高二数学三角与二项式系数的性质的说课稿

时间:2023-03-05 04:05:08 作者:鱼儿叻 教案 收藏本文 下载本文

【导语】“鱼儿叻”通过精心收集,向本站投稿了4篇高二数学三角与二项式系数的性质的说课稿,下面小编给大家整理后的高二数学三角与二项式系数的性质的说课稿,供大家阅读参考。

篇1:高二数学三角与二项式系数的性质的说课稿

高二数学三角与二项式系数的性质的说课稿

一、教学设计

——人教A版数学选修2-3第1章第3节第2课时

一、教材背景分析

1.教材的地位和作用

《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时. 教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.

本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处. 这一过程不仅有利于培养学生的思维能力、理性精神和实践能力,也有利于学生理解本节课的核心数学知识,发展其数学应用意识.

研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.

2.学情分析

知识结构:学生已学习两个计数原理和二项式定理,再让学生课前探究“杨辉三角”包含的规律,结合“杨辉三角”,并从函数的角度研究二项式系数的性质.

心理特征:高二的学生已经具备了一定的分析、探究问题的能力,恰时恰点的问题引导就能建立知识之间的相互联系,解决相关问题.

3.教学重点与难点

重点:体会用函数知识研究问题的方法,理解二项式系数的性质.

难点:结合函数图象,理解增减性与最大值时,根据n的奇偶性确定相应的分界点;利用赋值法证明二项式系数的性质.

关键:函数思想的渗透.

二、教学目标

1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的'学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.

2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.

3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.

4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.

三、教法选择和学法指导

教法:问题引导、合作探究.

学法:从课前探究和课上展示中感知规律,结合“杨辉三角”和函数图象性质领悟性质,在探究证明性质中理解知识,螺旋上升地学习核心数学知识和渗透重要数学思想.

四、教学基本流程设计

五、教学过程

1. 展示成果话杨辉

课前开展学习活动:了解“杨辉三角”的历史背景、地位和作用,探究与发现“杨辉三角”包含的规律.

(1)学生从不同的角度畅谈“杨辉三角”,对它有何了解及认识.

(2)各小组展示探究与发现的成果——“杨辉三角”包含的一些规律.

【设计意图】引导学生开展课外学习,了解“杨辉三角”,探究与发现“杨辉三角”包含的规律,弘扬我国古代数学文化;展示探究与发现的杨辉三角的规律,为学习二项式系数的性质埋下伏笔.

2. 感知规律悟性质

通过课外学习,同学们观察发现了杨辉三角的一些规律,并且知道杨辉三角的第 行就是 展开式的二项式系数, 展开式的二项式系数具有杨辉三角同行中的规律——对称性和增减性与最大值.

【设计意图】寻找二项式系数与杨辉三角的关系,从而让学生理解二项式系数具有杨辉三角同行中的规律.

3. 联系旧知探新知

【问题提出】怎样证明 展开式的二项式系数具有对称性和增减性与最大值呢?

【问题探究】探究:(1) 展开式的二项式系数 , 可以看成是以 为自变量的函数 吗?它的定义域是什么?

(2)画出 和7时函数 的图象,并观察分析他们是否具有对称性和增减性与最大值.

(3)结合杨辉三角和所画函数图象说明或证明二项式系数的性质.

对称性:与首末两端“等距离”的两个二项式系数相等. .

增减性与最大值: ,所以 相对于 的增减情况由 决定.由 可知,当 时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当 的偶数时,中间的一项取得最大值;当 是奇数时,中间的两项 , 相等,且同时取得最大值.

【设计意图】教师引导学生用函数思想探究二项式系数的性质,学生画图并观察分析图象性质;运用特殊到一般、数形结合的数学思想归纳二项式系数的性质,升华认识;通过分组讨论、自主探究、合作交流,说明或证明二项式系数的对称性和增减性与最大值,提高学生合作意识.

4. 合作交流议方法

【继续探究】问题: 展开式的各二项式系数的和是多少?

探究:(1)计算 展开式的二项式系数的和( =1,2,3,4,5,6).

(2)猜想 展开式的二项式系数的和.

(3)怎样证明你猜想的结论成立?

赋值法:已知 ,

令 ,则 .

这就是说, 的展开式的各个二项式系数的和等于 .

元集合子集的个数(两个计数原理).

分类计数原理:

分步计数原理: 个2相乘,即 .

所以 .

【问题拓展】你能求 吗?

在展开式 中,令 ,

则得 ,

即 ,所以 ,

在 的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.

【设计意图】通过学生归纳猜想各二项式系数的和,引导学生验证猜想结论是否正确;同时为了突破利用赋值法证明二项式系数性质的难点,引导学生从模型化的角度出发,多角度的分析问题、探究问题、解决问题,将学生思维推向高潮,既加深学生对前后知识的内在联系的理解,又从深度和广度上让学生感受数学知识的串联和呼应.

5. 反馈升华拨思路

练1. 的展开式中的第四项和第八项的二项式系数相等,则 等于 .

练2. 的展开式中前 项的二项式系数逐渐增大,后半部分逐渐减小,二项式系数取得最大值的是第 项.

练3.已知 ,求:

(1) ;(2) .

【设计意图】促进学生进一步掌握二项式系数的性质,学会用赋值法解决问题,促进其有意识的运用.

6. 悬念小结再求索

【课堂小结】 通过本节课的学习,你有什么收获和体会(从数学和生活的角度)?还有什么疑问吗?

【课堂延伸】今天同学们展示了一些杨辉三角的规律,但是作为我国古代数学重要成就之一的杨辉三角还有更多有趣的规律,相信大家一定有极高的热情和严谨的态度去探究与发现杨辉三角的奥妙之处.

【课外活动】(研究性学习)

活动主题:杨辉三角中的奥妙.

活动目标:探究与发现杨辉三角中的更多奥妙.

活动方案步骤:查阅资料,收集信息;独立思考,发现规律,猜想证明;合作探究,小组讨论,形成初步结论;与指导老师及其他小组成员交流展示;撰写研究性学习报告.

【设计意图】通过课堂的整理、总结与反思,使学生更好的掌握主干知识,体会探究过程中渗透的数学思想方法,再次感受我国古代数学成就,激励自己努力学习.“杨辉三角”还有很多有趣的规律,让学生带着问题走进课堂,带着疑问离开教室,培养学生自主研修的习惯,提高学生探究问题、解决问题的能力.设计研究性学习活动,诱发学生创造性的想象和推理.同时教会学生如何开展研究性学习.

篇2:初中数学《菱形的定义与性质》说课稿

初中数学《菱形的定义与性质》说课稿

我从四个方面介绍我是如何分析教材和设计教学过程的。

一、教材分析

1、在教材中的作用与地位:《菱形》紧接《矩形》一节之后。纵观整个初中平面几何教材,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。

2、从教材编写角度看:教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、探索、总结归纳,升华得出菱形的性质及判定,这样的安排使抽象的定理让学生更易于接受,并能在整个的教学过程中真正享受到探索的乐趣。

我选择的是初二(1)班,该班级是年段的普通班,学生的情况是中等学生较多,尖子生只有个别,还有8至10名的学习上落后的学生。因此长期以来我都坚持做好培养学生良好的学习习惯和自主学习的能力的工作。

3、基于对教材和班级学情的分析,我认为本节课的教学有几个方面需要把握好的:

⑴本节课的课题是:探索菱形的重要性质;

⑵目标是:让学生能在动手实践过程中发现并理解菱形的性质;

⑶重点是:菱形的定义与性质;

⑷教学难点是:菱形性质的灵活运用。

4、根据新课程标准的要求及学生的实际情况,本节课我制定了如下教学目标:

(一)知识与技能:

(1)知道菱形在现实生活中有广泛的`应用。

(2)熟记菱形的有关性质和识别条件,并能灵活运用。

(二)过程与方法:经历探索菱形的性质和识别条件的过程,在观察、操作和分析的过程中,进一步增进主动探究的意识,体会说理的基本方法。

(三)情感态度价值观:体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣。

二、教法分析

1、教学设计思想:菱形是特殊的平行四边形,后继课要学的正方形具有菱形的一切性质。这节课教学时注重学生的探索过程,让观察、猜测、验证,获得知识,培养主动探究的能力。首先由生活中的图片引入,引起学生学习兴趣,发现菱形在生活中的广泛应用,然后设计几个探究性问题,让学生小组讨论,相互交流,形成共识。讲解例题时根据学生特点帮助他们分析题意,灵活运用菱形的性质与识别条件解题。

2、教学方法:针对本节课的特点,我准备采用 “创设情境→观察探索→总结归纳→知识运用” 为主线的教学模式,观察分析讨论相结合的方法。在教学过程中引导学生经过观察、思考、探索、交流获得知识,形成能力。在教学过程中注意创设思维情境,坚持学生主体,教师主导,在合作、交流的气氛下进行师生互动,培养学生的自学能力和创新意识,让学生在老师的指导下自始至终处于一种积极思维、主动探究的学习状态。同时借助多媒体进行演示,以增加课堂容量和教学的直观性,更好的理解菱形的性质,解决教学难点。

三、学法指导:

在本节课的教学中,要帮助学生学会运用观察、分析、比较、归纳、概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的甘苦,领会到成功的喜悦。

四、教学过程

(一) 引入新课:在复习了平行四边形与矩形的性质后创设教学情景。如:出示我国古代文物越王勾践剑的图片,指出菱形花纹,再展示生活中的菱形图案的应用图片。由此引出课题,可以吸引同学的注意,使其产生学习菱形的兴趣。之后,我安排了由平行四边形到菱形的动态演示,得出菱形的定义。随后又展示了一组生活中的有关菱形的图片,使学生认识到菱形在生活中的广泛应用,并欣赏到菱形的图形美。

设计意图:从生活实际出发,首先吸引住学生的注意力,激起学生的学习欲望。著名教育家苏霍姆林斯基说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。

(二)菱形性质的探索:菱形性质的探索分成两方面,一是菱形的特殊性(与平行四边形不同的性质);二是菱形的对称性。对于这个地方,主要采取学生自主探究的形式,通过观察思考与分析,同学间互相交流,分小组进行总结归纳。教师在巡视中进行个别指导。在探索过程中,鼓励学生力求寻找多种方法解决问题,同时还可以组织组与组的评比,这样也能培养他们的竞争意识,然后每组由一名学生代表发言,让学生锻炼自己的表达能力,让学生的个性得到充分的展示。最后教师与学生一起总结归纳,得出菱形的性质。

设计理念:这一教学活动的设计主要为了确保学生主体作用得到充分发挥,让学生从被动学到主动学,从接受知识到探索知识,从个人学习到合作交流。这样的活动教学将会真正焕发出课堂教学的活力,从而在课堂教学中注入一种新课程理念:给学生一个空间,让他们自己往前走;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案;给学生一个条件,让他们自己去锻炼;给学生一个题目,让他们自己去创造;给学生一个机会,让他们自己去抓住。

(三)题目训练:为了进一步落实教学目标,让学生在学懂学会的基础上融会贯通,我安排了坡度适中,题型多样的系列题组。

1. 请你当裁判与定义、性质等相关的一些判断题。

设计意图:让学生着重讲清判断的理由,此题直接运用菱形的定义与性质,起到及时巩固的作用,同时锻炼学生的语言表达能力。

2. 议一议

性质的简单运用。

设计意图:稍微加深,进一步巩固菱形的性质,并能初步运用。

3. 练一练

菱形与直角三角形等知识的综合运用。并由此总结菱形的面积公式。即菱形的面积等于对角线乘积的一半。

设计意图:这组练习包含了例题。要求学生不但可以顺利完成简单的基础填空练习,而且能有条理的写出例题的解题过程。教师及时查漏补缺,规范解题格式。此题完成后,学生已顺利达到教学目标。

4. 学以致用

设计花坛,修建小路,求路长与花坛面积。这是一道实际应用问题。

设计意图:目的是让学生了解数学问题来源于生活实际,同时又运用到实际生活中。让学生充分体验历经困难探索结果而轻松用于实际的快乐感觉。

(四)小结、布置作业

菱形的性质与识别条件,由学生进行小结。布置书上课后习题,体会本节课你所获得的成功经验,写好数学日记,与同学交流。

设计意图:让学生写数学日记这种作业形式,能够培养学生善于归纳总结的能力,逐步养成良好的学习习惯。

篇3:反比例函数的图象与性质数学说课稿

反比例函数的图象与性质数学说课稿

一、教材分析

反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、教学目标分析

根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:

1、掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。

2、在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。

3、通过学习培养学生积极参与和勇于探索的精神。

三、教学重点难点分析

本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

难点则是如何抓住特征准确画出反比例函数的图象。

为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

四、教学方法

鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

五、学法指导

本堂课立足于学生的.“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

六、教学过程

(一) 复习引入——反函数解析式

练习1:写出下列各题的关系式:

(1) 正方形的周长C和它的一边的长a之间的关系

(2) 运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系

(3) 矩形的面积为10时,它的长x和宽y之间的关系

(4) 王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系

问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?

问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。

问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?

通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。

例题1:已知变量y与x成反比例,且当x=2时,y=9

(1) 写出y与x之间的函数解析式

(2) 当x=3。5时,求y的值

(3) 当y=5时,求x的值

通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。

课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式:

(1)x=2,y=3 (2)x=,y=

通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。

(二)探究学习1——函数图象的画法

问题3:如何画出正比例函数的图象?

通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。

问题4:那反比例函数的图象应该怎样去画呢?

在教学过程中可以引导学生仿照正比例函数图象的的画法。

设想的教学设计是:

(1) 引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;

(2) 老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;

(3) 随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。

初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:

(1) 在“列表”这一环节

在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。

(2) 在“连线”这一环节

学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。

从而引导学生画出正确的函数图象。

(3) 图象与x轴或y轴相交

在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。

需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第一次学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。

巩固练习:画出函数和的图象

通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。

(三) 探究学习2——函数图象性质

1、图象的分布情况

问题5:请大家回忆一下正比例函数的分布情况是怎么样的呢?

提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。

问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?

在这一环节中的设计:

(1) 引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;

(2) 充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;

(3) 组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。

2、图象的变化情况

问题7:正比例函数图象的变化情况是怎么样的呢?

提出问题7主要是起到巩固复习,为引导学生学习反比例函数图象的变化情况打下基础。

问题8:那反比例函数的图象,是否也具有这样的性质呢?

在这一环节的教学设计是:

(1)回顾反比例函数和的图象,通过实际观察;

(2)根据解析式对x进行取值,比较x在取不同值时函数值的变化情况;

(3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k<0时,自变量x逐渐增大时,y的值也随着逐渐增大。

(4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢?若没有,则可以举例:当k>0,分别比较在第三象限x=—2,第一象限x=2时的y的值的大小,则以上性质是否依然成立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。

问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?

在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。

(四) 备用思考题

1、反比例函数的图象在第一、三象限,求a的取值范围

2、(1) 当m为何值时,y是x的正比例函数

(2) 当m为何值时,y是x的反比例函数

篇4:《正切函数的性质与图像》高一数学说课稿

各位领导 教师同仁:

我说课的内容是正切函数的性质和图像。

教材理解分析

《1,4.3 正切函数的.性质与图像》是人教社A版必修4第一章第4节的第3小节的内容。是前面系统的学习了正弦与余弦函数的概念,图像及其性质以后滴内容

学习目标

1、掌握正切函数的性质及其应用

2、理解并掌握作正切函数图象的方法;

3、体会类比、换元、数形结合等思想方法。

学情分析

由于我们文科平行班基础不太好加之学习函数的图像及性质又是一个难点,自主学习必然会出现困难。加之教学时间紧,任务重,前面地学习也不是很好。

根据教材结构和学情我对具体地教学过程和设计作如下说明:

在学法上大胆采用高效课堂模式,让学生探究,大胆去掉非主线知识内容,内容程序尽量简洁明了,一课一得,便于学生掌握。教学过程共有这样几个方面

一、复习引入

(1)画出下列各角的正切线

(2)复习相关诱导公式

二、探究新知

探究一 正切函数的性质

探究二 正切函数的图像

三、新知运用

例1 求函数的定义域、周期和单调区间.

四、课堂练习

1、求函数y=tan3x的定义域,值域,单调增区间。

2、观察正切曲线,写出满足下列条件x的范围:

(1) ; (2) ; (3)

五.小结与课后作业

二项式系数的性质教学反思

《小数的性质》小学数学说课稿

等腰三角形的性质八年级数学说课稿

数学《正切函数的定义、图像与性质》说课稿

对数函数及其性质说课稿

八年级数学探索三角形相似的条件说课稿

高二下册数学简单的三角恒等变换公式知识点

《纯碱的性质》说课稿

反比例函数的图象与性质说课稿

分式的基本性质说课稿

高二数学三角与二项式系数的性质的说课稿(整理4篇)

欢迎下载DOC格式的高二数学三角与二项式系数的性质的说课稿,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档