下学期 4.9函数y=Asin(ωχ+φ)的图象2

时间:2022-11-28 17:13:35 作者:张嘉元张嘉圆 综合材料 收藏本文 下载本文

“张嘉元张嘉圆”通过精心收集,向本站投稿了5篇下学期 4.9函数y=Asin(ωχ+φ)的图象2,以下是小编帮大家整理后的下学期 4.9函数y=Asin(ωχ+φ)的图象2,供大家参考借鉴,希望可以帮助到您。

篇1:下学期 4.9函数y=Asin(ωχ+φ)的图象2

下学期 4.9函数y=Asin(ωχ+φ)的图象2

(一)教学具准备

直尺、投影仪.

(二)教学目标

1.掌握由 的变化过程,理解由 到 的变换步骤.

2.利用平移、伸缩变换方法,作函数 图像.

(三)教学过程

1.设置情境

师:上节课,我们学习了如何由 的图像通过变换得到 和 的图像,请同学复述一下变换的具体过程.

生:将 的图像通过振幅变换便得到 的图像

将 的图像通过周期变换就得到 的图像

师:今天这节课,我们将继续学习如何由 的图像通过变换手段分别得到 及 的图像,(板书课题:函数 和 的图像)

2.探索研究

(1)如何由 的图像通过变换得到 的图像

【例1】画出函数 , , , 的简图

师:由上一节画余弦函数的图像可知,函数 , 的图像可以看做把正弦曲线上所有的点向左平行移动 个单位长度而得到.

同学们能否用类比的方法由 的图像得到 和 的图像.

生:从 的图像向左平移 个单位长度而得到 ,即 的图像得到启发,我们只要把正弦曲线上所有的点向左平行移动 个单位长度,就可以得到 的图像,如把正弦曲线上所有的点向右平移 个单位长度,就可以得到 的图像.

函数  ,

在一个周期内的图像如图1所示:(用叠放投影胶片,依次叠放三个函数图像)

师:我们已经学过并且知道 与 图像是一种左、右平移关系,从例1中你能得到 与 的图像之间的联系吗?

生:函数 , (其中 )的图像可以看做把 的图像上所有的点向左(当 时)或向右(当 时)平行移动 个单位长度而得到的,这种变换叫做平移变换.

(2)如何由 的图像通过变换得到 的图像

【例2】画出函数 , 的简图.

解:函数 的周期 ,我们先画出它的长度为一个周期的闭区间上的简图.

列表

0

0

3

0

-3

0

描点,连线得图2

利用函数的周期性,我们可以把它在 上的简图向左、右分别扩展,从而得到它的简图.(用依次叠放投影片的方法投影展示上图)

师:函数 , 的图像,可以看作用下面的方法得到:先将 上所有的'点向左平移 个单位长度,得到函数 , 的图像;再把后者所有点的横坐标缩短到原来的 倍(纵坐标不变),得到函数 , 的图像;再把所得到图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),从而得到函数 , 的图像.

师:我们已经知道函数 与 是一种延 轴方向上的伸缩变换,从例2中你能得到 与 的图像之间的联系吗?

生:函数 , (其中 , )的图像,可以看作用下面的方法得到:先把正弦曲线上所有的点向左(当 时)或向右(当 时)平行移动 个单位长度,再把所得各点的横坐标缩短(当 时)或伸长(当 时)到原来的 倍(纵坐标不变),再把所得各点的纵坐标伸长(当 时)或缩短(当 时)到原来的 倍(横坐标不变).

我们小结一下上述步骤如下:

师:其步骤流程图如下:

这一过程体现了由简单到复杂,特殊到一般的化归思想.

函数 , (其中 , )的简图,可以用类似方法画出.

(3) 、、的物理意义

当函数 , (其中 , )表示一个振动量时, 就表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅.

往复振动一次所需要的时间 ,称为这个振动的周期;单位时间内往复振动的次数 称为振动的频率.

称为相位; 时的相位 称为初相.

3.演练反馈(投影)

(1)要得到函数 图像,只需将 的图像(      )

A.向右平移 B.向左平移 C.向右平移 D.向左平移

(2)函数 的一个周期内图像如图3.

则 的表达式

A.

B.

C.

D.

(3)把函数 的图像向左平移 个单位,再把图像上各点的横坐标压缩为原来的 ,所得的解析式为_________.

参考答案:

(1)C.把 右移 ,得

(2)D.因为 ,又 与 比较知,是其左移 而得,即

(3)变换过程如下:第一步得:

第二步得:

4.总结提炼

(1)了解三角函数图像的变化规律和方法,由 ,此步骤只是平移( ,左移 个单位; ,右移 个单位),而由 可由二条思路:

① 即先平移后压缩.

② 即先压缩再平移.

不论哪一条路径,每一次变换都是对一个字母 而言的,如, 的图像向右平移 个单位,得到的应是 ,而不是 ;又 的图像横坐标扩大到原来的2倍,应是 而不是 .

(2)作函数图像的方法有多种,如描点法,五点作图法,根据奇、偶利用对称法等等,平移、变换法只是诸多作图法中一种,它与五点作图法同样重要,希望大家多练习,掌握变换次序上的技巧.

(四)板书设计

课题________

1.如何由 的图像

作 的图像

例1

2.如何由 的图像

作 的图像

例2

变换法作 的图像的流程图

演练反馈

总结提炼

篇2:下学期 4.9函数y=Asin(ωχ+φ)的图象1

下学期 4.9函数y=Asin(ωχ+φ)的图象1

4.9函数的图像

第一课时

(一)教学具准备

直尺、投影仪.

(二)教学目标

掌握由

(三)教学过程

1.设置情境

函数 ( 、、是常数)广泛应用于物理和工程技术上、例如,物体作简谐振动时,位移 与时间 的关系,交流电中电流强度 与时间 的关系等,都可用这类函数来表示.我们知道,图像是函数的最直观的模型,如何作出这类函数的图像呢?下面我们先从函数 与 的简图的作法学起.(板书课题)―函数 与 的图像.

2.探索研究

(可借助多媒体)

(1)函数 与 的图像的联系

【例1】画出函数 及 ( )的简图.

解:函数 及 的周期均为 ,我们先作 上的简图.

列表并描点作图(图1)

0

0

1

0

-1

0

0

2

0

-2

0

0

0

0

利用这两个函数的周期性,我们可以把它们在 上的简图向左、右分别扩展,从而得到它们的简图.

的图像与 的图像之间有何联系?请一位同学说出 的值域和最值.

生: 的图像可以看做是把 的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)而得到的. , 的值域是 ,最大值是2,最小值是-2.

师: 的图像与 的图像有何联系?并请你说出 的值域和最值.

生: 的图像可以看做是把 的图像上所有点的纵坐标缩短到原来的 倍,(横坐标不变)而得到的, , 的.值域是 ,最大值是 ,最小值是 .

师:由例1中 、与 的图像的联系,我们来探求函数 ( 且 )的图像与 的图像之间的联系.

函数 ( 且 )的图像可以看做是把 的图像上所有点的纵坐标伸长(当 时)或缩短(当 )到原来的 倍(横坐标不变)而得到,这种变换称为振幅变换,它是由 的变化而引起的, 叫做函数 的振幅. , 的值域是 ,最大值是 ,最小值是 .

(2)函数 与 的图像的联系

【例2】作函数 及 的简图.

解:函数 的周期 ,因此,我们先来作 时函数的简图.

列表:

0

0

0

1

0

-1

0

函数 的周期 ,因此,我们先作 时函数的简图.

列表:

0

0

0

1

0

-1

0

描点作图(图2)

师:利用函数的周期性,我们可将上面的简图向左、右扩展,得出 , 及 , 的简图.

请同学们观察函数 与 的图像间的联系及 与 的图像间的联系.

生:在函数 , 的图像上,横坐标为 ( )的点的纵坐标同 上横坐标为 的点的纵坐标相等,因此 的图像可以看做是把 的图像上所有点的横坐标缩短到原来的 倍(纵坐标不变)而得到的.

同样, 的图像可以看做把 的图像上所有点的横坐标伸长为原来的2倍(纵坐标不变)而得到的.

师:由例2中, 、与 的图像的联系,请你探求函数 ( 且 )的图像与 之间在联系.

生:函数 ( 且 )的图像,可以看做是把 的图像上所有点的横坐标缩短(当 时)或伸长(当 时)到原来的 倍(纵坐标不变)而得到的.这种变换称为周期变换,它是由 的变化而引起的, 与周期 的关系为 .

3.演练反馈(投影)

1.画出下列函数在长为一周期的闭区间上的简图

(1)           (2)

2.函数 , 的周期是什么?它的图像与正弦曲线有什么联系.

3.说明如何由 ;由

参考答案:

1.

2.周期是 ,把 的图像上每个点的横坐标伸长 倍(纵坐标不变)即得 的图像.

3. 的图像沿 轴方向压缩 得 的图像(纵坐标不变);把 的图像上纵坐标缩短 倍(横坐标不变),即得 的图像.

4.总结提炼

(1)用“五点法”作 或 的简图时,先要确定周期,再将周期四等份,找出五个关键点:0, , , , ,然后再列表、描点、作光滑曲线连接五个点.

(2) 的图像可以看做是把正弦曲线 图像经过振幅变换而得到.

(3)函数 的图像可以看作是把 实施周期变换而得.

(4)作图时,要注意坐标轴刻度, 轴是实数轴,角一律用弧度制.

(四)板书设计

1.函数 与 的图像的联系

例1

联系

2.函数 与 的图像的联系

例2

联系

小结:演练反馈

总结提炼

篇3:4.9函数y=Asin(ωx+φ) 的图象(3)

教学目的:1.会用“五点法”画y=asin(ωx+ )的图象;2.会用图象变换的方法画y=asin(ωx+ )的图象;3.会求一些函数的振幅、周期、最值等.教学重点:1.“五点法”画y=asin(ωx+ )的图象;2.图象变换过程的理解;教学难点:多种变换的顺序及三角函数性质的综合应用.教学过程:一、复习引入:1.振幅变换:y=asinx,xîr(a>0且a¹1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(a>1)或缩短(00且ω¹1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的 倍(纵坐标不变).若ω<0则可用诱导公式将符号“提出”再作图。ω决定了函数的周期.3. 相位变换: 函数y=sin(x+ ),x∈r(其中 ≠0)的图象,可以看作把正弦曲线上所有点向左(当 >0时)或向右(当 <0时=平行移动| |个单位长度而得到. (用平移法注意讲清方向:“加左”“减右”)二、例题:   1.如图b是函数y=asin(ωx+φ)+2的图象的一部分,它的振幅、周期、初相各是(    )a.a=3,t= ,φ=- b.a=1,t= ,φ=- c.a=1,t= ,φ=- d.a=1,t= ,φ=- 2.如图c是函数y=asin(ωx+φ)的图象的一段,它的解析式为(    )图ca.            b. c.             d. 3.函数y=asin(ωx+φ)(a>0,ω>0)在同一周期内,当x= 时,有ymax=2,当x=0时,有ymin=-2,则函数表达式是       .图d4.如图d是f(x)=asin(ωx+φ),a>0,|φ|< 的一段图象,则函数f(x)的表达式为           .  图e5.如图e,是f(x)=asin(ωx+φ),a>0,|φ|< 的一段图象,则f(x)的表达式为          .6.如图f所示的曲线是y=asin(ωx+φ)(a>0,ω>0)的图象的一部分,求这个函数的解析式.图f7.函数y=asin(ωx+φ)+k(a>0,ω>0)在同一周期内,当x= 时,y有最大值为 ,当x= 时,y有最小值- ,求此函数的解析式.8.已知f(x)=sin(x+θ)+ cos(x-θ)为偶函数,求θ的值.9.由图g所示函数图象,求y=asin(ωx+φ)(|φ|<π)的表达式.图g图h10.函数y=asin(ωx+φ)(|φ|<π)的图象如图h,求函数的表达式.三、作业:《优化设计》p44  强化训练   p46 强化训练. 3~5,8

篇4:4.9函数y=Asin(ωx+φ) 的图象(5)

教学目的:三角函数图象和性质的综合应用 教学重点、难点:三角函数图象和性质的综合应用.一、例题:  例1 (1)已知 ,且 是第一象限角,则 的集合为(    )   a.      b.     c.     d. (2)函数 的最大值与最小值依次分别为   a.    b.    c.    d. (3)在锐角 中,下列结论一定成立的是(     ) a.     b.     c.      d. 例2奇函数f(x)在其定义域( , )上是减函数,且f(1-sinα)+f(1-sin2α)<0求角α的取值范围。

例3知 )且函数

的最小值为0,求 的值.

例4已知函数  的图像过a(0,1),b( ,1)两点,当函数的定义域为[0, ]时,恒有  成立,试确定实数a的范围.

例5 的周期为 ,且有最大值 .(1)求 .

(2) 若 为方程 的两根,( 的终边不共线),求 的值.

例6设定义域为一切实数的奇函数 是减函数,若当 时, 的取值范围.

二、作业:《绿色通道》五十.

篇5:4.9函数y=Asin(ωx+φ) 的图象(1)

教学目的:1.理解振幅、周期、相位的定义;2.会用五点法画出函数y=asinx、y=asinωx和 的图象,明确a、ω与φ对函数图象的影响作用;并会由y=asinx的图象得出y=asinx`y=asinωx和 的图象。教学重点:熟练地对y=sinx进行振幅、周期和相位变换.教学难点:理解振幅变换、周期变换和相位变换的规律教学过程:一、复习引入:在现实生活中,我们常常会遇到形如y=asin(ωx+ )的函数解析式(其中a,ω, 都是常数).下面我们讨论函数y=asin(ωx+ ),x∈r的简图的画法.二、讲解新课:   探究1画出函数y=2sinx  xîr;y= sinx  xîr的图象,你能得出什么结论?(课件“振幅”)。探究2 画出函数y=sin2x  xîr;y=sin x  xîr的图象,你能得出什么结论?(课件“周期”)。探究3画出函数   xîr;的图象,你能得出什么结论?(课件“相位”)。探究4画出函数y=sinx+1  xîr;y=sinx-1  xîr的图象,你能得出什么结论?(课件“上下移”)。函数 的图象.(课件“综合”,“小结”)三、小结 平移法过程:作y=sinx(长度为2p的某闭区间)得y=sin(x+φ)得y=sinωx得y=sin(ωx+φ)得y=sin(ωx+φ)得y=asin(ωx+φ)的图象,先在一个周期闭区间上再扩充到r上。沿x轴平移|φ|个单位横坐标  伸长或缩短横坐标伸  长或缩短沿x轴平移| |个单位纵坐标伸  长或缩短纵坐标伸  长或缩短

两种方法殊途同归(1) y=sinx相位变换y=sin(x+φ)周期变换y=sin(ωx+φ)振幅变换 (2)y=sinx周期变换       y=sinωx相位变换     y=sin(ωx+φ)振幅变换 四、作业:习题4.9 1.  2.  3.

二次函数y=ax2的图象

数学教案-二次函数y=ax2的图象

y=kx是什么函数

反比例函数的图象和性质说课稿

正弦函数、余弦函数的图象和性质的说课稿

反比例函数的图象与性质说课稿

简单的图象记忆法训练介绍

称象(第2课时)教案

《一次函数图象的应用》评课稿

图猜成语2所有答案

下学期 4.9函数y=Asin(ωχ+φ)的图象2(推荐5篇)

欢迎下载DOC格式的下学期 4.9函数y=Asin(ωχ+φ)的图象2,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档