【导语】“cgek”通过精心收集,向本站投稿了16篇四则运算的意义和法则(人教版六年级教案设计),以下是小编帮大家整理后的四则运算的意义和法则(人教版六年级教案设计),仅供参考,欢迎大家阅读。
- 目录
- 第1篇:四则运算的意义和法则(人教版六年级教案设计)第2篇:分数除法的意义和计算法则(人教版六年级教案设计)第3篇:分数除法的意义和计算法则2(人教版六年级教案设计)第4篇:加法的意义和运算定律(人教版四年级教案设计)第5篇:正比例的意义(人教版六年级教案设计)第6篇:反比例的意义(人教版六年级教案设计)第7篇:百分数的意义(人教版六年级教案设计)第8篇:比的意义(六年级)(人教版六年级教案设计)第9篇:分数四则混合运算(人教版六年级教案设计)第10篇:分数混合运算2(人教版六年级教案设计)第11篇:正、反比例的意义(人教版六年级教案设计)第12篇:比的意义2(人教版六年级教案设计)第13篇:百分数的意义和写法(六年级)(人教版六年级教案设计)第14篇:数的意义2(人教版六年级教案设计)第15篇:分数四则混合运算2(人教版六年级教案设计)第16篇:分数、小数四则混合运算(人教版六年级教案设计)
篇1:四则运算的意义和法则(人教版六年级教案设计)
教学目标
1.归纳整理四则运算的意义.
2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.
3.总结四则运算中的一些特殊情况.
4.总结验算方法.
教学重点
整理四则运算的意义及法则.
教学难点
对四则运算算理本质规律的认识和理解.
教学步骤
一、复习旧知识,归纳知识结构.
(一)四则运算的意义.【演示课件“四则运算的意义和法则”】
1.举例说明四则运算的意义.
根据下面算式,说一说它们表示的四则运算的意义.
2+3 0.6-0.4 2×3 6÷2
100-15 2×0.3 0.6÷0.2
0.2+0.3 2×1.3
2.观察图片.
教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?
(加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)
3.你能用图示的形式表示出四则运算的意义之间的关系吗?
(二)四则运算的法则.【继续演示课件“四则运算的意义和法则”】
1.加法和减法的法则.
(1)出示三道题,请分析错误原因并改正.
错误分别是:数位没有对齐,小数点没有对齐,没有通分.
(2)三条法则分别是怎样要求的?
整数:相同数位对齐
小数:小数点对齐
分数:分母相同时才能直接相加减
思考:三条法则的要求反映了一条什么样的共同的规律?
(相同计数单位上的数才能相加或相减)
2.乘法和除法的法则.
(1)出示两道题:
口述整数乘法和除法的计算法则.
改编成小数乘除法计算:1.42×2.3 4.182÷1.23
(要求:学生在整数计算的结果上确定小数点的位置)
(2)教师提问.
通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?
(小数乘除法都先按整数乘除法法则计算)
有什么不同?
(小数乘、除法还要在计算结果上确定小数点的位置.)
(3)根据 ,说一说分数乘法和除法的法则.
分数乘法和除法比较又有什么相似和不同?
相似:分数除法要转化成分数乘法计算.
不同:分数除法转化后乘的是除数的倒数.
(三)练习.【继续演示课件“四则运算的意义和法则”】
计算后说一说各题计算时需要注意什么?
73.06-3.96 (差的百分位是0,可以不写)
37.5×1.03 (积是三位小数)
8.7÷0.03 (商是整数)
3.13÷15 (得数保留三位小数)
(要除到小数点后第四位)
(要先通分)
(四)法则中的特殊情况.【继续演示课件“四则运算的意义和法则”】
请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)
分类如下:
第一组:a+0=a a-0=a a×0=00÷a=0
第二组:a×1=a a÷1=a
第三组:a-a=0 a÷a=1
(五)验算.【继续演示课件“四则运算的意义和法则”】
1.根据四则运算的关系,完成下面等式.
2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?
(加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)
3.练习:先说出下面各算式的意义,再计算,并进行验算.
4325+379 47.5-7.65 18.4×75
84× 587.1÷0.57 ÷
二、全课小结.
这节课我们对四则运算的意义和法则进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.
篇2:分数除法的意义和计算法则(人教版六年级教案设计)
教学目标
1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。
3.培养学生分析能力、知识的迁移能力和语言表达能力。
教学重点和难点
正确的归纳出分数除以整数的计算法则,并能正确地进行计算。
教学过程设计
(一)复习导入
1.投影,看乘法算式写出两道除法算式。
6×7=42
( )÷( )=( )
( )÷( )=( )
问:谁还记得整数除法的意义是什么?
板书:积 一个因数 另一个因数
师:这节课我们来学习分数除法的意义和计算法则。(板书课题)
首先研究分数除法的意义。(板书:意义)
(二)新授教学
1.分数除法的意义。
我们来看下面的问题。(投影出示)
(1)每人吃半块月饼,5人一共吃几块月饼?
问:谁会列式计算?
问:你是怎么想的?
(2)两块半月饼,平均分给5个人,每人分得多少月饼?
问:怎样列式计算呢?
问:没有学过分数除法,得数怎么得来的?
(3)两块半月饼,分给每人半块,可分给几个人?
问:谁会列式计算?
问:为什么这样列式,怎样算出的得数?
观察这三个算式,它们之间有什么联系?
同桌讨论,指名回答。
生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。
板书:积 一个因数 另一个因数
问:与整数除法对比一下,分数除法的意义是什么?
同桌互相说一说,指定2~3名学生说。
板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。
师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。
做一做:(同学们做在书上。投影订正。)
根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。
问:你根据什么写出得数的?
师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)
2.分数除以整数的计算法则。
为什么这样列式?
(2)根据题意画出线段图。
生:把1米平均分成7份,取其中的6份。
(3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。
师:有道理,结果也正确,还有别的方法吗?
师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。
学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?
师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。
(4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?
生:被除数不变,除号变乘号,除数变成了它的倒数。
(5)试着说一说分数除以整数的计算法则。
板书:分数除以整数( )等于分数乘以这个整数的倒数。
想:为什么要空几个字的地方?为什么要加“0除外”三个字?(补充板书:0除外)
问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。
计算法则是否会用呢?我们来自测一下。
投影“做一做”,学生做在书上,投影订正。
(三)巩固练习
1.计算下面各题。(投影)
2.判断下面的计算过程是否正确。对的举“√”,错的举“×”,并说明理由。(投影出示)
(2)题为什么对?举错的说说你的想法?1的倒数是几?
(3)错在被除数变倒数了,而除数没有变。问:这道怎么改?
(4)错在除号没有变成乘号。怎么改?
(5)错在除数没有变成倒数。怎么改?
去计算。)
师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。
下面我们计算几道题,看谁能正确运用计算法则。
3.计算:
4.想一想:如果a是一个自然数,
(3)用一个数检验上面的结果是否对。
(四)课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
(五)作业
课本32页第3,4,5,6题。
课堂教学设计说明
这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计
相关文章
“分数的意义”课后反思
我怎样教《比例的意义和基本性质》 论文
倡导有意义的学习方式
在小学数学教学中开展有意义学习活动的尝试
小数的意义
除法的意义
减法的意义
加法的意义和运算定律
复习小数的乘法和除法意义和法则
小数除法的意义和除数是整数的小数除法
篇3:分数除法的意义和计算法则2(人教版六年级教案设计)
教学目标
1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.
2.掌握分数除以整数的计算法则,并能正确的进行计算.
3.培养学生分析能力、知识的迁移能力和语言表达能力.
教学重点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学难点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学过程
一、复习引新
(一)说出下面各数的倒数.
0.3 6
(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)
(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:分数除法的意义和计算法则)
二、新授教学
(一).教学分数除法的意义(演示课件:分数除法的意义)
1.每人吃半块月饼,4个人一共吃多少块月饼?
教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个 ?求4个 是多少怎样列算式?( )
2.两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:2÷4
3.两块月饼,分给每人半块,可以分给几个人?
列式:
教师提问:说一说结果是多少?你是如何得出结果的?
4.组织学生讨论:分数除法的意义.
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.
5.练习反馈.
根据: ,写出 ,
(二)教学分数除以整数的计算法则
1.出示例1.把 米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)
(1)求每段长多少米怎样列算式?
(2)以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个 米平均分成2份,每份是3个 米是 米.
(3)教师板书整理.
(米)
2.教师质疑:如果把 米铁丝平均分成3段、6段怎样计算?
也可以这样想:把 米铁丝平均分成3段,就是求 米的 是多少,列式是:
把 米铁丝平均分成6段,就是求 米的 是多少,列式是:
3.教师继续质疑:如果把 米铁丝平均分成4段每段长多少米?怎样计算?
(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察 在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.
三、巩固练习
(一)计算下面各题.
学生独立完成,教师巡视,进行个别辅导.
(二)求未知数
1. 2.
(三)判断.
1.分数除法的意义与整数除法的意义相同.( )
2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.( )
3. ( )
篇4:加法的意义和运算定律(人教版四年级教案设计)
教学目标
(一)使学生理解加法的意义,并能在实际计算中应用.
(二)使学生掌握加法交换律,并会应用定律进行验算.
(三)培养学生观察、比较、概括推理的能力.
教学重点和难点
由于学生对加法的计算已经比较熟悉,对加法的意义及加法交换律也有了感性认识,所以这节课就是要明确地概括出加法的意义及加法交换律,使学生的认识由感性上升到理性.因此教学重点应放在引导学生概括、总结加法的意义及加法交换律的过程中.由于学生对抽象概括定义、定律重视不够,又不习惯于用加法意义进行说理,因此这也是教学的难点.
教学过程设计
(一)复习准备
1.口算.
39+47 83+15 420+180
47+39 15+83 180+420
2.口答.
(1)小明栽了18棵杨树和14棵柳树,他一共栽了多少棵树?
(2)小敏做了25朵红花,做的黄花比红花多5朵.做黄花多少朵?
(3)赵强读一本书,已经读了46页,还有58页没读,这本书共有多少页?
(二)学习新课
师:我们已经学过了加法的计算方法,今天要在学加法知识的基础上,明确概括出加法的意义,并且能应用它解答实际问题.(板书:加法的意义和运算定律)
1.教学加法的意义.
(1)例 一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
读题后,师生共同完成线段图:
学生独立解答:
137+357=494(千米)
加数 加数 和
答:北京到济南的铁路长494千米.
提问:
①这道题为什么用加法计算?
②加法是一种什么样的运算?
③要合并的两个数指的是什么数?合并成的一个数指的是什么数?
引导学生明确:要求北京到济南铁路的长度,就要把北京到天津的铁路长137千米和天津到济南的铁路长357千米这两个数合并起来,所以要用加法计算;加法是求两个数合并成一个数的运算;要合并的两个数是137千米和357千米,合并成的一个数是494千米.
启发提问:加法的意义是什么?说说看.
引导学生概括出加法的意义:“把两个数合并成一个数的运算,叫做加法”.
教师板书加法的意义.
练一练
练习十一第1题,应用加法的意义说明各题为什么用加法计算.
在学生独立计算的基础上,教师强调要合并的两个数和合并成的一个数分别指的是什么数,从而让学生更深刻理解加法意义,并会运用它解决实际问题.
(2)教学加法各部分名称.
提问:例1中的137和357在等式中叫什么数?(加数)它们相加得到的494叫什么数?(和)
教师板书.(写在例1算式的下面)
教师联系加法意义说明:相加的两个数也就是要合并的两个数,叫做加数,加得的数也就是合并的结果,叫做和.
反馈提问:你能根据加法的意义说明72+28=100这个算式的各部分名称吗?
(3)加法中有关0的问题.
提问:
①我们例1做的加法,两个加数是什么样的数?(是自然数)
②任何两个自然数相加的和与加数比较会怎样?(相加的和会比原自然数大)
③0和一个自然数相加的和会怎样呢?(0和自然数相加还得原来的自然数)
引导学生讨论:
0的加法可能有哪几种情况?举例说明.
在学生讨论的基础上,使学生明确:一个数加上0,还得原数.
(4)阅读课本第47页“加法的意义”.
2.教学加法交换律.
根据加法的意义引出加法交换律.
提问:
(1)我们刚才计算例1时,求济南到北京的铁路长用137+357,根据加法的意义还可以怎么算?(还可用357十137)
(2)观察比较一下,这两种解法的结果,能得出什么结论?(可以得出:相加的两个加数交换位置,和不变.也可说出这是两个相等的式子,写成137+357=357+137)
教师指出:我们不能只根据一个例子就得出结论,我们必须多参考几组不同的数目.
(3)出示 18+17○17+18
350+150○150+350
274+100○100+274
873+127○127+873
提问:
①观察每组算式有什么关系?○里应填什么符号?
引导学生明确:每组算式里加数是一样的,和也一样,每组两个算式是相等关系,○里应填“=”.
②这几组算式有什么共同特点?你发现了什么规律?
引导学生明确:这几组算式的共同点是,两个数相加,其结果只与加数的大小有关,而与这两个加数的顺序无关.因此可以得出:交换加数的位置,它们的和不变.
教师明确:你们发现的这个规律,就叫做加法交换律.
板书:“两个数……,它们的和不变.”
教师继续指出:上述几组算式说明,每组等式只能表示两个具体的数交换位置和不变,但不能表示任意整数.大家想一想,怎样用字母把加法交换律表示得既简单又清楚呢?
学生看书自学:第48页.
反馈提问:
什么叫加法交换律?怎样用字母公式表示?过去在什么地方应用了这个定律?
教师板书加法交换律的字母公式:
a+b=b+a
引导学生小结出:过去学过的加法的验算方法既可以用交换加数的位置再加一遍,也可以利用原来的竖式从下往上加一遍.
教师指出:学习了加法交换律,可以进行加法验算,要会运用定律.
练一练
现在用你们学过的知识做第48页的“做一做”.
订正题时要说出根据,以进一步巩固加法交换律的概念及其应用.
3.总结.
(1)说一说加法的意义是什么?
(2)什么叫加法交换律?它的字母公式是什么?怎样应用加法交换律?
(三)巩固反馈
1.口答.(用加法意义说明算法)
玉门县要修一条公路,已经修了400千米,还有260千米没修,这条公路有多少千米?
2.下面各式哪些符合加法交换律?
140+250=260+130 260+450=460+250
20+70+30=70+30+20 a+400=400+a
3.根据运算定律在“□”里填上适当的数.
(1)□+55=55+42 (2)a+44=□+□
(3)38+35=□+38 (4)48+□=72+□
订正时,要求学生严格按照定义、定律来加以说明.
(四)作业
练习十一第2~4题.
课堂教学设计说明
加法是数学中最基本的运算方法之一.在前三年中学生已经学会加法的计算方法,对加法的意义也有了感性认识,这节课就是在学生已经学过的加法知识的基础上,明确概括出加法的意义,使学生对加法的认识从感性上升到理性.不仅理解加法的意义,而且还能用它解决实际问题;不仅概括出加法运算定律,而且进一步用字母式子表示,为以后学习“用字母表示数”打下基础.
由于本节知识都是在已学的基础上进行的,因此要突出观察、比较、抽象、概括的过程.新课分为两部分.第一部分学习加法的意义,通过学生独立解答例题后,在讨论的过程中,明确加法是一种什么样的运算,从而引导学生概括出加法的意义,并用加法的意义对具体问题进行说理,以加深学生对加法意义的理解和应用;第二部分学习加法交换律,通过对例题的不同解法及对几组算式的观察、比较,找出它们的共同点,启发学生总结出一般规律.在教学过程中,力争充分体现学生参与学习的全过程,并在其中使学生的观察,概括能力得到提高.
本节课采取边讲边练的形式,及时反馈,目的明确,最后再进行综合练习,以加深学生对概念的理解和应用.
板书设计
加法的意义和运算定律
例1 一列火车,从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
137+357=494(千米)
加数加数和
357+137=494(千米)
答:北京到济南的铁路长494千米.
把两个数合并成一个数的运算,叫做加法.
18+17 17+18
350+150 150+350
274+100 100+274
873+127 127+873
两个数相加,交换加数的位置,它们的和不变.这叫做加法交换律.字母公式:
a+b=b+a
篇5:正比例的意义(人教版六年级教案设计)
教学目标
1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。
2.学会判断成正比例关系的量。
3.进一步培养学生观察、分析、概括的能力。
教学重点和难点
理解正比例的意义,掌握正比例变化的规律。
教学过程设计
(一)复习准备
请同学口述三量关系:
(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。
(学生口述关系式、老师板书。)
(二)学习新课
今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。
幻灯出示:
一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?
生:60千米、120干米、180千米……
师:根据刚才口答的问题,整理一个表格。
出示例1。(小黑板)
例1 一列火车行驶的时间和所行的路程如下表。
师:(看着表格)回答下面的问题。表中有几种量?是什么?
生:表中有两种量,时间和路程。
师:路程是怎样随着时间变化的?
生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……
师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。
(板书:两种相关联的量)
师:表中谁和谁是两种相关联的量?
生:时间和路程是两种相关联的量。
师:我们看一看他们之间是怎样变化的?
生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。
师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?
生:路程由480千米变为420千米、360千米……
师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)
生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。
师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?
(分组讨论)
师:请同学发表意见。
生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。
师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?
师:根据时间和路程可以求出什么?
生:可以求出速度。
师:这个速度是谁与谁的比?它们的结果又叫什么?
生:这个速度是路程和时间的比,它们的结果是比值。
师:这个60实际是什么?变化了吗?
生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。
驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。
师:谁是定量时,两种相关联的量同扩同缩?
生:速度一定时,时间和路程同扩同缩。
师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。
(学生口算验证。)
生:都是60千米,速度不变,符合变化的规律,同扩同缩。
师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。
师:谁能像老师这样叙述一遍?
(看黑板引导学生口述。)
师:我们再看一题,研究一下它的变化规律。
出示例2。(小黑板)
例2 某种花布的米数和总价如下表:
(板书)
按题目要求回答下列问题。(幻灯)
(1)表中有哪两种量?
(2)谁和谁是相关联的量?关系式是什么?
(3)总价是怎样随着米数变化的?
(4)相对应的总价和米数的比各是多少?
(5)谁是定量?
(6)它们的变化规律是什么?
生:(答略)
师:比较一下两个例题,它们有什么共同点?
生:都有两种相关联的量,一种量变化,另一种量也随着变化。
师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)
师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?
生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。
师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)
师:很好。请打开书,看书上是怎样总结的?
(生看书,并画出重点,读一遍意义。)
师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?
师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?
生:(答略)
师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。
(三)巩固反馈
1.课本上的“做一做”。
2.幻灯出示题,并说明理由。
(1)苹果的单价一定,买苹果的数量和总价( )。
(2)每小时织布米数一定,织布总米数和时间( )。
(3)小明的年龄和体重( )。
(四)课堂总结
师:今天主要讲的是什么内容?你是如何理解的?
(生自己总结,举手发言。)
师:打开书,并说出正比例的意义。有什么不明白的地方提出来。
(五)布置作业
(略)
课堂教学设计说明
第一部分:复习三量关系,为本节内容引路。
第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。
第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。
总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。
板书设计
篇6:反比例的意义(人教版六年级教案设计)
教学目标
1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用。
2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。
教学重点和难点
理解反比例的意义,掌握两种相关联的量变化规律。
教学过程设计
(一)复习准备
1.(出示幻灯)
一种练习本的数量和总页数如下表:
师:请回答下列问题。
(1)表中哪个量是固定不变的量?
(2)哪两种量是相关联的量?它们的变化规律是怎样的?
(3)表内相关联的两种量成正比例吗?为什么?
2.填空。(小黑板(一))
两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的关系叫做________关系。
3.判断下面各题中两种量是否成正比例。
(1)文具盒的单价一定,买文具盒的个数和总价( )。
(2)水稻产量一定,水稻的种植面积和总产量( )。
(3)一堆货物一定,运出的和剩下的( )。
(4)汽车行驶的速度一定,行驶的时间和路程( )。
(5)比值一定,比的前项和后项( )。
可选其中一、二题,说一说为什么?
师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)
(二)学习新课
1.出示例4。(小黑板(二))
例4 华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:
(1)分析表,回答下列问题。(幻灯出示)
①表中有哪种量?
②两种相关联的量是如何变化的?
③你能说出它们的关系式吗?
④相对应的每两个数的乘积各是多少?
⑤哪种量是固定不变的?
师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)
(2)同学们发言。
根据同学发言,用彩色粉笔画出箭头并加以说明:
①每小时加工的数量扩大,加工的时间反而缩小;当每小时加工的数量缩小,加工的时间反而扩大。它们变化的规律是:一扩一缩或一缩一扩,变化的倍数相同。(板书)
②两种量中相对应的两个数的积都是600。
(板书) 10×60=600 30×20=600 50×12=600
③从数量关系看:
(3)我们来总结一下反比例的意义是什么?
(4)上述小结让学生照板书内容自述。
2.出示例5。
例5 用600页纸装订同样的练习本,每本的页数和装订的本数有什么关系呢?请先填表后,再回答下列问题。
观察上表,回答下面的问题:
①表中有哪两种量?
②装订的本数怎样随着每本的页数变化?
③它们变化的规律是怎样的?
④题目中的600是哪种量?
⑤根据两种相关联的量,你能列出一个怎样的关系式?可以求出什么?
生:(答略)
师:我们通过这一例题再次总结一下反比例的意义。
看小黑板(一)中第二条空线,总结反比例的意义。
师:对照反比例的意义详说例5成什么比例。
生:装订的本数是随着每本页数的变化而变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。每本的页数和装订的本数的积总是一定的。如:
15×40=600 20×30=600 25×24=600
所以说每本的页数和装订的本数是成反比例的关系。
师:刚才你们对照例题总结得很好,它们的共同点是什么呢?
幻灯出示:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
(学生看幻灯,读一读。)
师:谁能对照反比例的意义说一说例4是成什么比例?
(学生看黑板叙述,老师在关系式上标出定量和它们的关系。)
生:加工的时间随着每小时加工数量的变化而变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量,它们的关系是反比例的关系。
3.学习字母公式。
师:如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),你能概括出成反比例的字母公式吗?
生:x×y=k(一定)。
师:很好。我们今天学习了反比例的意义。和正比例相比较,它们的相同点和不同点你能总结一下吗?(两人互相讨论)
教师指复习小黑板(一)(即填空),学生回答。
生:相同点是都有两种相关联的量,都有一个定量。不同点是,成正比例的量,两种相关联的量同扩同缩,而且相对应的两个数的商(比值)一定;成反比例的量,两种相关联的量一扩一缩,相对应的两个数的积是一定的。
师:大家总结得很好,要判断两种相关联的量成什么比例的量,就要抓住相对应的个数是商一定,还是积一定。这是判断两种量是成正比例还是成反比例的关键。
(三)巩固反馈
1.打开书看今天讲的内容,并划出重点。
2.看课本中的“做一做”,逐一回答书中的问题。
3.书中练习题4,用语言详叙判断成什么比例?为什么?
4.你能举出一个成反比例的例子吗?(自由发言)
5.练习判断两种量是否成反比例。
(1)煤的总量一定,每天的烧煤量和烧的天数( )。
(2)李叔叔从家到工厂,骑车的速度和所需要的时间( )。
(3)玉华做12道练习题,做完的与没做的题( )。
(4)长方形面积一定,它的长和宽( )。
(四)课堂总结
本节我们初步了解了反比例的意义,并能运用反比例的意义判断一些简单的问题。通过正、反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是成反比例的关系,要抓住两种相关联的量的变化规律,这是本质。今后我们还要继续研究。
(五)布置作业
练习题中第4,5题。
课堂教学设计说明
本节课是通过知识引进、知识讨论、知识运用总结进行的。
首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。
在引导学生学习正比例学习的基础上,启发学生主动、自觉地去观察、分析、概括、发现规律,从而既学到了新知识,又增长了自学能力。
幻灯演示、小组讨论、集体反馈,选用多样的教学手段,使枯燥的知识活起来,充分调动学生的积极性,激发学生的兴趣。
通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,培养了总结、区别、沟通的能力。练习的多样、及时,使学生加深概念的理解。
板书设计
篇7:百分数的意义(人教版六年级教案设计)
教学内容:
百分数的意义和写法(小学数学九年制义务教材第十一册).
教学目标:
通过教学,使学生正确理解百分数的意义,了解百分数与分数的异同,正确读写百分数.
教学重点:
百分数的意义.
教学难点:
百分数与分数的异同.
教学过程:
一、复习引入:
教师小结:分数既可以表示数量,也可以表示关系.
2.下面各句中的分数表示什么意思?(学生回答,教师在黑板上画出线段图.)
提问:单位一是谁?分数表示谁与谁的关系?
二、新课:
1.意义:上面这些表示关系的分率和倍数都可以用一种新的数来表示,这种数叫百分数.
(板书课题,并把上面句中和图中的分数改成百分数,指导读法.)
(1)参加课外小组的人数占全年级的70%.(读作:百分之七十)
(2)已经修了一条路的25%.(读作:百分之二十五)
(3)今年的钢产量是去年的120%.(读作:百分之一百二十)
提问:这些百分数在各句中分别表示谁与谁的关系?谁表示100份?
像这样表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.(补充板书)
追问:百分数是一种什么数?
2.指导写法:
写百分数时,先写分子,再写百分号(70%),百分号先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈写的要比分子小.
读百分数时,与分数的读法一样.(示范读法)
练一练:用手指在桌上写一写,然后读一读.
在本上写:25% 16.7% 1.25% 100% 131%
3.比较百分数与分数的异同:(小组讨论后指名发言,教师出示投影)
同:都是数,读法相同.
异:(1)意义不同:分数是表示把单位一平均分成若干份,表示这样的一份或几份的数,既可以表示数量,也可以表示关系.百分数是表示一个数是另一个数的百分之几的数,只能表示关系,不能表示数量.
(2)写法不同:写分数时,先写分数线,再写分母,最后写分子,分子、分母分别写在分数线的上下.写百分数时,先写分子,后面写上百分号.
(3)使用范围不同:分数的分子只能比分母小,分子大于分母的要化成带分数或整数,不是最简分数的要化成最简分数,分子必须是整数.而百分数的分子可以比分母小,也可以比分母大,还可以和分母相等,可以是整数,也可以是小数.
三、练习:
1.读百分数:(互相读)
1% 5% 99% 100% 300% 0.6% 38.3% 233.3%
2.写百分数:(两组互相看)
百分之七 百分之四十六
百分之五点三 百分之三百一十点六
百分之五十五 百分之四百
百分之零点一 百分之百
3.把下图中的阴影部分用百分数表示,说说阴影部分、空白部分各占整体的百分之几.
4.用阴影表示下面的百分数,说说百分数表示谁占谁的百分之几.
5.判断:(用手势表示)
(1)一本书,已经看了它的75%,还有25%没有看.( )
(2)一根绳子长50%米. ( )
(3)分母是100的分数叫百分数. ( )
(4)火车的速度比汽车快25%,火车的速度是汽车速度的125%. ( )
6.看图填空:
把( )看做单位一,( )占( )的60%,没走的路程占( )的( )%.
把( )看做单位一,( )相当于( )的32%,苹果树是( )的( )%.
把( )看作单位一,( )相当于( )的27%,现在用电是原来的( )%.
四、总结:
看着黑板概括一下今天的学习内容,你学会了什么?什么是百分数?怎样写?与分数有什么不同?
五、布置作业:
1.读书,复习今天的学习内容.
2.书第68页5~8.
六、板书设计:
篇8:比的意义(六年级)(人教版六年级教案设计)
教学目标
1.理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。
2.理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。
教学重点和难点
掌握比的意义,建立比的概念,能准确地求出比值。
教学过程
老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)
导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。
(一)准备题
(事先板书)口头列式解答。
1.一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?
2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?
板书: 100÷2=50(千米)
师:观察上面的两道题,它们有什么共同特点?(都用除法)
(二)讲授新课:比的意义
1.观察练习1。
问:3÷2表示什么?(3是2的几倍。)
谁和谁比?(长和宽比。)
2÷3表示什么?(2是3的几分之几。)
谁和谁比?(宽和长比。)
师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。
板书:长和宽的比是3比2。宽和长的比是2比3。
也就是说,3÷2可以说成3比2,2÷3也可以说成2比3。
提问:3分米、2分米都表示什么?(长度)
师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。
2.观察练习2。
提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?
师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即 100∶2可以说成 100比2。)
路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度。)
3.归纳总结。
师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上“比”。)什么叫做比?(学生讨论后,老师归纳并板书。)
板书:两个数相除又叫做这两个数的比。
4.练一练。(投影)
(1)书法小组有男生6人,女生5人,男女生人数的比是( )比( ),女生人数和男生人数的比是( )比( )。
(2)小红3小时走11千米,小红所行路程和时间的比是( )比( ),这个比表示( )。
提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)
(三)比的写法和各部分名称
师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)
3比2 记作3∶2
2比3 记作2∶3
100比5 记作100∶5
“∶”叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。用比的前项除以比的后项,所得的商叫做比值。
提问:比的前后两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)
比值可以是哪些数?(分数、小数、整数)
练习:你会求比值吗?(板书)
100∶2=100÷2=50
(老师说明:求比值和解答应用题不同,不写单位名称。)
(四)比、除法、分数之间的关系
师:两个数相除又叫做两个数的比,比和除法到底有什么关系?
学生讨论,老师出示投影。
生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。
师:为什么要用“相当于”这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。
提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0。)那比的后项可以是零吗?(不可以)
师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成
成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。
提问:比和分数有什么关系?
生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)
师:分数是一个数,所以比同分数也是“相当于”的关系。
(五)反馈练习
1.第56页的“做一做”,学生动笔在本上做。
2.(投影)把下面的比写成分数形式。
3.选择答案。
航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是
[ ]
4.判断正误:(举反馈牌)
(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的
( )
(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。
( )
( )
师:写比要注意比的顺序,前、后项不能颠倒。
(六)课堂总结
今天我们学习的是书上第55页至56页的知识。(让学生打开书看)你都学会了哪些知识?
(七)布置作业
(略)
课堂教学设计说明
本节课是在学生学过分数与除法的关系、分数乘除法的意义和计算方法以及分数乘除法应用题的基础上进行的,因此本课从除法应用题入手,通过复习同类量相除,不同类量相除的内容,引出“比”的概念,培养了知识迁移能力。在理解比的意义过程中,让学生通过观察、分析归纳出比的意义,体现了概念教学的特点,使学生不仅获取了新知识,也培养了学生自学能力和分析归纳能力。课后练习,重在加强学生对概念的理解,及时反馈了学生掌握概念的情况。
篇9:分数四则混合运算(人教版六年级教案设计)
教学目标
1.掌握分数四则混合运算的运算顺序,并能正确地计算分数四则混合运算式题。
2.提高学生的自学能力、逻辑推理能力及计算能力。
3.培养学生良好的学习习惯。
教学重点和难点
掌握分数四则混合运算的运算顺序,养成良好的学习习惯,提高做题的正确率。
教学过程设计
(一)复习准备
1.板演练习:
(1)88÷2×10+1(2)88÷[2×(10+1)]
2.口算:
3.填空:
4.订正板演题。
提问:这两道题是我们以前学过的整数四则混合运算式题,那么运算顺序是什么?(同级运算从左往右依次演算;有两级运算的四则混合运算,应该先算乘除法即二级运算,再算加减法即一级运算;在含有括号的算式中,应该先脱掉小括号,再脱掉中括号。)
(二)学习新课
1.引出课题。
提问:这两道题与板演题有什么相同之处?有什么不同之处?(相同点:都是四则混合运算;不同之处:板演题是整数四则混合运算,这两道题是分数四则混合运算。)
今天,我们就一起来学习分数四则混合运算。(板书课题:分数四则混合运算。)
2.讲授新课。
(1)小组讨论:想一想,分数四则混合运算的运算顺序是什么?
(2)汇报讨论结果:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。
(3)讨论例题。
①对例1提出问题:这个算式里含有几级运算?应该先算什么?再算什么?(这个算式含有两级运算,应该先算除法,再算加法。)
试做例1。
用投影仪进行订正,并请有错误的同学找出错误的原因,防止再出现类似的错误。
②对例2提问:这个算式里既有小括号又有中括号,应该怎样计算?(应该先脱掉小括号,再脱掉中括号。)
试做例2。
用投影仪进行订正,找出错误原因,并加以改正。
(4)提醒教师注意,学生计算时,要加强巡视,随时发现问题,随时给予辅导和纠正。
(三)巩固反馈
1.全体齐练基本练习。先说出运算顺序,再计算。
同组的两位同学互相说说这两道题的运算顺序,在练习本上完成,比赛看谁做得又对又快。
用投影仪进行订正。
2.游戏练习,提高学生做题兴趣。
游戏方法:一、三、五组同学完成第(1)题,二、四、六组同学完成第(2)题,做完后两人交换检查。如果同组同学做对了,请你画上“√”,如同组同学做错了,你们一起找出错误原因,并且改正过来,看看哪些组完成得快。
3.变式练习。
和是多少?)
②看谁做得快?(很显然,如果用简便方法计算,则会做得又对又快。)所以,应大力表扬用简便方法做得对的同学。
(2)按照下图的顺序进行计算,然后列出综合算式:
让学生根据框图列式计算,可以先分步列式计算,再列成一个综合算式计算。这样不仅可以渗透一些程序的思想,也可以培养学生列综合算式的能力。
(3)说出下面图形的名称,并计算出表面积。
复习长方体和正方体的表面积,可以先让学生识别图中表示的是什么形状,再想表面积应该怎样计算。由于已知数据都是分数,所以要让学生注意检查列式计算,避免错误。
(四)课堂总结
今天,我们一起学习了分数四则混合运算(用投影出示),请熟记下列口诀:
看到四则混合题,找找括号有没有,
先小后中脱掉它,步步认真要仔细。
要是没有括号的,先算乘除再加减,
逐步验算要及时,巧妙灵活一定对。
(五)布置作业
第70页第1题,第70页第2题(后两题),3题。
课堂教学设计说明
学生已通过第七册的学习,对整数、小数四则混合运算的运算顺序较熟悉了,本册教学分数加、减法和分数乘、除法时,又出现过一些两步计算的混合运算式题,所以,本教案没有再详细地说明运算顺序,而是强调分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。
学习新课的过程,着重是教师引导,学生通过小组讨论获取了新知,掌握了运算顺序和计算方法。
巩固练习的设计有层次,有坡度。先安排了基本练习,全体齐练;接着为了提高学生的学习兴趣,掌握检查的方法,养成检查的习惯,安排一个团结协作的游戏;最后是一组变式练习,不仅指出能够简算的可以简算,还解决了一些简单的实际问题。
篇10:分数混合运算2(人教版六年级教案设计)
教学目标
使学生掌握分数乘加、乘减混合运算.
教学重点
1.掌握分数混合运算的顺序
2.会用乘法的运算定律在分数乘法中进行简算
教学难点
分数乘法的简算
教学过程
一、复习
(一)说说你是怎样算的?
(二)看看下面每组算式,它们有什么样的关系.
○ ○ ○
(三)那么分数混合运算如何计算呢?能否应用运算定律简算呢?这节课我们来一起研究.
板书课题:分数混合运算
二、探索、悟理
(一)出示例题
(二)读题之后请同学试做(板演在黑板上)
教师:这道题应该先算哪一步,再算哪一步?(强调运算顺序)
(三)做一做
教师提问:你按怎样的运算顺序计算的?
(四)小结
教师提问:谁能说一说分数乘加、乘减这样的混合运算按怎样的运算顺序计算呢?
分数混合运算顺序:
在一个分数混合算式中,既有一级运算,又有二级运算,先做第二级运算,后做一级运算;在有括号的算式里,先做括号里边的,再做括号外边的.
(五)仔细观察下面两题,计算中有没有好方法使它们算得又快又准.
小组汇报结果.
= × ×
教师提问:说一说为什么这样算,依据什么?(乘法交换律、结合律、分配律)
教师说明:由这两题可以看出,乘法运算定律同样可以应用在分数中.
(七)做一做
三、归纳、质疑
(一)这节课学习了什么知识?(学生自己小结)
混合运算、分数乘法中的简算.
(二)你在学习中遇到了什么没有得到解决的问题吗?
四、训练、深化
(一)巩固混合运算
1.判断
(×) (×)
(√) (√)
2.计算
(二)巩固简算
1.填空
2.简算
(三)提高练习
五、课后作业
(一)用简便方法计算下面各题
篇11:正、反比例的意义(人教版六年级教案设计)
教学目标
1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.
教学重点
理解正反比例的意义,掌握正反比例的变化的规律.
教学难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
时间(时) 1 2 3 4 5 6 7 8 ……
路程(千米) 90 180 270 360 450 540 630 720 ……
1.写出路程和时间的比并计算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 这个比值表示什么意义?
(4) 360比5可以吗?为什么?
……
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
教师板书:商不变
(二)成反比例的量
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.
工效(个) 10 20 30 40 50 60 ……
时间(时) 60 30 20 15 12 10 ……
2.教师提问
(1)计算工效和时间的乘积.
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)
3.小结:有什么规律?(板书:积不变)
(三)不成比例的量
1.出示表格
运走的吨数 10 20 30 40
剩下的吨数 90 80 70 60
总吨数(和不变) 100 100 100 100
2.教师提问
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变
(四)结合三组题观察、讨论、总结变化规律.
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化
不同点:第一组商不变,第二组积不变,第三组和不变.
总结:
3.分别概括正、反比例的意义
4.强调第三组题中两种相关联的量叫做不成比例
5.教师提问
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式
三、巩固练习
判断下面各题是否成比例?成什么比例?
篇12:比的意义2(人教版六年级教案设计)
教学目标
1.理解比的意义,掌握比的读法和写法,认识比的各部分名称.
2.掌握求比值的方法,并能正确求出比的比值.
3.培养学生抽象、概括能力.
教学重点
理解比的意义,掌握求比值的方法.
教学难点
理解比的意义,建立比的概念.
教学过程
一、谈话引入
在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比.(板书:比的意义)
二、讲授新课
(一)教学例1
例1.一面红旗,长3分米,宽2分米.长是宽的几倍?宽是长的几分之几?
板书:3÷2= = 2÷3=
1.3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?
2.2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?
3.小结
(1)长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几.
(2)3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比.
4.练习
有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?
(二)教学例2
例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?
1.求的是什么?谁除以谁?也就是谁和谁进行比较?
2.汽车行驶路程和时间的比是100比2表示什么?
3.思考:单价可以说成是谁和谁的比?
工作效率可以说成是谁和谁的比?
商可以说成是谁和谁的比?
4.小结
通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比.
(三)归纳总结
引导学生观察板书 ,什么叫比?
教师板书:两个数相除又叫做两个数的比.
(四)练习
1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是( ),柳树和杨树棵树的比是( )
2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是( ).
3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是( ),青菜和萝卜单价的比是( ).
(五)比的各部分名称和求比值的方法(演示课件“比的意义”)
1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.
例如: 3比2 记作:3∶2
2比3 记作:2∶3
100比2 记作:100∶2
2.“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.
板书:
3.提问:比的前项和后项能随便交换位置吗?为什么 ?
4.练习:求比值
教师说明:求比值不写单位名称.
(六)比、除法、分数之间的关系(演示课件“比、除法、分数的异同”)
1.教师提问
(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?
(2)为什么要用“相当于”这个词?能不能用“是”?
(3)在除法中,除数不能是零,那比的后项呢
篇13:百分数的意义和写法(六年级)(人教版六年级教案设计)
教学目标
1.使学生了解百分数的意义,会正确读写百分数。
2.指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。
教学重点和难点
理解百分数的意义。
教学过程
(一)复习准备
1.在日常生活中,同学们会经常看到或听到这样一些数:(出示投影)
(1)在12届亚运会中,各国金牌情况如下:中国占40.3%,韩国占18.5%,日本占17.4%,其它国家占23.8%。
(2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。
提问:谁知道这些数是什么数?
师:这就是百分数。在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。什么是百分数?怎么读写百分数,是我们这节课研究的内容。
板书:百分数的意义和写法。
2.在学习新课之前,我们还要来复习有关知识。
提问:这两道题的结果表示的意义相同吗?
是一个分率。)
导入新课:由上面两道题可以看出,分数既可以表示量,又可以表示两数量之间的倍数关系。请你们看看下面题中的分数表示什么?我们今天学习的百分数又表示什么?
(二)讲授新课
(投影)
1.某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。六年级三好生占全年级的几分之几?五年级三好生占全年级的几分之几?
提问:第一问怎么列式解答?
提问:五年级三好生占全年级人数的几分之几?怎么做?
提问:根据所得的数,你能一眼看出哪个年级三好生人数的比例高吗?你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)
讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)
师小结:像这样分母不同的分数进行比较时,一般要进行通分,使分母相同。尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。下面我们把这两个数变成分母是100的分数。
几,也表示三好生和年级总人数之间的倍数关系。)
2.练习。(出示投影)
(1)一个工厂从一批产品中抽出500件,经过检验,有490件合格。合格的比率是多少?
品与产品总数之间的倍数关系。)
(2)学校图书馆有文艺书900本,有故事书450本,故事书占文艺书的几分之几?
3.概括百分数的意义。
什么?(表示一个数是另一个数的百分之几)
提问:请你们想一想,什么是百分数?百分数表示两个量之间什么关系?(分组讨论)
小结:表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做百分率或百分比。
提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?
4.学习百分数的读法和写法。
提问:百分数和分数比,相同点和不同点是什么?(相同点:都表示两个数量之间的倍数关系。不同点:形式不一样。)
百分数应该用什么形式表示呢?
(1)写法:写百分数时,通常不写成分数形式,而采用(%)表示。写百分数时,去掉分数线和分母,在分子后面添上百分号。例如:
(板书)百分之九十 写作90%;
百分之六十四 写作64%;
百分之一百零八点五 写作108.5%。
(2)读法:读百分数时,只要把百分号看作分母是100,百分号前面的数看作分子,就可以和分数一样读了。例如:
17%?读作百分之十七;
0.03% 读作百分之零点零三;
15.2% 读作百分之十五点二。
5.百分数与分数的联系和区别。(讨论)
百分数是分数中的一种情况。分数既可以表示一个具体数量,又可以表示一个数是另一个数的几分之几,所以分数后面既可以有计量单位,也可以没有计量单位;而百分数只表示两个量之间的倍数关系,所以没有计量单位。
(三)巩固练习
1.第125页“做一做”,在书上做,然后订正。
2.第126页第1,2题,做在练习本上。
3.(投影)判断:
(1)分母是100的分数叫做百分数。
( )
( )
(3)百分数的分母一定是100。
( )
(4)五(三)班45人,体育全部达标,达标率100%。
( )
4.填空:
(1)一本书看了40%,表示( )占( )的40%。如果书是100页,看了( )页;书是 200页,看了( )页。
(2)一条公路,修了25%,还剩( )%没修。
(3)火车的速度比汽车快25%,火车的速度是汽车的( )%。
这是一道难度较大的题,因为有了分数应用题的基础,可让学生讨论后解答。
5.一个工厂十月份的产值相当于九月份的百分之一百零八,写出这个百分数。十月份的产值比九月份的多了还是少了?
(四)课堂总结
这节课我们学习了哪些知识?(百分数的意义、读法和写法。)
你知道人们在日常生产和生活中都在什么时候用百分数吗?(在计算优秀率、合格率、体育达标率等方面。)
师:百分数的应用十分广泛,所以希望同学们学好百分数并学会在实际中应用。
(五)布置作业
(略)
课堂教学设计说明
本课引用日常生产、生活中运用的百分数的例子,导入新课,引起学生的学习兴趣。又通过对分数意义的复习,引出百分数的意义,为突破教学的重点、难点做了铺垫。同时初步渗透转化思想,使学生易于接受新知识。教案通过对分数、百分数的分析、比较,加深了学生对百分数意义的理解。在练习过程中,重点突出了百分数意义的练习,达到了在知识点的关键处或难点处进行重点练习的目的。在教案中列举了一部分生活中使用百分数的例子,目的是引起学生对百分数的兴趣,了解百分数在日常生产生活中的重要作用,让学生体会到百分数就在我们身边,逐步学会使用百分数。
篇14:数的意义2(人教版六年级教案设计)
教学目标
1.使学生比较系统地、牢固地掌握有关整数、分数、小数、百分数的基础知识.
2.进一步弄清概念间的联系与区别.
教学重点
使学生比较系统地、牢固地掌握整数、小数、分数、百分数的基础知识.
教学难点
弄清概念间的联系和区别.
教学步骤
一、铺垫孕伏.
1.填空【演示课件“数的意义”】
0、1、79、 、0.25、0.6、100、 、 、 、85%、30、90%、7、8、2.35……
学生分类填数:
2.导入:上题同学们填得很正确,这就是我们在小学阶段学习的几种数:整数、分数、小数、百分数.这节课我们就把这几种数的意义和有关知识进行一下整理和复习.(板书课题:数的意义)
二、探究新知【继续演示课件“数的意义”】
(一)整数
1.小组讨论.
2.师生总结.
自然数:0、1、2、3、……
自然数是整数.
教师说明:在小学只学大于0和等于0的整数,进入初中就要学习小于0的整数.
想一想:自然数有什么特征?
总结:最小的自然数是0,没有最大的自然数,说明自然数的个数是无限的.
(二)分数.
1.引导学生思考:
①把单位“1”平均分成若干份,表示这样的一份或几份的数叫什么数?(分数)
表示其中一份的数是这个分数的什么?(分数单位)
②在整数范围内能计算2÷9吗?有了分数以后能计算吗?为什么?
2.填空练习.
①把单位“1”平均分成4份,表示这样的3份是 ;把3平均分成4份,每一份是 .
② 的分数单位是( ),它至少再添上( )个这样的单位就成了整数.
3.教师说明:两个数相除,它们的商可以用分数表示.
即:
4.教师提问:同学们想一想,分数可以分为哪几类?
教师板书:
谁能说出真、假分数的意义及有关知识?(举例说明)
①分子比分母小的分数叫做真分数.真分数小于1.
②分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于1或者等于1.
③分子是分母的倍数的假分数可以化成整数.
④分子不是分母倍数的假分数可以化成带分数.
⑤反之,整数和带分数也可以化成假分数.
教师板书:假分数
教师说明:假分数、带分数、整数可以相互转化.带分数是由整数和真分数合成的数,它是分子不是分母倍数的假分数的另一种形式.
(三)小数.
教师引导:从分数的意义联想一下,小数的意义又是什么呢?还学了哪些有关的知识呢?你能举例说明吗?
教师板书:
教师说明:整数和小数都是按十进制计数法写出的数,其中个、十、百……以及十分之一、百分之-……都是计数单位.各个计数单位所占的位置,叫做数位.数位是按一定的顺序排列的.
(四)百分数.
教师提问:你们还记得百分数的意义吗?
教师板书:百分数(百分率或百分比):用%表示.
三、全课小结.
这节课我们整理和复习了数的意义及有关知识,并形成了知识网络,对数概念间的联系与区别有了更清楚的认识.
四、随堂练习【继续演示课件“数的意义”】
1.填空.
(1)把根3米长的铁丝平均分成7段,每一段长是这根铁丝的 ,每段长米 .
(2)分数单位是 的最大真分数是 ,它至少再添上( )个这样的分数单位就成了假分数.
(3)10个0.001是( ),10个0.01是( ),10个0.1是( ),10 1是( ),10个10是( ).
(4)最高位是百万位的整数是( )位数;最低位是百分位的小数有( )位小数.
(5)最小的四位数是( ),最大的三位数是( ),它们相差( ).
2.判断下面的说法是不是正确,并说明理由.
(1)自然数既可表示有“多少个”,又可以表示是“第几个”.
篇15:分数四则混合运算2(人教版六年级教案设计)
1.使学生掌握分数四则混合运算的运算顺序,并能正确计算分数四则混合式题.
2.提高学生的逻辑推理能力和计算能力.
3.培养学生认真计算、检验的良好学习习惯.
教学重点
掌握分数四则混合运算的运算顺序.
教学难点
培养学生良好的计算、检验的学习习惯,提高计算的正确率.
教学过程
一、复习引新
(一)口算
(二)说出下列各题的运算顺序.
169-72×2 35-〔2.34×(7.2-5)〕
1.教师提问:整数四则混合运算的顺序是什么?
(1)一个算式里,如果只含有同一级运算,按照从左往右的顺序进行计算.
(2)一个算式里,如果含有两级运算,要先算第二级运算,再算第一级运算.
(3)一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的.
2.教师谈话引入:分数四则混合运算的顺序是怎样的呢?今天我们一起学习分数四则混合运算.
板书课题:分数四则混合运算.
二、讲授新课
(一)教学例1
例1. (课件演示:分数混合运算例1)
1.教师提问:这个算式里含有几级运算?应该先算什么?再算什么?
2.学生尝试解答.
3.集体订正.
(二)教学例2
例2. (课件演示:分数混合运算例2)
1.请学生分组说一说这道题的运算顺序.
计算时,要先算小括号里面的,再算中括号里面的最后算括号外边的.
2.学生独立解答
=
=
=3
(三)先说出运算顺序,再计算.
1.
2.
(四)总结归纳
分数四则混合运算的顺序与整数四则混合运算的顺序相同,我们可能觉得不难,但却很容易算错,所以我们要养成好的计算习惯:要审清运算符号,确定好运算顺序,不丢数、不抄错数,认真计算每一步.
三、巩固练习
(一)先说出运算顺序,再计算.
1.
2.
3.
(二)按照下图指出的顺序进行计算,然后列出综合算式(课件演示:分数混合运算1)
(三)判断.(课件演示:分数混合运算2)
1.
=
=
=2
2.
=
=
四、课堂小结
分数四则混合运算的运算顺序是什么?进行分数四则混合运算时应注意什么?
五、课后作业
1. 2.
3. 4.
六、板书设计
教案点评:
该教学设计目的明确,重点突出,练习层次清楚,有坡度,启发学生选择合理的解题方法,在计算中培养了学生的思维品质,使思维的敏捷性、灵活性、创造性得到进一步发展。
探究活动
巧连四个“ ”
活动目的
1.巩固学生对四则运算顺序的理解.
2.培养学生的口算能力.
活动题目
在四个“ ”中间加上+、-、×、÷、( )等符号,使之组成分别等于0、1、2、3、4五个等式.
1.
2.
3.
4.
5.
活动过程
1.以小组为单位进行填写.
2.小组汇报答案.答案正确且方法多的小组为优胜组.
参考答案
1.
2.
3.
4.
5.
篇16:分数、小数四则混合运算(人教版六年级教案设计)
教学目标
1.使学生掌握分数、小数四则混合运算的运算顺序及计算方法,并能正确地进行计算。
2.训练学生认真审题,能够选择合理简便的解题方法。
3.培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。
教学重点和难点
教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。
教学难点:灵活、合理地运用不同的方法进行计算。
教学过程设计
(一)复习
1.第74页第1题。
(1)把下面的小数化成分数:
0.125 0.3 0.5 0.6 0.25 0.75
(2)把下面的分数化成小数:
以上各题用投影片出示,指名口答。
2.我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。
下面各题用什么方法进行计算比较简单?
提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?
提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)
(二)学习新课
以上这些计算方法是我们进行分数、小数四则混合运算的基本方法。
(板书课题:分数、小数四则混合运算)
(1)小组讨论:这道题怎样计算比较简便?(把小数化成分数计算比较简便。)
(2)全体同学在练习本上试做,通过试做,体会一下为什么用这种方法进行计算简便?
(3)订正,并且说说这种做法有什么好处?(因为计算分数乘、除法时,有时可以先约分再计算比较简便,所以,分数、小数乘除混合运算一般先把小数化成分数后再计算。)
(1)审题:例5与例4有什么不同之处?
(例4是分数、小数乘、除混合运算,例5是分数,小数四则混合运算。)
(2)想一想,做这道题的时候,我们应该注意些什么?(a.运算顺序;b.选择合理恰当的方法。)
(3)小组讨论:这道题是把小数化成分数算简便,还是把分数化成小数算简便?(把小数化成分数计算比较简便。)
(4)全体同学在练习本上试做。
(5)订正。
(6)小结:我们把题目中的小数都化成了分数,这样在乘除过程中,有时可以先约分,使得做起来比较简便,同时得到的是一个准确的结果。
(7)如果计算的结果允许取近似值,也可以先把分数化成小数,取它们的近似值进行计算。在本册教材中,一般要求只取两位小数,这种算法在现在电子计算机越来越被广泛使用的社会里是很有价值的,因为,大多数电子计算机都是用小数来计算的。请你用这种方法试做这道题:
≈5.2÷3.2-1.67×0.7(注意:这一步用“≈”)
=1.625-1.169
=0.456
订正此题,并且教师要强调:如果计算的结果允许取近似值,才可以把分数化成小数来计算。
3.小结。
两位同组的同学互相说一说:
(1)分数、小数乘、除混合运算,怎样计算比较简便?
(2)分数、小数四则混合运算,又怎样计算简便?
看书质疑。
(三)巩固反馈
采用分小组巩固练习的形式。
1.用题板做练习,大面积反馈。
举题板订正,再把两种不同的计算方法进行比较:
不难看出,第二种方法更简便一些。所以解题方法不是一成不变的,还要根据题目的具体情况,如数的特征、运算符号等决定怎样做简便就怎样做,故在掌握了一般方法的基础上,还要灵活运用。
2.互相帮助:1,3,5组同学做题(1);2,4,6组同学做题(2)。之后,同桌同学交换检查,指出错误,加以改正,使学生掌握检查的方法,并养成检查的习惯。
教师出示正确答案,哪组的同学都做对了就给予表扬。
3.全体同学齐做。
把题中的分数化成小数后再计算。(保留两位小数。)
≈13×0.56-16.24÷3.5
=7.28-4.64
=2.64
(四)课堂总结
通过今天的学习,你又学到了什么?(分数、小数的乘、除混合运算和分数、小数的四则混合运算。)在做题的时候,我们要注意什么?(运算顺序和根据不同情况采取不同的方法。)
(五)布置作业
第74页第2题(1),第3题(2),第4,5题。
课堂教学设计说明
本节课的重点、难点都是使学生能够合理、灵活地运用不同的方法进行计算。教学过程的设计紧紧围绕这一重点并在突破难点上下了功夫。不仅使学生掌握了一般方法,即分数、小数乘除混合运算一般先把小数化成分数后再计算的方法,还通过练习体现了一般方法也不是固定不变的,还要根据不同的情况合理、灵活地选择简便的方法,进行计算。
四则运算的意义和法则(人教版六年级教案设计)(通用16篇)




