高二下册数学简单的三角恒等变换公式知识点

时间:2023-01-27 04:15:40 作者:Tagjjgg 综合材料 收藏本文 下载本文

【导语】“Tagjjgg”通过精心收集,向本站投稿了5篇高二下册数学简单的三角恒等变换公式知识点,下面小编给大家带来高二下册数学简单的三角恒等变换公式知识点,希望能帮助到大家!

篇1:高二下册数学简单的三角恒等变换公式知识点

数学是一切科学的基础,

平方关系:

tan cot=1

sin csc=1

cos sec=1

sin/cos=tan=sec/csc

cos/sin=cot=csc/sec

sin2+cos2=1

1+tan2=sec2

1+cot2=csc2

诱导公式

sin(-)=-sin

cos(-)=cos tan(-)=-tan

cot(-)=-cot

sin(/2-)=cos

cos(/2-)=sin

tan(/2-)=cot

cot(/2-)=tan

sin(/2+)=cos

cos(/2+)=-sin

tan(/2+)=-cot

cot(/2+)=-tan

sin=sin

cos()=-cos

tan()=-tan

cot()=-cot

sin()=-sin

cos()=-cos

tan()=tan

cot()=cot

sin(3/2-)=-cos

cos(3/2-)=-sin

tan(3/2-)=cot

cot(3/2-)=tan

sin(3/2+)=-cos

cos(3/2+)=sin

tan(3/2+)=-cot

cot(3/2+)=-tan

sin(2)=-sin

cos(2)=cos

tan(2)=-tan

cot(2)=-cot

sin(2k)=sin

cos(2k)=cos

tan(2k)=tan

cot(2k)=cot

(其中kZ)

最后,希望小编整理的高二下册数学简单的三角恒等变换公式知识点对您有所帮助,祝同学们学习进步。

[高二下册数学简单的三角恒等变换公式知识点]

篇2:数学必修四三角恒等变换知识点

数学必修四三角恒等变换知识点

知识结构:

1.两角和与差的正弦、余弦和正切公式

重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

难点:两角差的余弦公式的探索和证明。

2.简单的三角恒等变换

重点:掌握三角变换的内容、思路和方法,体会三角变换的特点.

难点:公式的`灵活应用.

三角函数几点说明:

1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.

2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算.

3.已知三角函数值求角问题,达到课本要求即可,不必拓展.

4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值.

5.积化和差、和差化积、半角公式只作为练习,不要求记忆.

6.两角和与差的正弦、余弦和正切公式

数学整式知识点

(一)整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

(二)整式的除法:

①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

提高数学成绩的窍门是什么

找漏洞

学生如何找自己学科上的漏洞呢?主要就是要在预习时找漏洞。上课学生的学习目标明确,注意力才会集中,听课效率才会高。除了预习,做题 也是一种很好的找漏洞的方式。

多做题不等于提高分数,只有多补漏洞,才能提高分数

题目千千万,我们是做不完的。做题的是为了掌握、巩固知识点,如果已经掌握了,就没有必要再做了。学生应该把时间放在补漏洞上,预习也要引起高度重视。

不要轻易放过一道错题

对于学生错误的习题,教师会讲评一遍,学生更正一遍之后就了事,但这种态度是不正确的。从哪里倒下就在哪里爬起来,“错题是个宝,天天少不了,每天都在找,积累为大考。”这就要求学生反思三点,一、问题到底出在哪里?二、产生错误的根本是什么?三、如何做才能避免下次犯同样的错误?如果每道错题都利用好的,还怕成绩不能提高吗?

落实的关键是检测和重复

落实就是硬道理。看自己补漏洞的效果如何最好的方式就是检测,多次检测没有问题了,那么这个漏洞就不上了。补漏洞也不是一次、两次就能解决,需要一定的重复。

既要“亡羊补牢”,更要“未雨绸缪”

考试后,教师逐题分析错题、失分原因——找漏洞;制定切实有效的改进措施——想办法;有针对性地加强专项训练——补漏洞。有时“亡羊补牢”已经晚了,我们更应该“未雨绸缪”。每天把学习上的问题记录下来并解决落实好。考前的模拟测试,也是一个好办法。

篇3:高二数学知识点及公式总结

1、圆的定义

平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(x-a)^2+(y-b)^2=r^2

(1)标准方程,圆心(a,b),半径为r;

(2)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

练习题:

2.若圆(x-a)2+(y-b)2=r2过原点,则

A.a2-b2=0B.a2+b2=r2

C.a2+b2+r2=0D.a=0,b=0

【解析】选B.因为圆过原点,所以(0,0)满足方程,

即(0-a)2+(0-b)2=r2,

所以a2+b2=r2.

篇4:高二数学知识点下册

1.人教版高中数学正弦二倍角公式:sin2α=2cosαsinα

推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA

拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2]1+sin2A=(sinA+cosA)^2

2.人教版高中数学余弦二倍角公式:余弦二倍角公式有三组表示形式,三组形式等价。

(1)Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2]

(2)Cos2a=1-2Sina^2

(3)Cos2a=2Cosa^2-1

推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1=1-2(sinA)^2

3.人教版高中数学正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]

推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]

降幂公式:cosA^2=[1+cos2A]/2sinA^2=[1-cos2A]/2

变式:sin2α=sin2α+π4-cos2α+4π=2sin2a+4π-1=1-2cos2α+4π;cos2α=2sinα+4πcosα+4π

4.人教版高中数学半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2;tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

5.人教版高中数学两角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

篇5:有关高二数学下册知识点

一、导数的应用

1.用导数研究函数的最值

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题

1)费用、成本最省问题

2)利润、收益问题

3)面积、体积最(大)问题

二、推理与证明

1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式

对于含有参数的一元二次不等式解的讨论

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

高二数学知识点及公式

高二数学知识点

初中数学重点公式知识点

高二数学知识点笔记

高二数学必考知识点

高二数学知识点总结

高二数学知识点精选整合

初二数学下册知识点

六年级下册数学知识点整理

二年级下册数学知识点整理归纳

高二下册数学简单的三角恒等变换公式知识点(精选5篇)

欢迎下载DOC格式的高二下册数学简单的三角恒等变换公式知识点,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档