初中数学教案应该怎么设计

时间:2023-01-20 04:16:21 作者:叫我威廉伯爵 教案 收藏本文 下载本文

【导语】“叫我威廉伯爵”通过精心收集,向本站投稿了13篇初中数学教案应该怎么设计,以下是小编整理后的初中数学教案应该怎么设计,欢迎阅读分享,希望对大家有帮助。

篇1:初中数学教案应该怎么设计

角的度量教案教学目标1、认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算。

2、通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣。

3、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益。

教学重点度、分、秒间单位互化及角的和、差、倍、分计算。

知识难点度、分、秒间单位互化及角的和、差、倍、分计算。

教学准备量角器、三角尺。

教学过程(师生活动)设计理念

复习

任意画一个锐角和钝角,用字母分别表示这两个角,用量角器分别理出这两个角的度数。 复习角的概念,角的表示及量角器的使用,为学习角度制作准备。

探究新知在航行、测绘等工作以及生活中,我们经常会碰到上 述类似问题,即如何描述一个物体的方位。

让学生回忆学过的描述方法,师生共同探讨解决问题的办法。

不断移动可疑船的位置,让学生描述缉私艇的航线,探求解决问题的规律。

方位的表示通常用“北偏东多少度”、“北偏西多少度”或者“南偏东多少度”、“南偏西多少度”来表示。“北偏东45度”、“北偏西45度”、“南偏东45度”、“南偏西45度”,分别称为“东北方向”、“西北方向”,“东南方向”、“西南方向”。

篇2:初中数学教案应该怎么设计

余角和补角教案

教学目标:

1、知识与技能:

⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。

⑵、了解方位角,能确定具体物体的方位。

2、过程与方法:

进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。

3、情感态度与价值观:

体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

重、难点及关键:

1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。

2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。

3、关键:了解推理的意义和推理过程是掌握性质的关键。

教学过程:

一、引入新课:

让学生观察意大利著名建筑比萨斜塔。

比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。

二、新课讲解:

1、探究互为余角的定义:

如果两个角的和是90°(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。即:∠1是∠2的余角或∠2是∠1的余角。

篇3:初中数学教案应该怎么设计

角的度量

教学内容

课本第139页.

教学目标

1.知识与技能

会用量角器测一个角的大小,能借助三角板画出30°,45°,60°,90°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言.

2.过程与方法

经历本节课的画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力.

3.情感态度与价值观

经历本节课的数学活动过程,尝试从不同角度寻求解决问题的方法,体会不同方法间的差异,能够在测量画图等操作活动过程中发挥主动作用.

重、难点与关键

1.重点:会用量角器测量角的大小,会用尺规画一个角等于已知角.

2.难点:用尺规画一个角等于已知角.

3.关键:引导学生积极参与画图的数学活动过程,才能熟练掌握画图步骤.

教具准备

一副三角板、量角器、多媒体设备、投影仪.

教学过程

一、引入新课

1.投影一个五角星的图案,请学生观察图形.(如右图)

篇4:初中数学教案怎么设计

教学目标

1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;

2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。

3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。

教学重点

运用直角三角形全等的条件解决一些实际问题。

教学难点

熟练运用直角三角形全等的条件解决一些实际问题。

教学过程

Ⅰ.提出问题,复习旧知

1、判定两个三角形全等的方法: 、、、

2、如图,Rt△ABC中,直角边是 、,

斜边是

3、如图,AB⊥BE于C,DE⊥BE于E,

(1)若∠A=∠D,AB=DE,

则△ABC与△DEF (填“全等”或“不全等” )

根据 (用简写法)

(2)若∠A=∠D,BC=EF,

则△ABC与△DEF (填“全等”或“不全等” )

根据 (用简写法)

(3)若AB=DE,BC=EF,

则△ABC与△DEF (填“全等”或“不全等” )

根据 (用简写法)

(4)若AB=DE,BC=EF,AC=DF

则△ABC与△DEF (填“全等”或“不全等” )

根据 (用简写法)

Ⅱ.导入新课

(一)探索练习:(动手操作):

已知线段a ,c (a

AB=c ,CB= a

1、按步骤作图: a c

① 作∠MCN=∠=90°,

② 在射线 CM上截取线段CB=a,

③以B 为圆心,C为半径画弧,交射线CN于点A,

④连结AB

2、与同桌重叠比较,是否重合?

3、从中你发现了什么?

斜边与一直角边对应相等的两个直角三角形全等.(HL)

(二)巩固练习:

1. 如图,△ABC中,AB=AC,AD是高,

则△ADB与△ADC (填“全等”或“不全等” )

根据 (用简写法)

2.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,

(1)若AC//DB,且AC=DB,则△ACE≌△BDF,

根据

(2)若AC//DB,且AE=BF,则△ACE≌△BDF,

根据

(3)若AE=BF,且CE=DF,则△ACE≌△BDF,

根据

(4)若AC=BD,AE=BF,CE=DF。则△ACE≌△BDF,

根据

(5) 若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,

根据

3、判断两个直角三角形全等的方法不正确的有( )

(A) 两条直角边对应相等 (B)斜边和一锐角对应相等

(C)斜边和一条直角边对应相等 (D)两个锐角对应相等

4、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,

AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由

答:

理由:∵ AF⊥BC,DE⊥BC (已知)

∴ ∠AFB=∠DEC= °(垂直的定义)

在Rt△ 和Rt△ 中

∴ ≌ ( )

∴∠ = ∠ ( )

∴ (内错角相等,两直线平行)

5、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由。

(三)提高练习:

1、判断题:

(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。( )

(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )

(3)一个锐角与一斜边对应相等的两个直角三角形全等( )

(4)两直角边对应相等的两个直角三角形全等( )

(5)两边对应相等的两个直角三角形全等( )

(6)两锐角对应相等的两个直角三角形全等( )

(7)一个锐角与一边对应相等的两个直角三角形全等( )

(8)一直角边和斜边上的高对应相等的两个直角三角形全等( )

2、如图,∠D=∠C=90°,请你再添加一个条件,使△ABD≌△BAC,并在

添加的条件后的( )内写出判定全等的依据。

(1) ( )

(2) ( )

(3) ( )

(4) ( )

课时小结

至此,我们有六种判定三角形全等的方法:

1.全等三角形的定义

2.边边边(SSS)

3.边角边(SAS)

4.角边角(ASA)

5.角角边(AAS)

6.HL(仅用在直角三角形中)

作业

1.课本习题13.2─10、12题.

课后作业:<<课堂感悟与探究>>

篇5:二次函数数学教案应该怎么设计

教学目标 知识技能 1. 能列出实际问题中的二次函数关系式;

2. 理解二次函数概念;

3. 能判断所给的函数关系式是否二次函数关系式;

4. 掌握二次函数解析式的几种常见形式.

过程方法 从实际问题中感悟变量间的二次函数关系,揭示二次函数概念.学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义.

情感态度 使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。

教学重点 理解二次函数的意义,能列出实际问题中二次函数解析式

教学难点 能列出实际问题中二次函数解析式

教学过程设计

教学程序及教学内容,师生行为,设计意图

一、情境引入

播放实际生活中的有关抛物线的图片,概括性的介绍本章.

二、探究新知

㈠、用函数关系式表示下列问题中变量之间的关系:

1.正方体的棱长是x,表面积是y,写出y关于x的函数关系式;

2.n边形的对角线条数d与边数n有什么关系?

3.某工厂一种产品现在的年产量是20件,计划今后两年增加产量,如果每年都必上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?

㈡观察所列函数关系式,看看有何共同特点?

㈢类比一次函数和反比例函数概念揭示二次函数概念:

一般地,形如 的函数,叫做二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。

实质上,函数的名称都反映了函数表达式与自变量的关系.

三、课堂训练(略)

四、小结归纳:

学生谈本节课收获

1.二次函数概念

2.二次函数与一次函数的区别与联系

3.二次函数的4种常见形式

五、作业设计

㈠教材16页1、2

㈡补充:

1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函数的是

2、用一根长60cm的铁丝围成一个矩形,矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式是____________.

3、小李存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是¬¬¬¬¬_______,若年利率为6%,两年到期的本利共______元.

4、在△ABC中,∠C=90°,BC=a,AC=b,a+b=16,则RT△ABC的面积S与边长a的关系式是____;当a=8时,S=____;当S=24时,a=________.

5、当k=_____时, 是二次函数.

6、扇形周长为10,半径为x,面积为y,则y与x的函数关系式为_______________.

7、已知s与 成正比例,且t=3时,s=4,则s与t的函数关系式为_______________.

8、下列函数不属于二次函数的是( )

A.y=(x-1)(x+2) B.y= (x+1)2 C.y=2(x+3)2-2x2 D.y=1- x2

9、若函数 是二次函数,那么m的值是( )

A.2 B.-1或3 C.3 D.

10、一块草地是长80 m、宽60 m的矩形,在中间修筑两条互相垂直的宽为x m的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值范围.

教师介绍,引出本章章题.

教师给出问题,学生观察、思考、分析、小组讨论,列函数解析。

教师引导学生观察所列函数解析式,找它们的共同特点,并叙述。

学生类比一次和反比例函数概念尝试给二次函数下定义,之后,教师给出规范概念。

教师出示问题1,学生思考解决,并阐述判断依据和理由。

教师引导学生观察解析式结构,对照二次函数的一般形式进行分析。

教师组织学生讨论所给函数解析式是一次函数时,二次项系数须是0,一次项系数不等于0.

学生独自列二次函数解析式,之后集体交流,达成一致。

教师组织学生回顾本节知识,学生谈个人收获,师生交流。

使学生初步感知二次函数,引出本章,并为后续学习做铺垫。

学生经历列函数解析式的过程,总结三个解析式的共同特点,得到二次函数的概念。

总体概括初中学习的三类函数的名称都反映了了函数表达式结构特点和自变量的关系。

考查能否判断一个函数解析式是不是二次函数,使学生掌握二次函数的解析式特点。

强调二次函数解析式的二次项系数不等于0,自变量的最高次数是2,使学生能比较一次函数和二次函数的解析式特点,确定m的取值情况。

使学生能列出实际问题中的二次函数解析式,学生谈本节课学到的知识以及解题体会。

篇6:初中一年级数学教案怎么设计

不等式及其解集

一、内容和内容解析

(一)内容

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

(二)内容解析

现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.

基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

二、目标和目标解析

(一)教学目标

1.理解不等式的概念

2.理解不等式的解与解集的意义,理解它们的区别与联系

3.了解解不等式的概念

4.用数轴来表示简单不等式的解集

(二)目标解析

1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

三、教学问题诊断分析

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

四、教学支持条件分析

>>>下一页更多精彩“初中一年级数学教案”

篇7:初中一年级数学教案怎么设计

利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

五、教学过程设计

(一)动画演示情景激趣

多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?

设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

(二)立足实际引出新知

问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?

小组讨论,合作交流,然后小组反馈交流结果.

最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

1.从时间方面虑:

2.从行程方面: >50

3.从速度方面考虑:x>50÷

设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

(三)紧扣问题概念辨析

1.不等式

设问1:什么是不等式?

设问2:能否举例说明?

由学生自学,老师可作适当补充.比如:<,>50, x>50÷都是不等式.

2.不等式的解

设问1:什么是不等式的解?

设问2:不等式的解是唯一的吗?

由学生自学再讨论.

老师点拨:由x>50÷得x>75

说明x任意取一个大于75的数都是不等式<,>50的解.

3.不等式的解集

设问1:什么是不等式的解集?

设问2:不等式的解集与不等式的解有什么区别与联系?

由学生自学后再小组合作交流.

老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

4.解不等式

设问1:什么是解不等式?

由学生回答.

老师强调:解不等式是一个过程.

设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

(四)数形结合,深化认识

问题1:由上可知,x>75既是不等式<的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?

问题2:如果在数轴上表示 x≤75,又如何表示呢?

由老师讲解,注意规范性,准确性.

老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75 就是不等式.

设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

(五)归纳小结,反思提高

教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

1、什么是不等式?

2、什么是不等式的解?

3、什么是不等式的解集,它与不等式的解有什么区别与联系?

4、用数轴表示不等式的解集要注意哪些方面?

设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

(六)布置作业,课外反馈

教科书第119页第1题,第120页第2,3题.

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

六、目标检测设计

1.填空

下列式子中属于不等式的有___________________________

①x +7>②x≥y

② + 2 = 0④ 5x + 7

设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

2.用不等式表示

①a与5的和小于7

②a的与b的3倍 的和是非负数

③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件

设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

3.填空

下列说法正确的有_____________

①x=5是不等式 x -2>0的解

②不等式x - 2>0的解为 x =5

③不等式 x - 2 >0的解集为 x =5

④不等式x - 2 >0的解集为 x>2

设计意图:进一步让学生正确理解不等式的解与解集的区别与联系,并且理解数学中的从属关系与包涵关系.

4.选择

下列不等式的解集在数轴上表示正确的是:

A.x>-3

B.x≥2

C.x≤5

D. 0≤x≤10

设计意图:进一步培养学生数形结合能力,理解空心圆圈与实心圆点的意义,并且能正确确定方向.

初中一年级数学教案三

一、教材分析

本节课内容属于“数与代数”领域,是在学习了用字母表示数、简单的列式表示实际问题中的数量关系和简易方程的基础上,进一步研究用含有字母的式子(整式)表示实际问题中的数量关系.整式是初中数学的重要概念,是今后学习分式、二次根式、方程以及函数等知识的基础。用含有字母的式子表示数量关系,经历由数到式的过程,体现由特殊(具体)到一般(抽象)的数学思想,对发展符号意识有非常意义。

本节课的核心内容是进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并列式表示。由于字母表示数,因而字母可以和数一样参与运算,这正是理解用整式表示数量关系的核心。用含有字母的式子表示数量关系时,需结合具体的情境,分析问题中的数量,寻找数量之间的关系,并依据数量关系用运算符号把数和表示数的字母连接起来。

二、学情分析

在前面的学习中,主要学习的是数的有关概念和运算学生习惯用书的相关知识解决实际问题。由“数”到“式”的过程,是一个抽象的过程。虽然小学学过用字母表示数,但是七年级学生符号意识薄弱,分析问题能力有待提高。在具体的问题情境中,对于如何分析问题、寻找相关数量、确定数量之间的关系、用数学符号表达数量关系,学生会感到困难。再者我校学生基本素质不高,应在学生自主预习的基础上留有充分时间思考,讨论。

三、教学目标

(1)进一步理解字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系;

(2)经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识。

三、教学重点

进一步理解字母表示数的意义,正确分析实际问题中的数量的关系,并用含字母的式子表示数量关系感受其中“抽象”的数学思想。

四、教学难点

正确分析实际问题中的数量关系,用式子表示数量关系

五、教学过程

(一)创设情景

展示青藏铁路的一张图片,感受那里寒冷的天气引出青藏铁路冻土地段的行程问题

师:同学们有谁去过西藏吗?你听说过青藏铁路吗?青藏铁路是世界上线路最长、海拔最高的高原铁路。

设计意图:吸引学生注意力,激发学生自豪感。引出课题。

(二)初步感受

问题:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h.列车在冻土地段行驶时,根据已知数据求出列车行驶的路程.

(1)2 h行驶多少千米?3 h呢?t h呢? 8 h呢?

(2)如果用v表示速度,列车 t h 行驶的路程是多少?

(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?

师生活动:学生独立回答后在教师引导下归纳:字母可以表示数用来表示数

注意:(1)数与字母相乘或字母与字母相乘,通常将乘号写作“· ”或省略不写; (2)数与字母相乘时数字在前;

设计意图:

学生通过范例感受字母可以表示数,字母可以参与运算,进一步激发学生思考我们以前还学习过哪些这样的字母表示的运算律。使学生加深对公式和运算律的理解并通过对比使学生充分感受字母表示数的优点。

(三)重难点突破

问题:怎样分析数量关系,并用含有字母的式子表示数量关系呢?

例一

(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;

(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;

(4)用式子表示数n的相反数.

解:(1)现价是每千克0.8p元;

(2)去年的产量是mn件;

(3)包装盒的体积是:a·a·h cm3 即a2h cm3

(4)数n的相反数是-n

师生活动:学生先思考,然后和同桌交流,学生代表板演展示,再有学生互评。

设计意图:熟悉用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为形成单项式的概念做铺垫。

例二

(1)一条河的水流速度是2.5 km/h,船在静水中的速度是 v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;

(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要 z 元,用式子表示买 3个篮球、5个排球、2个足球共需要的钱数;

(3)如左下图(图中长度单位:cm),用式子表示三角尺的面积;

(4)右下图是一所住宅的建筑平面图(图中长度单位:m),用式子表示这所住宅的建筑面积。

解:(1)顺水行驶和逆水行驶的速度分别是(v+2.5)km/h,

(v-2.5)km/h;

(2)买3个篮球、5个排球、2个足球共需要(3x+5y+2z)元;

(3)三角尺的面积(单位:cm2)为(1/2 ab-∏r2)cm2

(4)这所住宅的建筑面积(单位:m2)为(x2+2x+18)元.

师生活动:教师引导下各个击破。

师生共同归纳:字母可以和数一样进行运算

注意:(3)带单位时,适当加括号.

(4)除法写成分数的形式。

设计意图:

进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的含义,进一步理解字母可以象数一样进行运算,为形成多项式的概念进行铺垫。

例三

观察下列各式:x ,2x2,3x3,4x4,… ,

按此规律,第n个式子是 。

师生活动:学生通过观察,分析,归纳发现规律,并用含字母的式子表示一般结论。

设计意图:进一步理解字母表示数的意义,理解用含有字母的数学式子表示实际问题中的数量关系的简洁性、必要性和一般性。

(四)巩固提升

问题:你能给以上这些式子赋予新的含义吗?

师生活动:教师举例说明比如:如果p表示我们班的人数,我们班80%的同学喜欢上数学课,那么0.8p 就可以表示我们班喜欢数学课的人数。学生思考、交流后发言

五、练习检测

(1)5箱苹果重m kg,每箱重 kg ;

(2)一个数比a的 倍小5,则这个数为 ;

(3)全校学生总数是x,其中女生占总数52%,则女生人数是 ,男生人数是 ;

(4)某校前年购买计算机 x 台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,则学校三年共购买计算机 台;

(5)某班有a名学生,现把一批图书分给全班学生阅读,如果每人分4本,还缺25本,则这批图书共 本;

(6)一个两位数,十位上的数字为a,个位上的数字b,则这个两位数为 .

师生活动:学生板演,师生共同评价总结注意(5)带分数化假分数

设计意图:进一步提高用含有字母的式子表示实际问题中的数量关系的能力。

六、小结作业

小结(1)本节课学了哪些主要内容?

(2)为什么用字母表示数?

(3)用含有字母的式子表示数量关系时要注意什么?

设计意图:通过小结,使学生梳理本节课所学内容。

作业:教科书

习题2.1的第1题,第2题,第7题.

七、板书设计

篇8:初中数学教师教案应该怎么设计

教学目标:1.探索并了解“三角形三个内角之和等于180°”;

2.经历举例、操作(画图、度量、拼图)、观察、归纳、说理、交流等数学活动,提升学生有条理的表达能力.

教学重点:探索并掌握“三角形三个内角之和等于180°”..

教学难点:理解用推理的方法说明为什么三角形的三个内角之和一定等于180°.

作业布置:课本P34习题7.5第2,3小题.

教学过程:

一、探究:

(1)同学们,小学里我们就已经知道了三角形的三个内角的和等于多少度?

(2)你能举例说明三角形的三个内角的和等于180°吗?

探究一——画图、度量、计算

请每位同学在课堂笔记本上任意画一个三角形,用量角器量出各内角的度数,并求它们的和.

究二——观察

利用几何画板中的课件动画演示(通过拖动三角形的顶点改变三角形的内角),再次验证“三角形三个内角之和等于180°”.

究三——拼图

(1)问:还记得小学里怎么说明“三角形三个内角之和等于180°”的吗?

(2)请每位同学将课前发下的三角形纸片的3个内角(如图1)剪开,然后拼在一起,观察它们的和是否为180°.

(3)教师找出如图2、图3、图4等拼法,贴在黑板上,并标上相应字母.

……

二、合作:

课本P29练一练第1、3小题.

三、展示:

例1 已知,在△ABC中,∠A=40°,∠B=∠C,求∠C的度数.

四、拓展:

例2 如图5,AD、BC相交于点O,∠A=50°,∠B=32°,∠C=45°,求∠D的度数.

五、评价:

1.在△ABC中,若∠A+∠B=90°,则△ABC一定是__________三角形.

2.在△ABC中,若∠A∶∠B∶∠C=2∶3∶4,求∠A、∠B、∠C的度数.

篇9:初中数学教师教案应该怎么设计

一.教学目标

1.知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

2.数学思考

通过观察,比较,归纳等得出有理数加法法则。

3.解决问题

能运用有理数加法法则解决实际问题。

4.情感与态度

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

5.重点

会用有理数加法法则进行运算.

6.难点

异号两数相加的法则.

二.教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

三.学校与学生情况分析

冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

四.教学过程

(一)问题与情境

我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为

4+(-2),

黄队的净胜球为

1+(-1)。

这里用到正数与负数的加法。

(二)、师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.

两个有理数相加,有多少种不同的情形?

为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

(+3)+(+1)=+4.

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

(-2)+(-1)=-3.

现在,请同学们说出其他可能的情形.

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

(+3)+(-2)=+1;

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)+(+2)=-1;

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

(-2)+0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

0+0=0.

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数.

(三)、应用举例 变式练习

例1 口答下列算式的结果

(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);

(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.

学生逐题口答后,师生共同得出

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

例2(教科书的例1)

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

=-(3+9) (和取负号,把绝对值相加)

=-12.

(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)

=-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)

=-0.8

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)、小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)练习设计

1.计算:

(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);

(5)67+(-73); (6)(-84)+(-59); (7)33+48;

(8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;

(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);

(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.

4.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

五.教学反思

“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.

现在,试比较这两类教学设计的得失利弊.

第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.

第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.

这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。

六.点评

潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性

篇10:初中数学教案

图样,图样,还是图样。到处都是图样,有的用尖细的木片潦草地写在满是灰尘的大理石桌上,有的用一块木炭涂在墙上,有的用粉笔画在地上。阿基米德穿着一件白色的旧长袍,坐在桌子上思索起来。手指象发烧似的微微颤抖。豆大的汗珠裹着灰尘,从他极度疲倦的脸上落在手上,落到衣服上,落到随手扔在桌子上的一卷草片纸上。

他没有跑,没有象一个无耻的胆小鬼那样从战场上逃跑。他竭尽全力,把全部的智慧和热情都献给了这座城市。多少个不眠之夜,多少个酷热难耐的白天,他就是整个叙拉古防御阵地的大脑和心脏。一提到他的名字,罗马人就惊恐地逃离城墙,他们唯恐躲避不及致命的投石炮,以及纷纷落下的炽热的涂满油脂的麻屑,标枪与长矛的骤雨。不就是他,不动咫尺就把接近城市海防工事的罗马舰队都烧毁了吗?不就是他,一个人用他发明的一组复杂的滑车把罗马的兵船吊在半空,再从高处把船抛向深海里去了吗?但这对于一个人的独创才能和精力来说,已经是极限了,他已经是一个衰弱的老人,他的手握不住战剑。他坚持留在阵地上,直至敌人出现在城墙外边。而这时戴着盔形帽的罗马人已经开始在被岁月磨出来的马路的石块上晃动。希腊人竭尽最后的力量进行抵抗,肉搏战当然没有阿基米德参加的份。。。。。。

在中午被烈日晒的发烫的物体,现在让令人惬意的凉爽的空气温柔地笼罩着。战斗的喊声透过厚实的门帘隐隐约约地传进屋里。挂在两个窗户上的草帘子使得屋里稍微有点昏暗,但一点也不妨碍看清楚眼睛看惯的东西。 生命就要完结,这一生是漫长而又艰难的。在命运给予他的七十五年里,在不停的探索中,在持续的紧张中,在旅行中,在工作室,造船厂和采石场的不断的争论中,他从未能回顾过自己的人生,没有考虑一下是否活得合理。伊壁鸠鲁(前341—前270 古希腊唯物主义哲学家,在伦理观上,主张人生的目的在于避免苦痛,使心身安宁,怡然自得,这才是人生最高的幸福)这位激进的老人如此忘情地说过的那种快乐,哪怕是一部分,阿基米德也没有从生活中得到过。在他还是一个十七岁的青年人时,曾经站在这位伟大哲学家的坟墓上,思索着用自己的一生实现他富有人生乐趣的哲学。他实现了吗?

还在青年时代,他就踏上了这条荆棘丛生的,曲折的,布满无数坎坷的学者道路。学者的生活。。。。。。当生活道路开始的时候,他曾经把生活想象的很不实际。他用充满甜蜜的幸福,普遍的崇敬和持久不变的,任凭什么也不能蒙蔽的荣誉来描绘自己青年时代雄心勃勃的梦想。但生活并非如此,他竟然是格外地严酷。他实际体验到,这生活是一天一时也不停地,终身为一个神灵,一个偶像,一个各种思想和愿望的主宰服务。科学就是一个催眠术家,只要一次受到科学真理魔术般的诱惑,立刻就会为了科学而忘掉一切,直至最后进入坟墓。

荣誉是有的,但是这荣誉足以为不学无术者和嫉妒者们的大声嘲笑所败坏。是有许多狂热的崇拜者,但也有许多恶毒的非难者,他们不错过任何一个机会,通过假借的名义,公开和秘密地对他进行侮辱,诋毁和诽傍,以他为笑柄。。。。。。

他本人的生活是这样,他父亲的生活也是这样。他父亲叫做菲迪亚斯。供人参阅的备忘录描述了他很早的童年时代的情形,小阿基米德似乎不得不让每一个新认识的人相信,他的父亲只是和奥利匹亚的<<宙斯>>像和雅典的女神像的著名的建造者,比阿基米德天文学家的父亲早生一百多年的雕刻家菲迪亚斯同姓。奇怪的是,菲迪亚斯竟然不是国王亥厄洛的亲戚,相反,完全出乎意料之外,阿基米德却是国王亥厄洛的一个亲戚,就是说,也是国王儿子格隆的一个亲戚。。。。。。

这里是繁华的亚历山大城。阿基米德花了许多时间沿着城市的石头道散步,登上佛洛斯灯塔,从那里了望拥簇着似乎是从地球上所有有人居住的地方抵达到这里的希腊,罗马,腓尼基,波斯和其它国家的船只的港湾。但是,比这多得多的时间,他是在著名的亚历山大图书馆里度过的。世界上任何一个图书馆可能都要羡慕这家图书馆所收集的抄本和手稿。在图书馆里,集中了伟大的亚历山大城所有最优秀的青年人。在和那些崇拜本国著名的欧几里德的年轻人的热烈争论中,阿基米德对自己的科学立场的理解逐渐成熟,有些地方与亚历山大人接近,有些地方则与他们截然不同。但是,尽管在观点上有所不同,他刚一熟悉欧几里德的著作,对已故的伟大学者欧几里德的虔诚的敬意就完全征服了阿基米德。欧几里德的<<几何原本>>从此成为他整个漫长一生的必读之书。。。。。。

战斗的呐喊声越来越大。厚实的窗帘已经挡不住获胜的罗马人狂喜的欢呼声,战剑打击叙拉古最后一批保卫者的盾牌的叮当声,还有那刺向他们被长时间的防御战折磨得精疲力尽的身体的沉闷声。获胜的敌人已经占领了这座苦难的城市,又醉心于卑鄙无耻的,令人痛恶的杀掠,连儿童,妇女和老人也不放过。

非常奇怪的是,所以这一切————战剑的叮当声,垂死者的呻吟声,罗马人胜利的欢呼声,都是这样地遥远,似乎是在半个多世纪以前发出的。阿基米德突然以一种可怕的清醒回想起自己乘一艘小船从亚历山大到叙拉古所经历的漫长而又十分危险的旅程。在危机四伏的不平静的大海中,绿色的'波涛的巅峰翻腾着白色的大理石般的泡沫,不停地撞击着毫无保护的不坚固的小船,船上可怜的人们觉得好像无论是人,还是超人的力量都已经不能把他们从海神的怀抱里解救出来。 而就在这时,舵手使出全身的力气掌稳沉重的船舵,高高地向上搬动舵尾,用力地冲向那轰隆作响的摇荡的浪山。船象一匹戴上嚼子的马,战栗着,一会儿呆立在高高的浪峰上,一会儿又摇晃着跌进随之而来的无底的深渊。。。。。。

船驶离亚历山大之时,装饰着色彩缤纷的船帆,宛如一位服装时髦的美女,而抵达叙拉古时,却遍体鳞伤,千疮百孔,失去了桅杆和船帆,简直就是一个衣衫褴褛的女乞丐了。。。。。。

一个罗马兵凶恶的面孔突然出现在眼前,在他身后是一群形形色色的叙拉古人,正在走去迎接无数条载着有半死不活的航海者的战船。这个外国的不速之客从哪里来?是怎么来的呢?这个人张牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德却听不见他的话。往事仍然把阿基米德死死地拖住不放,忘却现实的销魂的魔力还没有退却。。。。。。

幻影没有消失。在它还没有最后填满整个房间,把整个古老的叙拉古阳光充足的港湾里毫无剩余地从房间里排挤出去之前,它在数学家视线模糊的眼睛里仍然在扩大,扩大。啊,原来这里还有个人。这时,一个强盗,杀人凶手找到了数学家阿基米德的住宅。这个残忍的罗马士兵————数学家以前几乎没有想过的死亡就这样悄悄地向她逼近了。

“别动我的图案!”老人声音低微,但语气却强硬地命令道。这就是他说的最后一句话。一把宽大的双刃剑用力地砍在这位伟大的世界公民头发斑白,疲惫不堪的,但却威严自豪,充满灵感的头颅上。。。。。。

据说,阿基米德就这样在位于被罗马人攻取并抢劫的叙拉古的一条街道上的房间里被杀害了。甚至罗马主将马尔采勒,这个长期徒劳地企图占领这座城市的不共戴天的,阴险的敌人,在得知这位最伟大的学者和最热情和无畏的爱国主义者的死讯之后,也感到极度的悲伤。

篇11:初中数学教案

一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:

一、在备课方面

在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。

二、在教学过程方面

在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。

三、工作中存在的问题

1)、教材挖掘不深入。

2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导

4)、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。

四、今后努力的方向

1)、加强学习,学习新教学模式下新的教学思想。

2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。

3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。

4)、加强转差培优力度。

5)、加强教学反思,加大教学投入。

一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。

篇12:初中数学教案

①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解. ②k可以是怎样的数?

③你怎样认识一次函数和正比例函数的关系?

一个常数b的和即 Y=kx+b 定义:一般地,形

Y=kx+b( k,b 是常数,k≠0 )的函数,叫做一次函数, 当

b=0时,

Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。

例1、下列函数中,Y是X的一次函数的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X

学生独立

A①②③B①③④C①②④D①②③④

例2、写出下列各题中x与y之间的关系式,并判

解释与应用

断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式

篇13:初中数学教案

一、教学目的

【知识与技能】

了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】

在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点

【教学重点】

数轴的三要素,用数轴上的点表示有理数。

【教学难点】

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

《下面应该排什么》数学教案

初中数学教案人教版教学设计

初中数学优秀教案应该怎么设计

初中物理弹力教案应该怎么设计

初中数学教案设计方案

初中英语语法应该怎样学才好

初中数学教案说课稿正数和负数

数学教案

数学教案列方程解应用题思路设计

1200字初中入团申请书应该怎么写

初中数学教案应该怎么设计(集锦13篇)

欢迎下载DOC格式的初中数学教案应该怎么设计,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档