题。

12×3/4     5/16×32      15×3/5     3/8×12

2.说一说,分数乘法的计算方法、步骤。

(1)整数与分子相乘的乘积作分子,分母不变。

(2)能约分的要先约分,再计算.

3.根据题意列出算式。

(1)一袋大米,每天用去3/4千克,3天用去多少千克?

(2)某修路队,每天修路3/2千米,5天修多少千米?

(3)一辆汽车,每小时行驶全程的3/20,4小时行驶全程的几分之几?

二、探索新知

1.教学例3。

出示题目:(出示课文插图)

问题一:1/4小时粉刷这面墙的几分之几?

(1)你想怎样列式?

学生回答,教师板书。

1/5×1/4

(2)分数乘分数怎样计算?

①1/5×1/4 表示什么?

经过讨论,使学生理解1/5×1/4 ,就是求1/5的1/4是多少,也就是说把1/5平均分成4份,取其中的一份是多少?

②画示意图分析。

③从图上可以看出,这面墙的1/5的1/4,是哪一块?它占整面墙的几分之几?

通过观察得出:这面墙的1/5的1/4,是占整面墙的1/20。

板书:1/5×1/4=1/20

④发现分数乘分数的计算方法。

引导学生观察算式和结果,看一看其中的联系。

板书:1/5×1/4=(   )/(   )=1/20

想一想:应该是怎样的一个计算过程呢?

学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。

1/5×1/4=(1×1)/(5×4)=1/20

然后,联系以上的算式,让学生说一说计算方法。

学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

教师可不急于作出归纳,再提出问题,继续验证学生自己的发现。

问题二:3/4小时粉刷多少呢?

(1)引导学生列出算式

1/5×3/4

(2)你认为计算结果是多少?

学生回答,教师板书。

1/5×3/4=1×3/5×4=3/20

(3)画示意图加以验证。

注意:画示意图时,要紧密结合1/5×3/4的意义加以分析。

(4)总结分数乘分数的计算方法。

师生共同总结,教师板书:

分数乘分数,应该分子乘分子,分母乘分母。

2.教学例4

出示教材例题,学生简要了解蜂鸟。

(1)2/3分钟能飞行多少千米?

①列出算式

3/10×2/3

②学生尝试计算,教师巡视课堂了解学生计算情况。

完成后,选择两位不同计算过程的学生上台板演。

③强调:能约分的要先约分,再计算。

(2)5分钟能飞行多少千米?

①学生独立列式解答,请一位学生上台板演。

②教师出示算式,学生判断可以不可以。

③说明分数和整数相乘时约分的方法。

强调:整数约分后的结果要写在整数的上面,并与分子相乘。

三、巩固练习

1、完成例题后“做一做”

2、完成练习二第3、4题

篇9:第二单元分数乘分数2 教案教学设计(人教新课标六年级上册)

第三课时  运算定律的应用

教学内容:整数乘法运算定律推广到分数乘法(教材第14页例5、例6,练习三的1、2、4、5题)

教学目标

1、使学生会用整数乘法的运算定律推广运用到分数乘法,并使一些计算简便。

2、培养学生灵活计算的能力,发展学生逻辑思维能力。

重难点、关键:运用运算定律进行简便运算。

教学过程

一、教学例5

1.观察每组的两个算式,看看它们有什么关系。

(1)1/2×1/3○1/3×1/2

①学生计算,发现乘积一样,两个算式相等。

②说一说存在的规律。

③用字母表示。

板书:乘法交换律:a×b=b×a

(2)(1/4×2/3)×3/5○1/4×(2/3×3/5)

①学生计算,发现乘积一样,两个算式相等。

②说一说存在的规律。

③用字母表示。

板书:乘法结合律:(a×b)×c=a×(b×c)

(3) (1/2+1/3)×1/5○1/2×1/5+1/3×1/5

①学生计算,发现乘积一样,两个算式相等。

②说一说存在的规律。

③用字母表示。

板书:乘法分配律:(a+b)×c=ac+bc

2、小结。

整数乘法的运算定律对于分数乘法同样适用。

师:应用这些乘法的运算定律,可以使一些计算简便。

二、教学例6

1.计算3/5×1/6×5

(1)观察算式,说一说你有什么想法。

(2)学生独立列式计算,教师巡视检查。

(3)汇报计算过程。

(4)想一想:不改写算式,直接进行约分行不行?

通过观察、思考、交流,使学生明白像这样连乘的算式,可以直接约分同时计算。

(5)试一试

2/3×1/4×3

学生独立计算,请两位学生上台板演,完成后集体评价,发现问题及时纠正。

2.计算(1/10+1/4)×4

(1)观察算式,说一说你认为怎样计算比较简便。

(2)学生独立列式计算,请两位上台板演。

(3)集体评价,发现问题及时纠正。

板书:

(4)试一试

(8/9+4/27)×27

学生独立计算,教师巡视进行个别指导,发现问题及时纠正。完成后,请一位学生上台板演计算过程。

3.计算:87×3/86

(1)观察算式,说一说算式有什么特征?

(2)你认为应该怎样算比较简便?

(学生先独立思考,然后在小组中交流。

(3)反馈交流结果

板书:

三、巩固练习:完成练习三的1、2、4、5题

第四课时  求一个数的几分之几是多少

教学内容:

解决”求一个数的几分之几是多少”的问题.(课文第17页的例1  “做一做” ,  练习四的第1-4题

教学目标:使学生能根据一个数乘分数的意义,理解"求一个数的几分之几是多少"的问题的数量的关系.

使学生掌握解决"求一个数的几分之几是多少"问题的方法,并能解决有关的问题.

重难点:

掌握"求一个数的几分之几是多少"的解答方法.

教学过程:

一、展示学习目标,学生明确本节课的学习目标

二、展示学习指导:

学生讨论完成下列题目:列式

1、20的2倍是多少?

2、15的2/3是多少?

3、100的1/10是多少?

4、30的3/2倍是多少?

通过交流,使学生明确两点

第一:一个数乘分数,表示求一个数的几分之几是多少

第二:"求一个数的几分之几是多少"与"求一个数的几倍是多少"是一样的道理,用乘法计算.

板书:求一个数的几倍是多少,一个数×几倍

求一个数的几分之几是多少,一个数×几/几

三、教学例1

出示例题:2003年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界的均耕地面积的2/5。

我国人均面积是多少平方米?

1、分析题中数量关系。

2、题中哪一句话告知我们数量关系?

3、题里的“2/5”表示什么?(把世界人均面积平均分成5份,我国人均面积占其中的2份)

4、画线段图表示

1、引导提问:求我国人均面积就是求什么?(世界人均面积的2/5)

板书:    我国人均面积等于世界人均面积的2/5

我国人均面积==世界人均面积×2/5

我国人均面积==2500×2/5

2、列式解答

学生尝试独立列式解答,教师巡视,请一位学生上台板演

2500×2/5=1000(平方米)

答:略

2.做一做

一头鲸长28米,一个人身高是鲸体长的2/35。这个人身高多少米?

过程要求:

1、学生独立思考,列式解答

2、同伴交流思维过程和结果

3、汇报解答过程

4、关系式:人的身高是鲸体长的2/35

5、算式:28×2/35=56/35(米)

四、当堂练习

完成练习四的第1-5题

篇10:第二课时:圆的周长 教案教学设计(人教新课标六年级上册)

教学内容:课本第63页~64页例1,完成相应的“做一做”题目和练习十五的第1~8题。

教学目标:

1.使学生理解圆周率的意义,掌握圆周率的近似值;

2.理解和掌握求圆的周长的计算公式,并能应用它解决简单的实际问题;www.xkb1.com

3.通过周长、直径变化时圆周率保持不变(即:圆的周长÷直径=π)的探索,对学生进行辩证唯物主义的教育;

4.结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

重点难点:圆的周长的计算。建立圆周率的概念。

教具、学具:米尺、不同直径的圆三个,线、一角硬币。

教学过程:

一、课前导入:

以前所学的求直线形的周长都是求几条线段长度的和,那么,圆这闭合曲线的周长怎样求呢?这就是我们今天要学的内容。

板书课题:圆的周长。

二、展示学习目标:

1.掌握圆周率的近似值。

2.掌握圆的周长的计算公式。

三、自学讨论(一):

(1)圆周长的意义。

请学生拿出学具圆,跟教师摸教具、学具的圆一周,请学生试说一说什么叫做圆的周长?

(学生观察说明观点)

教师概括:围成圆的曲线的长叫做圆的周长。可用字母“C”来表示。

(2)圆周率的意义。

问题思考:

1.要想知道圆的周长是多少?那么可以怎样做?

a.出示一铁圈。b.出示一圆片。

2.你能用直尺测量圆的周长吗?试量一量你手中硬币的直径和周长。

讨论回答:

a.要想求这个圆的周长,我们可以把它剪开拉直,量出它的周长。

b.用双面胶布绕圆一周,剪去多余的部分,在黑板上滚动一周,让胶布贴在黑板上,然后量这胶布的长度(由曲转化为直来测量。)

c. 学生按书本上的方法,量出硬币的直径和周长。

引导学生观察小结,共同认识圆周率:圆的周长总是直径的3倍多一些,就是说它们的比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π来表示。

(简述)

“π”是多少呢?约15前,我国古代数学家祖冲之发现了圆周率应在3.1415926~3.1415927之间,成为世界上第一个把圆周率的值精确到6位小数的人,他得出这样精确值的时间比外国数学家早了一千年,现在人们已经用计算机算出它的小数点后面上亿位。但是,在计算时一般只取它的近似值:π=3.14。

四、分组讨论,练习认知:

1.圆周长公式如何推导?

因为:圆的周长=直径的3倍多一些。

所以:圆的周长=直径×圆周率。

即:C=πd     或 C=2πr

2.圆周长计算公式的应用。

出示例1。

读题后,学生讲教师板书,并提醒书写格式与约等号使用。

3.14×0.95

=2.983

≈2.98(米)

答:这张圆桌面的周长是2.98米。

五、巩固练习。

1.课本第112页上半页的做一做。

2.练习二十六第1、2、3题。

总结:通过这节课的学习,我们知道了圆的周长随着直径的变化而变化,但是它们的幽会比值是个固定不变的数,这个比值叫做圆周率,用π表示。为此,今后要求某一个圆的周长时,只要知道直径或半径,我们就能直接运用C=πd     或 C=2πr来计算。

六、作业安排。          练习十五第4、5、6题。

篇11:稍复杂的分数除法应用题 教案教学设计(人教新课标六年级上册)

红河镇小学导学案

(2010至2011上学期)

六年 级       数学学科                          教 师:高春枝

学习

内容  稍复杂的分数除法应用题

学习

标 1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

重难

点及

突破

措施 教学重点:弄清单位“1”的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

课前

准备

导学案设计 个性化设计

流 1、补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

(1)吃了 是什么意思?应该把哪个数量看作单位“1”?

(2)理解题意,画出线段图。

(3)根据线段图,分析数量关系式:

买来大米的重量-吃了的重量=剩下的重量

(4)列出方程,并解方程。

解:设买来大米X千克。

x- x=15

2、学习例2

(1)出示例题,理解题意。

(2)比航模组多 是什么意思?(把航模组的人数看作单位“1”,美术组少的人数占航模组的 )

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。

解:设航模小组有χ人。

χ+ χ=25

(1+ )χ=25

x=25÷

x=20

三、小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

作业:练习十第5、11、13题

审核人:

篇12:第五课时稍复杂的除法应用题 教案教学设计(人教新课标六年级上册)

教学内容:

两步解答“已知一个数的几分之几是多少,未这个数”的问题(课文第39页的例2、练习十四的第4题和第10--14题)

教学目标:

使学生理解稍复杂的“已知一个数的几分之几是多少,求这个数”的问题结构特征,并学会用方程或除法解决。

教学过程:xkb1.com

一:复习:

只列式不解答:

1. 男生人数占女生人数的4/5,男生有120人,女生有多少人?

2. 苹果树有60棵,苹果树的棵数是梨树的2/3,梨树有多少棵?

说一说可以用什么方法解答,你是怎么算的?

二:新授:

1. 教学例2

出示课文例题情境图,突出图中文字。

美术小组有25人。美术小组的人数比航模小组多1/4。航模小组有多少人?

(1) 画线段分析题中数量关系

边画图边提问引导。

① 1/4把什么看作单位“1”?把单位:“1”平均分成几分?

② 表示美术小组的线段要画多长?

(2) 写出关系式。

①根据美术小组的人数比航模小组多1/4,请你想一想:美术小组的人数是航模小组的几分之几?

学生经过思考,交流后懂得:美术小组是航模小组人数的1+1/4

③ 写出关系式:

板书:航模小组人数×(1+1/4)=美术小组人数

(3) 列式解答。

由学生独立列出式子,然后报

方程解。       解:设航模小组有ⅹ人

(1+1/4)ⅹ=25

ⅹ=25÷(1+1/4)

ⅹ=25÷5/4

ⅹ=20

除法算式解答:25÷(1+1/4)=25÷5/4=20(人)

2. 练习

语文小组有24人,语文小组的人数比数学小组的人数少1/7,数学小组有多少人?

(1) 学生独立思考,列出解答式子。

(2) 汇报解答过程。

① 1/7把什么看作“1”

② 语文小组人数是数学小组人数的几分之几?(1-1/7)

③ 你是怎么写关系式的?

数学组人数×(1-1/7)=语文小组人数

④ 你用什么方法解答,结果是多少?

3. 课堂小结。

(1) 说一说,以上两道题与复习中的3道题比较有什么一样的地方,有什么不一样的地方。

(2) 解答这类问题时,你有什么体会?

三.巩固练习

完成课文练习十的第4题和第10--14题。

教学内容:教科书第30~31页的例题和“做一做”,练习八的第1~5题。

教学目的:

1.使学生理解分数除法的意义与整数除法的意义相同。

2.学会分数除以整数的计算方法。

教学过程:

一、复习

1.举例说明整数除法的意义是什么?

2.根据乘法算式134×38=5092,写出相应的两个除法算式。

3.举例说明分数乘以整数的意义和一个数乘以分数乘法的意义各是什么?

以上复习题可以指名回答。

二、教学分数除法的意义

出示题目:每盒水果糖重100克,3盒有多重?

教师提问:怎样列示?得多少?

3盒水果糖重300克,每盒有多重?怎样列示?

300克水果糖,每盒装100克,可以装几盒?

学生列示,教师巡视指导,点名让三名学生板演。

教师让学生观察、比较上面3道题中算式的已知数和得数,再回答下列问题:

第一个算式已知什么?求什么?用什么方法计算?(已知两个因数:求出它们的积为;用乘法计算。)

(2)第二个算式呢?(已知积是  和一个因数是,求出另一个因数是,用除法计算。)

(3)第三个算式跟上面哪一个算式是类似的?(跟第二个算式是类似的,也是已知积是和一个因数是,求出另一个因数是,用除法计算)

教师:分数除法的意义是什么?它跟整数除法的意义一样不一样?(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。)

1. 做教科书第28页“做一做”中的题目。

教师让学生自己读题、做题,做完后要问学生是怎样应用乘法算式和分数除法的意义来填写除法算式的得数的?

3、把上题中的300克可以看成1/10千克。再进行列示计算。

让学生自己计算,指名两个学生板演。

做完后,让学生讨论:分数除以整数怎样计算?

教师:分数除以整数通常把分数除以整数转化成分数乘以这个整数的倒数。

教师:在分数除法中,是不是所有整数都可以作除数

学生思考总结:在除法运算中0不能作除数

2. 做教科书第29页中“做一做”的题目。

让学生独立做题,教师巡视。巡视时,注意学生计算时产生错误的情况。集体订正

时,让学生把错误的做法说一说。一般有:

让学生说一说产生错误的原因。

(1)把除号改为乘号后,没有把除数相应地改成它的倒数。

(2)把除数改成它的倒数后,没有把除号改成乘号。

三、巩固练习

1.做练习八的第1题。

让学生独立完成,教师提醒要按照法则来做题,能够口算的,要用口算。巡视时,要注意帮助有困难的学生,发现错误要及时纠正。做完后集体订正。

2.做练习八的第2题。

让学生独立完成。集体订正时,要让学生说一说第1行每小题跟第2行相应的题目

有什么联系?使学生明确每栏的除法算式中的被除数是上面乘法算式的积,而除数是乘法算式中的一个因数,得数是乘法算式中的另一个因数。

篇13:第三课时:百分数和分数的互化 教案教学设计(人教新课标六年级上册)

教学内容:课本第81、82页的内容及练习十九的第3~8题。

教学目标:

1. 使学生理解和掌握百分数和分数互化的方法,并能正确地进行百分数和分数的互化。

2. 培养学生的归纳总结能力。

重点难点:

1.掌握并能熟练运用百分数与分数互化的方法。

2.把不能化成有限小数的分数化成百分数。

教学过程:

一、学前回顾:

1.把下面百分数化成小数或整数。

25%   0.04%   500%   48.48%

2.把下面各数化成百分数。

0.36   4.05  0.9   7

提问:百分数与小数互化的方法是什么?进入课题。

二、展示学习目标:

掌握熟练运用百分数与分数互化的方法。

三、学习讨论㈠:

出示观察例1:把 、 、 化成百分数。

提问:

1. 怎样把分数化成百分数?

2. 试归纳分数化成百分数的方法。

明确:

(指名书写)

1.提示:可以先把它们化成小数,然后再化成百分数。

提问学生口述过程:(板书)

=0.75=75%

≈0.167=16.7%

=1.6=160%

(在讲解把 化成百分数时,应注意讲清取近似商的方法和约等号的使用:分子除以分母,如果除不尽时,商一般要除到小数点后面第四位,再用四舍五入法取近似商(保留三位小数),然后化成百分数(百分号前的数保留一位小数)。因为 ≈0.167,而0.167=16.7%,所以前面应用约等号,后面应当用等号。如果要求直接写成百分数,则应当用约等号“≈”,写成: ≈16.7%。)

2.(多提问几个学生)总结出把分数化成百分数的方法:把分数化成百分数,一般先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

四、学习讨论㈡:

出示观察例2:把17%、40%、12.5%化成分数。

提问:

1. 怎样把百分数化成分数?

2. 试归纳百分数化成分数的方法?

明确:

1.(引导学生动用已学过的知识进行尝试练习,教师巡视,把出现的各种情况,板书在黑板。)

17%=     40%=     12.5%=

提示:把百分数化成分数,先要把百分数化成分母是100的分数,但还不是最简分数的,要化成最简分数;分子是小数的,应当运用分数的基本性质,把分子分母同时扩大相同的倍数,使分子变整数,然后再化简。

2.进一步引导学生总结出百分数和分数互化的方法:

五、巩固练习。

1. 完成第81页的“做一做”。

2. 完成练习十九的第3~8题。

六、作业安排

练习十九第5~8题。

篇14:分数应用题 教案教学设计(人教新课标六年级总复习)

五、课题:

教学目的

1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

2.通过复习,培养学生的分析能力以及综合能力.

3.通过复习,培养学生认真、仔细的学习习惯.

教学重点

通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

教学难点

通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.

教学过程

一、复习准备.

老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?

学生回答:

(1)3是6的几分之几?

(2)6是3的几倍?

(3)3比6少几分之几?

(4)6比3多几分之几?

(5)6占6与3总和的几分之几?

(6)3是6与3差的几倍?……

谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)

二、复习探讨.

(一)教学例4.

学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?

1.教师提问:根据已知条件,你都可以提出什么问题?并解答.

2.反馈:

(1)水彩画和蜡笔画共多少幅?

(2)水彩画比笔画少多少幅?

(3)蜡笔画比水彩画多几分之几?

(4)水彩画比蜡笔画少几分之几?

(5)水彩画是蜡笔画的几分之几?

(6)蜡笔画是水彩画的几分之几?

(7)……

3.教师质疑.

(1)5问和6问为什么解答方法不同?(单位1不同)

(2)3问和4问的问题有什么不同?(单位1不同)

(二)例题变式.

1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多 ,蜡笔画有多少幅?

2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多 ,水彩画和蜡笔画一共有多少幅?

(1)学生独立解答.

(2)学生讨论两道题的区别.

教师总结:看来我们做分数应用题时,需要认真审题并且在找准单位1的同时注意找准对应关系.

(三)深化.

如果题目中的分数发生了变化,我们还会解答吗?

1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下多少吨钢材?

2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下15吨,仓库里有多少吨钢材?

(1)学生独立解答.

(2)学生讨论两道题的区别.

教师总结:虽然分数应用题与百分数应用题在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.

三、巩固反馈.

1.分析下面每个题的含义,然后列出文字表达式.

(1)今年的产量比去年的产量增加了百分之几?

(2)实际用电比计划节约了百分之几?

(3)十月份的利润比九月份的利润超过了百分之几?

(4)的电视机价格比降低了百分之几?

(5)现在生产一个零件的时间比原来缩短了百分之几?

(6)十一月份比十二月份超额完成了百分之几?

2.列式不计算.

(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?

(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?

(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

3.判断并且说明理由.

男生比女生多20%,女生就比男生少20%.

4.一辆汽车从甲地开往乙地,第一小时行了全程的 ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?

四、课堂总结.

通过今天这堂课,你有什么收获吗?

五、课后作业.

某体操队有60名男队员,

(1)女队员比男队员多 ,女队员有多少名?

(2)男队员比女队员多 ,体操队员共有多少名?

(3)女队员比男队员少 ,女队员有多少名?

(4)男队员比女队员少 ,体操队员共有多少名?

六、课题:用比例知识解答应用题

教学目的

1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.

3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.

教学重点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学难点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学过程

一、复习准备.

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.

(2)总价一定,每件物品的价格和所买的数量.

(3)小朋友的年龄与身高.

(4)正方体每一个面的面积和正方体的表面积.

(5)被减数一定,减数和差.

谈话引入:我们今天运用正反比例的知识来解决实际问题.

(板书:用比例知识解应用题)

二、探讨新知.

(一)教学例5(用比例解答下题)

修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?

1.学生读题,独立解答.

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.

(二)反馈.

1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.

1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?

2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?

3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?

4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的 .第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?

四、课堂总结.

通过这堂课的学习,你有什么收获?

五、课后作业.

1.生产小组加工一批零件,原计划用14天,平均每天加工1500个零件.实际每天加工2100个零件.实际用了多少天就完成了任务?

2.一个编织组,原来30人10天生产1500只花篮,现在增加到80人,按原来的工效,生产6000只花篮需要多少天?

六、板书设计

篇15:灯光(第二课时) 教案教学设计(人教新课标六年级下册)

标  1.正确、流利、有感情地朗读课文。

2.读懂课文,理解革命先烈对未来的憧憬和为此作出的牺牲,懂得今天的幸福生活来之不易。

教 点

学 难

重 点 体会郝副营长生前所说的话,从而感受今天生活来之不易。

教学准备 多媒体课件

计 11、灯 光

舍生忘死

毫无遗憾

教学过程

教学环节 教师活动 学生活动 个性化设计

一、谈话导入新课

二、初读课文,整体感知

三、同学交流,读写结合

四、领悟表达,课外拓展

1.同学们你们在哪见过灯光?在灯光下你有何感受?

2.今天我们学习一篇题为“灯光”的课文(板书课题)相信你读后一定会对灯光有新的认识。

1.自由轻声读课文,要求做到正确、流利。

2.指名读课文,检查读书情况。

3.默读课文,思考:

①课文讲了一件怎样的事?

②“多好啊!”这句话在文中出现几次?是谁在什么情况下说的?动笔画一画有关语句,可在相关地方做简单批注。

1.围绕自学内容,同学间交流自己读文章感受。(可从内容上交流,也可从表达方法交流)读好郝副营长的话。

2.课件出示:郝副营长和我的对话,同学自读、指读,体会此时对“多好啊!”这句话理解。

3.教师依据学生汇报,重点引导学生,注意课堂动态生成。“多好啊”在文中出现三次,为了“多好啊”的幸福生活,郝副营长是怎么做的,画一画读一读有关句子,你从中体会到什么?(今天的幸福生活来之不易)

4.读完此文,我和同学们一样深深被郝副营长那种为了让孩子们能在灯光下学习而英雄献身的精神深深感动了,此时此刻你想对郝副营长或同学们说点什么呢?赶快拿起笔把它记录在课文插图旁。

1.快速浏览课文,说说课文在表达上有什么特点?

指生口答。

板书课题,齐读课题。

学生自由读课文。

指生读课文。

回答问题。

全班交流感受。

找出相应的对句子,理解、体会。

生小练笔:此时此刻你想对郝副营长或同学们说点什么呢?

指生总结。

引导通读全文,把学生的思考引向深入,奠定文章的感情基调。

引导学生悟文章写作方面的特色。(倒叙、前后照应)

作业

布置 我们课下可阅读王愿坚短篇小说《七根火柴》《粮食的故事》。

[灯光(第二课时) 教案教学设计(人教新课标六年级下册)]

篇16:分数乘法两步应用题 教案教学设计(人教新课标六年级下册)

(2010至2011上学期)

六年 级       数学 学科                          教 师:高春枝

学习

内容

学习

标 1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。

重难

点及

突破

措施 教学重点:理解数量关系。

教学难点:根据多几分之几或少几分之几找出所求量的对应分率。

课前

准备

导学案设计 个性化设计

案 1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去 。

(2)用去一部分钱后,还剩下 。

(3)一条路,已修了 。

(4)水结成冰,体积膨胀 。

(5)甲数比乙数少 。

2、口头列式:

(1)32的 是多少?

(2)120页的 是多少?

(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了 ,降低了多少分贝?

(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的 ,人现在听到的声音是多少分贝?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

流 1、小组合作学习例2

(1)运用线段图分析题意,寻找解题方法。

(2)说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?然后把线段图表示完整。

(3)四人小组讨论,根据线段图提出解决办法,并列式计算。

解法一:80-80× =80-10=70(分贝)

(4)根据题意、结合线段图,想出第二种解答方法。

解法二:80×(1- )=80× =70(分贝)

(5)小组讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。

2、巩固练习:P20“做一做”

3、学习例3

(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(小组讨论,说说自己的理解)

(2)将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重说说谁与谁比,把谁看作单位“1”。

(3)出示线段图,讨论交流,结合例2的解题方法,独立列式计算后全班交流两种解题方法。

解法一:75+75× =75+60=135(次)

解法二:75×(1+ )=75× =135(次)

4、巩固练习:P21“做一做”(列式后说说算式各部分表示什么)

三、练习

1、练习五第2、3题:抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。

2、练习五第4、5题:依据例题引导的解题方法,独立完成4、5题。

展  作业:练习五第7、8、9、10题

审核人:

篇17:分数乘法一步应用题 教案教学设计(人教新课标六年级下册)

(2010至2011上学期)

六年 级       数学 学科                          教 师:高春枝

学习

内容  分数乘法一步应用题

学习

标 1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

重难

点及

突破

措施  教学重点:理解题中的单位“1”和问题的关系。

教学难点:抓住知识关键,正确、灵活判断单位“1”。

课前

准备

导学案设计 个性化设计

案 1、先说下列各算式表示的意义,再口算出得数。

12×  ×

2、列式计算。

(1)20的 是多少? (2)6的 是多少?

3、由以上练习,你能得出什么结论?

流  1、小组合作学习例1

(1)抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。

(2)在小组内讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的 是多少)

(3)在分析题意的基础上,独立列式、计算。

2500× =1000(平方米)

2、结合计算结果,说说自己的想法,培养学生分析数据的能力,进行国情教育。

3、(1)巩固练习:“做一做”,独立画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

(2)练习四第2题:先找出单位“1”--全世界的丹顶鹤数2000只。

(3)练习四第3题:先找到单位“1”,再独立列式解答。

4、讨论小结:解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?

展  作业:练习四第4、7、8、9题

审核人:

篇18:课题:《分数乘分数》 教案教学设计(人教新课标六年级上册)

编制人:蔡 娜       时间:2010 . 08 .20

NO.2-2

班级      姓名        小组       小组评价

学习目标:

1、理解分数乘分数的意义。掌握分数乘分数的计算方法,并能运用计算

方法进行正确计算。

2、掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。

3、极度热情,全力以赴,精彩展示,做最好的自己。

重点:分数乘分数的意义。

难点:分数乘分数的算理。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的意义,掌握分数乘分数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。

一、自主学习:

1、自学课本P10页

2、计算

4/9× 4 =                7/15×5=               8×9/20=

3、我能辩对错。(对的打“   ” ,错的打“    ” )

1)、求1/6的5倍和求5个1/6的和列式都是1/6×5。              (      )

2)、分数乘整数是求几个加数的和的简便运算。                  (      )

3)、4/21×3=4×3/21=4/7                                          (      )

4)、2根1/4米长的铁丝比1根1米长的铁丝长。                  (      )

二、合作探究:

例1、工人师傅每小时粉刷这面墙的1/5,1/4小时粉刷这面墙的几分之几?3/4小时粉刷多少呢?

小结:分数乘分数的意义:

例2、4/5千克的1/2是多少千克?           7/12小时的4/7是多少小时?

小结:分数乘分数的计算方法:

例3、0.5×1/7=                    21/3×1/5=

小结:1、分数乘分数的计算方法也适用于小数乘分数,先把小数化成(        ),然后按(                     )的方法进行计算。

2、分数乘分数,这里的分数也可以是带分数,计算时先把带分数化成(           ),然后按(                     )的方法进行计算。

三、学以致用:xkb1.com

1、想一想、填一填

1)、2/3×1/4表示(                              );

5/6×2/3表示(                              );

2)、分数乘分数,应该 (       )乘(        ),(       )乘(        ),能约分的可以(         )再乘。

3)、一根木棒长7/8米,它的2/7是(         )米。

4)、一个长方形的宽是3/7米,长是宽的2倍,这个长方形的面积是(       )平方米。

2、计算

7页

3、列式计算

1)、2/5千克的3/4是多少千克?          2)、 24的5/12的1/5是多少?

4、动手画一画

1)、用线段图表表1/2千米1/4。        2)、用图形表示1/3千克的一半

5、解决问题新课标第一网

1)、要修一条长3/4千米的公路,第一天修了全长1/8,第一天修了多少千米?

2)、一个正方形的边长4/5分米,它的面积是多少平方分米?

篇19::《分数乘整数》 教案教学设计(人教新课标六年级上册)

编制人:蔡 娜       时间:2010 . 08 .20

课题:《分 数 乘 整 数》       NO.2-1

班级      姓名        小组       小组评价

学习目标:

1、结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。

2、通过独立思考、小组合作、展示质疑,培养观察推理的能力。

3、激情投入,阳光战示,全力以赴,挑战自我。

重点;分数乘整数的简便算法。

难点:分数乘整数的算理。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。

一、自主学习:

1、自学课本P8---P9页

2、想一想,填一填

1)、5+5+5+5=(     )× (      ) 表示(     )个(      )相加。

2)、1.2+1.2+1.2+1.2+1.2=(   )×(    )表示(    )个(     )相加。

3)、  +  +  =(     )× (     )表示(     )个(      )相加。

4)、  × 4改写成加法算式是(    )

3、看图填空。

1)、

(          )+ (         )+ (        )= (        )

(          )× (         )= (        )

2)、

(        ) +  (        ) + (        )+ (       )= (       )

(        )× (        )= (        )

二、合作探究:新课标第一网

例1、人跑一步的距离相当于袋鼠跳一下的    。人跑3步的距离相当于袋鼠跳一下的几分之几?

小结:分数乘整数的意义:

例2、     × 5

小结:分数乘整数的计算方法:

例3、6 ×     =

思考:你有什么技巧?

小结:分数乘整数的简便算法:

三、学以致用:

1、填空

1)、分数乘整数,用分数的(     )和整数相乘的积作( ),( )不变。

2)、分数乘整数的意义与(                        )意义相同,都是求()的简便计算。

3)、      × 4表示( )或表示( )

4)、 4个    的和是多少?用乘法计算可列式为(                   )。

2、计算

× 4 =            3 ×    =                   × 8 =

xkb1.com

3、列式计算

1)、6个   相加的和是多少?           2)、   的5倍是多少?

4、解决问题

1)、一辆汽车每分钟行   千米,这辆汽车每小时行驶多少千米?

2)、李师傅加工一个零件   小时,加工24个零件需多少个小时?

5、附加题

1)、计算

× 2 =

2)、把下面的加法算式改写成乘法算式。

(第二课时):环形面积 教案教学设计(人教新课标六年级上册)

课题:《分数乘分数》 教案教学设计(人教新课标六年级上册)

《新型玻璃》第二课时教学设计 (人教新课标五年级上册)

《桃花心木》教学设计 (人教新课标六年级上册)

人教版连乘应用题教学设计

分数加减混合运算 教案教学设计(人教新课标五年级上册)

中华少年教学设计 (人教新课标六年级上册)

《比例尺》的教学设计 (人教新课标六年级上册)

第八课时:练习课 教案教学设计(人教新课标一年级上册)

小兴安岭 教案教学设计(人教新课标三年级上册)

第二课时分数连乘应用题 教案教学设计(人教新课标六年级上册)(整理19篇)

欢迎下载DOC格式的第二课时分数连乘应用题 教案教学设计(人教新课标六年级上册),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档