平行线的性质优秀教案设计

时间:2024-02-20 03:39:16 作者:blnu 教案 收藏本文 下载本文

【导语】“blnu”通过精心收集,向本站投稿了11篇平行线的性质优秀教案设计,这里给大家分享一些平行线的性质优秀教案设计,供大家参考。

篇1:平行线的性质优秀教案设计

教学目标

1.使学生理解平行线的性质和判定的区别.

2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.

重点难点

重点:平行线的三个性质.

难点:平行线的三个性质和怎样区分性质和判定.

关键:能结合图形用符号语言表示平行线的三条性质.

教学过程

一、复习

1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?

2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

二、新授

1.实验观察,发现平行线第一个性质

请学生画出下图进行实验观察.

设l1∥l2,l3与它们相交,请度量1和2的大小,你能发现什么关系?

请同学们再作出直线l4,再度量一下3和4的大小,你还能发现它们有什么关系?

平行线性质1(公理):两直线平行,同位角相等.

2.演绎推理,发现平行线的其它性质

(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.

求证:1= 2.

(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.

求证:2=180.

在此基础上指出:平行线的性质2 (定理)和平行线的性质3 (定理).

3.平行线判定与性质的区别与联系

投影:将判定与性质各三条全部打出.

(1)性质:根据两条直线平行,去证角的相等或互补.

(2)判定:根据两角相等或互补,去证两条直线平行.

联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.

三、例题

例2如图所示,AB∥CD,AC∥BD.找出图中相等的角与互补的角.

此题一定要强调,哪两条直线被哪一条直线所截.

答:相等的角为:2,4,6,8.互补的角为:BAC+ACD=180,ABD+CDB=180,CAB+DBA=180,ACD+BDC=180.

相等的角还有:ACD=ABD,BAC=BDC.(同角的补角相等)

例3如图所示.已知:AD∥BC,AEF=B,求证:AD∥EF.

分析:(执果索因)从图直观分析,欲证AD∥EF,只需AEF=180,

(由因求果)因为AD∥BC,所以B=180,又AEF,所以AEF=180成立.于是得证.

证明:因为 AD∥BC,(已知)

所以 B=180.(两直线平行,同旁内角互补)

因为 AEF=B,(已知)

所以 AEF=180,(等量代换)

所以 AD∥EF.(同旁内角互补,两条直线平行)

四、练习:

1.如图所示,已知:AE平分BAC,CE平分ACD,且AB∥CD.

求证:2=90.

证明:因为 AB∥CD,

所以 BAC+ACD=180,

又因为 AE平分BAC,CE平分ACD,

所以 , ,

故 .

即 2=90.

(理由略)

2.如图所示,已知:2,

求证:4=180.

分析:(让学生自己分析)

证明:(学生板书)

小结

我们是如何得到平行线的'性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.

作业:

1.如图,AB∥CD,1=102,求2、3、4、5的度数,并说明根据?

2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果B=40,2=75,那么1、3、C、BAC+C各是多少度,为什么?

3.如图,已知AD∥BC,可以得到哪些角的和为180?已知AB∥CD,可以得到哪些角相等?并简述理由.

5.3平行线性质(二)

[教学目标]

经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力

理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论

能够综合运用平行线性质和判定解题

[教学重点与难点]

重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念

难点:平行线性质和判定灵活运用

[教学设计]

一.复习引入

1.平行线的判定方法有哪些?

2.平行线的性质有哪些?

3.完成下面填空

已知:BE是AB的延长线,AD//BC,AB//CD,若 则

4. 那么a,c的位置关系如何?

二.新课

1.例1,已知a//c, 直线b与c垂直吗?为什么?

例2如图是一块梯形铁片的残余部分,量得 ,梯形另外两个角分别是多少度?

2.实践 与探究

(1)学生操作:用三角尺和直尺画平行线,做成一张

个格子的方格纸。观察并思考:做出的方格纸的一部分,

线段 都与两条平行线 垂直

吗?它们的长度相等吗?

教师给出两条平行线的距离定义:同时垂直于两条平行线,

并且夹在这两条平行线间的线段长度叫做两条平行线的距离。

问题:AB//CD,在CD上任取一点E,作 垂足F,问EF是否垂直DC?垂线段EF是平行线AB、CD的距离吗?

结论:两条平行线的距离处处相等,而不随垂线段的位置而改变

3.命题和它的构成

下列语句,分析语句的特点

(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。

(2)对顶角相等

(3)等式两边同加上同一个数,结果仍是等式

(4)如果两条直线不平行,那么同位角不相等

这些句子都是对某一件事情作出是或不是的判断

命题:判断一件事情的句子,叫做命题

(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项 (2)形式:通常写成如果,那么的形式,

三.巩固练习

1.等式两边乘以同一个数,结果仍是等式是命题吗?如果是,它的题设和结论分别是什么?

2举出一些命题的例子

四.作业

篇2:平行线的性质优秀教学反思

平行线的性质优秀教学反思

《平行线的性质》教学反思平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到,它的内容是后续学习的基本,所以加强学生对平行线性质的掌握及应用显得尤为重要。

这次的同课异构形式,让我在学习中发现了自己做课内容上的不足,也教学过程中找到了教学方法的欠妥当,而且在冯老师的指导下,了解了本节课内容的实质,并学会了分析、深挖教材的方法。基于我所备课的内容,我对这节课进行了较为深刻的'反思,并颇有收获。

一、教材分析

教师是用教材教,而不是教教材,但教师的教学内容及合理性仍然要依靠教材,而不能脱离教材,所以对于一名青年教师来说,深刻挖掘教材是我首先也必要做的一件事,只有深刻发现教材的安排特点,掌握教材安排的用意,才能更好的去理解掌握并传授给学生。教材的设计符合学生的认知特点,层层递进,所以深挖教材,把握教学重难点并合理分配课时,能够使学生对于内容的理解更深刻清晰。在平行线的性质第一课时中,重点内容为平行线性质的探究及应用,所以在授课过程中应将着眼点放在学生对性质的理解上,并强化学生基于性质之上的应用,使学生掌握并进行实际应用。并在挖掘概念的过程中提炼出内容的实质并注重知识的落实。

二、课标分析

数学课程标准明确指出,数学活动的发展依照观察、实验、猜想、证明的过程进行,由问题的特殊性转化到一般方式上,从而得出问题的结论。这样的活动过程符合学生的认知特点,并能够清晰的展示问题的思考过程,所以在授课时要严格贯彻数学课程标准的目标思想,这样便提示了我们掌握课标的重要性。

在平行线的性质一课中,教师采用数学活动让学生发现结论也可按照先观察一组角∠3与∠6的位置关系,然后动手实验度量出他们的度数并给出猜想,最后再另画一条直线d与直线a、b相交,去验证学生的猜想是否正确。通过这样的方式展开研究符合学生的认知特点,能够更清晰、深刻的掌握平行线的性质1:同位角相等,两直线平行。

篇3:《平行线的性质》优秀教学反思

《平行线的性质》优秀教学反思

七学年备课组组织了本学期第一次磨课活动,由我先设计了学案进行集体备课,明确独学、对学、群学的内容,学习目标等。12日在7年6班上了第一节课,提出三个不足:一是课题探究的内容太多,用时过多,只有通过测量探究猜想过于单一。二是由猜想得出性质后分析了文字语言、图形语言、符号语言。才让学生运用性质1来推导性质2和性质3。给学生造成误解,对教师提出的问题不理解,已得出了性质还要证明。三是对学内容不明显。经过磨课后,13日在7年5班又上了一节,把课题探究改为先请同学们画出两条平行线被第三条直线所截,观察得到的同位角还相等吗?你是用什么方法得到的?让学生群学找验证方法,使学生思维更活跃。探究出性质1后,利用性质1来证明性质2和性质3,设计两个证明题。这样体现了独学和群学环节,还让学生的思路很清晰。但小组对学时不够深入,缺少学生点评易错点的分析。

通过磨课集思广益,统一了独学、对学、群学的认识,对自身教学设计思路和理念有很大提升。下面针对第二节课进行磨课反思如下:

本节的亮点1、复习提问时,采用对学方式让师友互考平行线的判定方法,1分钟后,提问学友。学生对学的时效性较强。都想给小组加分。

2、在探究平行线的性质时,让学生画两条平行线被第三条直线所截,观察构成的同位角有什么数量关系?你是怎么得到的?给3分钟小组群学。学生探究出4种方法:1是用三张纸条摆成两条平行线被第三条直线所截,平移一条平行线与另一条重合,得到同位角相等。2是通过画平行线观察平移三角板即是使同位角相等的过程。3是画好图后,用量角器测量同位角,可得两角相等。4是画好图后,把其中一个同位角剪下放到另一个角上可发现它们相等。但只演示了前两个方法,后两个没有全班交流。这两个演示非常形象、具体的.展示了平行线的性质:两直线平行,同位角相等。使学生很容易接受。在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力。通过多种方法开阔了学生思维,拓展了思路。教师又追问:如果两条直线不平行,同位角还相等吗?一名学生板演画出两条相交直线被第三条直线所截构成的同位角是不相等的。让学生明确性质的前提条件必不可少。

3、先探究出平行线的性质1后,给出两道证明题,(1题如图,已知a∥b,求证:∠2=∠3.

2题已知a∥b,求证:∠2+∠4=180°)。先让学生独学,有了一定想法后,再对学、群学。但此处对学不明显。让学生通过证明得到另外两条性质,发展了学生逻辑思维,增强了主动学习的意识,目的性很明确。

4、用一个版块,结合同一个图形,板书课前复习的平行线的判定和通过证明得到的平行线的性质的推理格式,加以对比,让学生观察它们有何不同?通过有形的具体实例,使学生在有了充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同。判定是由两角相等或互补的数量关系推出两直线平行的位置关系;性质是由两直线平行的位置关系推出两角相等或互补的数量关系。将文字语言、图形语言、符号语言三者相结合,同时渗透了数形结合思想。板书设计很合理,清楚,有利于学生对比、思考。

5、为了让学生明确什么是判定?什么是性质?我又安排了一个小游戏,猜猜他是谁?举出一名学生的特点,让大家猜,点出这个过程就是判定。指出一名学生王子超,让其他学生说他有什么特点?点出这个过程就是性质。通过这样的类比通熟易懂,学生接受较好。

本节的不足及改进措施1、我的教学语言不够精炼,还有一次口误。这是今后要避免和改正的,加强教学语言的备课。还要多听课,取长补短。力争做到精讲精练。

2、在师友对学时,没有训练师傅点评知识点的易错点,易混点。今后在培养学生点评上下功夫。多给学生展示发挥的空间,激发学生勤于深思、善于总结的学习潜能。

3、讲解和展示练习的时间不够,讲评由老师代劳,没时间让学生纠错。今后在教学中关注时间的合理安排。

篇4:《平行线的性质》优秀教学反思

本节课是学生学习了平行线判定之后学习的,学生对平行线性质的探索过程会比较简单。因此本节我先让学生量出同位角大小得出性质一,然后直接让学生口述性质二与性质三的证明方法,进行思考总结。

在教学中我尽量引导学生自己探索解决问题的方法。把未知的问题转化为已知的知识来解决。注重思想方法的形成。

性质的判定与性质要区别应用。学生容易混淆。这节课我让学生进行讨论,然后代表回答,最后给出示意图,帮助学生更好地理解和应用平行线的性质解决问题。

这个环节中让学生讨论并学会用辩证唯物主义的观点认识平行线的性质,进一步解决问题。

及时的巩固应用能帮助学生更好地理解平行线的性质。本节我设计几个例题,在巩固知识的同时锻炼学生的实际应用能力。学生积极性较高,但个别题目需要有理解熟练应用的过程。

当然,对于平行线的性质以及平行线的判定需要进一步的练习,这些将在第二课时进行。

篇5:《平行线的性质》优秀教学反思

本节课成功之处:

1、这节课是在学生已了解平行线判断方法的基础上进行的,所以我通过创设一个疑问:能不能通过两直线平行,来得到同位角相等呢,自然引入新课,激发学生的思考,进而引导学生进行平行线性质的探索。

2、整个课最突出的环节是平行线性质的得到过程,事先让学生准备好白纸,三角板,在上课时学生通过自主画图进行探索,得到猜想,再通过验证发现的。即在学生充分活动的基础上,由学生自己发现问题的结论,让学生感受成功的喜悦,增强学习的兴趣和学习的自信心。在探究“两直线平行,同位角相等”时,要求全体学生参与,体现了新课程理念下的交流与合作。

3、在教学中,设计了知识的拓展环节,加深了学生对平行性质的理解。

4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。重点做到以下三个方面的转变:

①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。

②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的`思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

不足之处在于学生对平行线的判定与性质区别运用存在问题。

篇6:《平行线的性质》优秀教学反思

《平行线的性质》教学反思平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到,它的内容是后续学习的基本,所以加强学生对平行线性质的掌握及应用显得尤为重要。

这次的同课异构形式,让我在学习中发现了自己做课内容上的不足,也教学过程中找到了教学方法的欠妥当,而且在冯老师的指导下,了解了本节课内容的实质,并学会了分析、深挖教材的方法。基于我所备课的内容,我对这节课进行了较为深刻的反思,并颇有收获。

一、教材分析

教师是用教材教,而不是教教材,但教师的教学内容及合理性仍然要依靠教材,而不能脱离教材,所以对于一名青年教师来说,深刻挖掘教材是我首先也必要做的一件事,只有深刻发现教材的安排特点,掌握教材安排的用意,才能更好的去理解掌握并传授给学生。教材的设计符合学生的认知特点,层层递进,所以深挖教材,把握教学重难点并合理分配课时,能够使学生对于内容的理解更深刻清晰。在平行线的性质第一课时中,重点内容为平行线性质的探究及应用,所以在授课过程中应将着眼点放在学生对性质的理解上,并强化学生基于性质之上的应用,使学生掌握并进行实际应用。并在挖掘概念的过程中提炼出内容的实质并注重知识的落实。

二、课标分析

数学课程标准明确指出,数学活动的发展依照观察、实验、猜想、证明的过程进行,由问题的特殊性转化到一般方式上,从而得出问题的结论。这样的活动过程符合学生的认知特点,并能够清晰的展示问题的思考过程,所以在授课时要严格贯彻数学课程标准的目标思想,这样便提示了我们掌握课标的重要性。

在平行线的性质一课中,教师采用数学活动让学生发现结论也可按照先观察一组角∠3与∠6的位置关系,然后动手实验度量出他们的度数并给出猜想,最后再另画一条直线d与直线a、b相交,去验证学生的猜想是否正确。通过这样的方式展开研究符合学生的认知特点,能够更清晰、深刻的掌握平行线的性质1:同位角相等,两直线平行。

篇7:《平行线的性质》优秀教学反思

本节课我采用了“餐桌式”教学模式。现在从以下几方面谈谈我的课堂情况:

首先,通过课前学生自信心的培养,激发了学生的自信意识、自我展示参与地激情。确定学习目标及核心问题使学生对本节课的探究任务更加明确,做到有的放矢,避免了学生盲目学习、盲目跟从老师的引导学习方式,进一步激发学生自主探究学习积极性。其次,在教学中通过学生课前预习、自主学习学生对本节课已经进行了初步的探究,这样不仅让学生了解了本节课的重点与难点,也为课堂节约了大量的操作时间。最后,课堂上通过小组内的交流基本达到问题的解决。在合作交流与拓展中,我给学生留了充分的独立思考时间、班内交流时间、自我展示机会。一方面培养了学生的自主思考、合作交流意识;另一方面也培养了学生的语言表达能力。在交流中发现学生的表现欲望强烈,虽说孩子们的语言表达或推理中出现了这样或那样的不足,但是从课中可以看出他们自信积极的团队合作精神,充分展现了餐桌式教学模式的优越性。

不足之处:板书不够详尽、完整。在学生发现归纳出平行线性质时,应该完整板书定理而不是只板书几何符号语言,这样只关注了几何符号语言发展又忽略了几何语言规范性。另外,在孩子们推理“做一做”时应规范板书推理过程,这样会使学生进一步体会推理的逻辑性、严谨性。

总之,本节课虽然存在不足,但总体来说学生对平行线性质定理的掌握很好,并且能对两种定理有区别地应用。本节课中无论是从知识技能目标达成,还是数学思考、问题解决能力的提高,良好情感养成方面都收到良好的效果。

篇8:《平行线的性质》优秀教学反思

回顾《平行线的性质》这节课的教学,收获颇多,遗憾不少,真的需要静下心来反思一下。

这节课的重点是平行线性质的探索,难点是平行线性质的应用。我通过复习“两直线平行的条件”,引出课题,让学生大胆地猜想,结合三线八角,辨识同位角、内错角和同旁内角,为接下来性质的探索和应用打下铺垫。

“义务教育阶段的数学课程,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,使思维能力、情感态度与价值观等多方面得到进步和发展”。因此,我让学生动手画三线八角,通过测量,剪剪拼拼,验证某一对同位角是否相等,让学生体会这一结论的正确性。接着,通过量和算的方法,另外两个性质也易验证。这时,定理的猜想和实证还停留在感性认识,从数学知识的逻辑性和连续性考虑,我让学生利用性质1去说明性质2和性质3,及时总结性质和符号语言。

数学教学是数学活动的教学,通过数学活动让学生掌握知识,在学生活动的过程中体现师生的交往、互动与共同发展。如要真正掌握平行线的性质必然先要学会它的应用,在此我设计了三个层次的例题:直接应用型;先判定后应用型;判定性质混合型。直接应用型侧重学生符号语言的规范表达,复杂类型的例题侧重对学生证明思路和方法上的引导,这两方面都是几何学习中的重点和难点。我先从一个简单的图形出发,对图形和条件作一定的改变,考察学生对知识的理解和掌握。同时,数学学习离不开练习和反馈,小结完成后进行目标检测,检查学生知识掌握情况。

从总体设计上,我觉得教学环节基本合理,重点难点突出,课标要求,体现了以学生为主体、以学生的发展为本的现代教学观,但课堂教学永远是“遗憾的艺术”,在本课教学中我感觉有两个地方值得推敲:一我的教学语言不够精炼,普通话不够标准。这是今后要避免和改正的,加强教学语言的备课。还要多听课,取长补短。力争做到精讲精练。二是整节课的节奏前半段不够紧凑,后面对时间的感觉又错了,以为时间不够,结果在关键部分没有展开让学生探究推理。这是这节课最大的缺憾。

教学设计的“预设”和教学内容的“生成”是一个动态、不可测的过程,由于对教材和学生的“预设”不到位,我备课和上课的过程中一直被某些环节的处理而纠结,例如例题的选取,例题的讲解,如何分析才能让学生“跳一跳,够得到”,灵活处理课堂“生成”的能力有待进一步提高。

推行新课程的主要场所是课堂教学,通过对这节课的自我反思,我深感自身的不足,也明确了今后努力的方向,力争使自己的课堂一步步成为“有效课堂”——“高效课堂”——“魅力课堂”。

篇9:《平行线的性质》优秀教学反思

4月6日在我校召开了一场有关于高效课堂的研讨会,应区教研室要求,我上了一节示范课。本节课我选择了一节有关于平行线性质和判定的综合应用课。

我理解的高效课堂应该是教师对学生数学思想的正确引导和数学学习方法的指导,以及学生对知识的正确理解和灵活运用。所以本节课我设计了五个环节。

第一环节,复习回顾——说一说,利用课本例题1对平行线判定的方法进行复习,增加了自己提问同伴回答的环节,提高了对本例题的要求,从方法、观察图形上对学生进行指导。

第二环节,应用知识——做一做,利用课本中的例3对平行线的性质进行复习,增加了求任意夹角的环节,为进一步的两到三步证明奠定基础。

第三环节,总结方法——辨一辨,总结方法中指导学生学会观察图像,明确每个图像中角与线的位置关系。

第四环节,深化提高——想一想,尝试用两步证明去解决一道关于命题的证明,让学生从中体验逻辑推理,一题多解,以及对知识的灵活运用。

第五环节,层层递进——考一考,对学生当堂所学内容进行检测,在书写过程中体会证明的逻辑关系,对学生的书写格式加以规范。

反思:能够完成本节课的教学任务,学生能够参与到所设计的教学活动中,效果较好。

需要改进的方面:在第一环节中的讨论应更具有多样性,给出例1的图形后应该将这道题目彻底放开,学生通过观察图像,自然得出由角相等得到线平行,或者由线平行得到角相等。老师应将学生回答的问题在黑板上板书并按性质和判定两类分开,按这样的方式比之前的设计应该更好一些。

篇10:高中数学指数函数及其性质优秀教案设计

教学目标:

1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。

2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。

3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。

教学重点、难点:

1、重点:指数函数的图像和性质

2、难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体

动感显示,通过颜色的区别,加深其感性认识。

教学方法:引导――发现教学法、比较法、讨论法

教学过程:

一、事例引入

T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?

S: --------

T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:

C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2  x )

S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),

从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数――点题。

二、指数函数的定义

C:定义: 函数 y = a x (a>0且a≠1)叫做指数函数, x∈R.。

问题 1:为何要规定 a >0 且 a ≠1?

S:(讨论)

C: (1)当 a <0 时,a x 有时会没有意义,如 a=3 时,当x= 就没有意义;

(2)当 a=0时,a x 有时会没有意义,如x= - 2时,

(3)当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。

巩固练习1:

下列函数哪一项是指数函数( )

A、y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x

二、函数图像的画法:

T:引入了指数函数的概念,有了函数的定义域之后,就应该研究函数的图像了。根据底数a 的规定,考虑两个特定底的指数函数 y = 2x, y =  的图像。

S作图,再投影;后演示动画比较

三、指数函数的图像和性质

C:(演示画图过程)(列表、描点、连线)

观察思考:(讨论)

C:问题 2:两个函数图像有什么共同点 ?又有何不同特征?

T:两个图像有何共同特点?

S:它们的图像都在x轴的上方,且都过同一个点(0,1)。

T:图像在x轴上方说明y>0,向下与x轴无限接近;过点(0,1)说明x=0时,y=1。

T:再看看它们有何不同之处?

S:当底数为2时图像上升,当底数为 时,函数图像下降。

T:说明当a=2即大于a>1时函数在R上为增函数,当a= 即大于0小于1时函数在R上为减函数

T:除此之外,还有什么特征?(S:------------)若在坐标系上画一条直线y=1?

S:当底数是2时,落在第一象限的图像都在直线y=1的上边,落在第二象限的图像都在直线y=1的下边,当底数是 时恰好相反。

说明--------

C:性质:

a>1

0

图像分布在一、二象限,与轴相交,落在轴的上方。

都过点(0,1)

第一象限的点的纵坐标都大于1;第二象限的点的纵坐标都大于0且小于1。

第一象限的点的纵坐标都大于0且小于1;第二象限的点的纵坐标都大于1。

从左向右图像逐渐上升。

从左向右图像逐渐下降。

(1)定义域:R

(2)值域:(0,+∞)

(3)过定点(0,1),即x=0时,y=1

(4)x>0时,y>1;x<0时,0

(4)x>0时,01.

(5)在 R上是增函数

(5)在R上是减函数

T: 问题 3:影响函数图像特征的主要因素是什么?

S:-------

四、例题示范

C:1、某种放射性物质不断变化为其它物质,每经过 1  年剩留的这种物质是原来的84。画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩留量是原来的一半(结果保留一个有效数字)。

同学做,后投影学生解答,进行分析;(好中差各一份)

T:①两个“原来的”的区别;②函数定义域的范围;③结果是一近似值。

C: 2、求下列函数的定义域:

(1) (2)

T:分析:(1)只要指数位置上的 有意义,则原函数有意义。

(2)只要指数位置上的 有意义,则原函数有意义。

C:解:(1)由 有意义得x ≠ 0,又 ≠ 0 ,∴ ∴ 原函数的定义域为 {x| x∈R且 x ≠ 0}。

(2)由 有意义,得 2 x - 1 ≥ 0 即 x ≥ ,又 ∴原函数定义域为{x | x ≥ }。

五、目标训练

1、当 a ∈____________时,函数 y = ax(a >0 且 a ≠1 ) 为增函数, 这时,当 x  ∈________________时, y >1。

2、若函数f(x)=( 2a + 1 ) x 是减函数,则a的取值范围是________________________。

3、函数 y = 的定义域是______________。

六、归纳小结

C: 1、本节课的主要内容是:指数函数的定义、图像和性质

2、本节学习的重点是:掌握指数函数的图像和性质

3、学习的关键是:弄清楚底数 a 的变化对于函数值变化的影响。只有彻底弄清并掌握了指数函数的图像和性质,才能灵活运用性质解决实际问题。

七、布置作业

x

x

x

x

篇11:高中数学指数函数及其性质优秀教案设计

一、教学类型

新知课

二、教学目标

1. 理解指数函数的定义,初步掌握指数函数的定义域,值域及其奇偶性.

2. 通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.

三、教学重点和难点

重点是理解指数函数的定义,把握图象和性质.

难点是认识底数对函数值影响的认识.

四、教学用具

投影仪

五、教学方法

启发讨论研究式

六、教学过程

1) 引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.

指数函数(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数

与 之间,构成一个函数关系,能

写出 与

之间的函数关系式吗?

由学生回答:

与 之间的关系式,可以表示为

.

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为

米,试写出

与 之间的函数关

系.

由学生回答:

.

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为

指数函数.

2)指数函数的概念(板书)

1.定义:形如

的函数称为指数函数.(板书)

教师在给出定义之后再对定义作几点说明.

2.几点说明 (板书)

(1) 关于对 的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若

会有什么问题?如

,此时

,

等在实数范围内相应的函数值不存在.

对于

都无意义,若

无论 取何值,它总是1,对

. 它没有研究的必要.为了避免上述各种情况的发生,所以规定

(2)关于指数函数的定义域 (板书)

教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,

也是一个确定的实数,对于无理指数幂,学过的有理指数

幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为

.扩充的另一个原因是因为使她它更具代表更有应用价值.

(3)关于是否是指数函数的判断(板书)

刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数.

(1)

, (2)

, (3)

(4)

, (5)

.

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3) 可以写成

,也是指数图象.

最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.

3.归纳性质

作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.

函数

1.定义域 :

2.值域:

3.奇偶性 :既不是奇函数也不是偶函数

4.截距:在 轴上没有,在

轴上为1.

对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于  轴上方,且与 轴不相交.)

在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少.

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近轴,  越大,图象上升的越快),并连出光滑曲线.

七、思考问题,设置悬念

我们已学习了指数函数的定义与有关性质,能否自己给出其图像呢?其图像有何性质?请学生自己下去思考,这就是我们下一节所要学习的。

作业:习题1、2、3

八、小结

指数函数的概念、定义域、值域、奇偶性

[高中数学指数函数及其性质优秀教案设计]

平行线的性质优秀教学反思

初中平行线的性质教学设计

平行线爱情散文

看电视优秀教案设计

《逍遥游》优秀教案设计

《将相和》优秀教案设计

《好孩子》优秀教案设计

《夹竹桃》优秀教案设计

《啄木鸟》优秀教案设计

平行线的识别说课稿

平行线的性质优秀教案设计(精选11篇)

欢迎下载DOC格式的平行线的性质优秀教案设计,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档