高考数学必考题型答题技巧

时间:2023-06-14 03:35:27 作者:NancyZoo 综合材料 收藏本文 下载本文

【导语】“NancyZoo”通过精心收集,向本站投稿了10篇高考数学必考题型答题技巧,下面小编给大家整理后的高考数学必考题型答题技巧,希望大家喜欢!

篇1:高考数学必考题型答题技巧

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0两种情况为或型

②配成平方型:

(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。即:

9、观察法

10、代数式求值

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

12、恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14、平移规律

图像的平移规律是研究复杂函数的重要方法。平移规律是:

15、图像法

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域图像在X轴上对应的部分

值域图像在Y轴上对应的部分

单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像点处有值,图像最低点处有最小值

奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

方程的根

篇2:高考数学必考题型答题技巧

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

11、数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

12、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

14、概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

17、绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

18、与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

篇3:高考数学必考题型及答题技巧

题型一

运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。

题型二

运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

题型三

解三角函数问题、判断三角形形状、正余弦定理的应用。

题型四

数列的通向公式的求法。

篇4:高考数学必考题型及答题技巧

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

高考数学考试大纲

①单项选择考试范围。

集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。

②多项选择考试范围。

解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。

③填空题考试范围。

解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。

④解答题考试范围。

三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。

高考数学不及格影响院校录取吗?

高考有科目不及格,不会影响太大,只要总分足够高,还是能上好的大学,只是在同等分数下,你的分数不及格,学校可能会优先选择及格的学生。

高考数学题型归纳总结

无论是全国卷,还是各个省的自命题卷,虽然对知识的考察重点不同,但是,题型却有很多共性。

毕竟,就高中来说,虽然教材不一定一样,但是,所学知识点和学习内容都比较相近。

下面,就对高考数学中常考的题型进行总结,希望正在进行高考复习的同学可以参考。

随便打开一套试卷(江苏卷将在改版),我们可以看到,高考数学题主要由:选择题、填空题、解答题、证明题构成。

选择题(单选、多选)

高考数学选择题,基本上对高中数学所有知识点都有考察,一般来说,考察的知识点较为单一(你如果觉得难,那可能是因为没找对方法)。

所有高中学过的知识点,都能够在选择题部分找到它的“影子”,可以说,每一章都会有一道题来对学生进行考察。

比如,集合与简易逻辑,主要考察学生对集合概念的理解,比如:补集、交集、子集、空集等概念。

一般来说,这道题属于送分题。

很多省份出题时也将集合与函数结合起来进行考察。

比如,全国二卷理科第一题。

解题思路:这类题目,解题技巧就是直接在数轴上将各集合表示出来,然后交集并集区间一目了然,这道题直接选A。

除了集合,函数也是选择题的必考知识点,主要考察函数的性质(定义域、值域)、单调性、周期性、奇偶性、对称性等等。

这些性质,贯穿始终,对这些性质的理解与熟练运用,是解决函数类题目的关键。

解题思路:依然是“数形结合法”以及“特殊值法”。

比如,下面这道求单调区间的题。

直接画出函数的图形,根据x≥2与x<2分别作图,然后根据图形的增减性直接得到答案。

对于函数的考察,切线、最大值、最小值的考察也比较常见。

还有一类题目也经常考,那就是给出一个函数,然后让学生来选择其大致图像。

比如,下面这道题。

解题技巧:这类题目,肯定不能从正面着手去解答,可以先通过函数的性质(奇偶性、对称性等进行排除答案),然后再通过特殊值代入法进行解答。

首先,因为,sin(-x)=-sinx,所以通过f(-x)=-f(x)可以得到f(x)是奇函数,奇函数关于原点对称。

所以,直接排除B、C,答案在A、D中选择,然后,再用特殊值代入法,取x=π/2,f(π/2)>0,然后排除D(注意右x轴第一个交点是π);

所以,答案为A。

是不是通过口算就可以得到答案呢?

除了函数,数列、向量、三角函数、圆锥曲线、复数等知识点也是选择题的必考内容。

最近,随着新高考的改革,很多省份的考题中也加入了一些新题型,更加注重联合实际应用。

主要解题思路为:这类题型,题目会比较长,所以,先在心理上进行克服,不要害怕。

然后,仔细阅读题目,列出已知条件,再进行转换,将抽象的概念转换为我们熟悉的函数,只要能读懂题目,这类题目往往会更简单一些。

比如,下面这道题,结合“天问一号”热点出题,而最后的问题却只是考察运用lg函数的性质进行实际计算。

无论选择题考察的知识点是什么,其解题方法都比较类似。

总之,要把握一个原则,那就是“小题不能大做,小题要小做,小题要巧做”,由于是选择题,如何利用技巧快速准确得到答案才是关键,至于解题过程真的不重要。

所以,在平时练习的过程中,请熟练掌握诸如“直接法、特殊值法、数形结合法、排除法、正难则反法(倒推法)等”快速解题方法。

但是,想要做到快速、准确解题,基础知识的掌握也要足够扎实。

而一些省份加入了多选题,无疑让选择题的难度系数增加了不少。

填空题

高考数学填空题,考察知识与选择题考察点可能也会有重合。

所以,知识点还是那些知识,都比较基础,考察点也比较单一。

比如,函数与导数、三角函数、数列、二次曲线的焦点,离心率、圆锥曲线、概率论等。

解题思路同选择题,依旧是“小题小做,小题小做”。

常用的解题技巧,也同选择题。

下面,举个用“特殊值法”来快速解题的例子。

解答过程:

我们直接可以取m=1,然后得a1=s1=30,然后2m=2,s2=a1+a2=100,可以得到a2=70,然后,求得等差数列的公差d=40,然后a3=110,最后求的s3=a1+a2+a3=30+70+110=210。

是不是这道题通过特殊值法来解答超级简单呢?

最后,再强调一遍,在做选择填空题时,一定要注重技巧的使用,这样不光节约时间,准确率还高。

下面,我们再看看高考数学试卷中的重头戏——解答题。

解答题

关于解答题,相信大家都发现了一个规律,那就是每一道大题的考察知识点是固定的,顺序可能会有调整(偶尔调整一下顺序,考生就会措手不及)。

主要考察的知识点有以下几个。

① 三角函数、② 数列、③导数、④ 立体几何、⑤ 解析几何(圆锥曲线)、⑥ 极值不等式证明、⑦ 概率统计等。

① 三角函数解答题

比如,全国卷第一题一般都考察三角函数或者数列,较为简单,属于送分题。

通过我自己的观察,两个定理应用的最多,基本上属于必考知识点,那就是余弦定理、正弦定理。

不过,在我们做题的过程中,一定要将关键步骤写出来,不要因为简单而不写,切记切记,因为,你结果有可能会算错,这样还能拿到过程分。

举个例子。

② 数列解答题

关于数列题,最常见的考察点一个是证明,证明某某数列为等差(等比)数列,另外一个考点是求数列的通项。

主要利用已知条件,再配合等差、等比数列的性质,前n项和公式来解答。

比如,20全国二卷的第19题。

第一问:证明等比、等差数列,直接利用定义进行证明。

第二问:求数列的通项公式,有一定技巧在里面,这道题直接通过“解方程求得”。

③ 立体几何解答题

立体几何解答题,主要考察大家的空间想象力,题型有证明题,比如证明线线平行(垂直)、线面平行(垂直)、面面平行(垂直)。

计算题有计算点到面的距离、线面夹角大小(正余弦值)、线段的长度。

还有一类题型,问:“在某面(棱)上是否存在一个点,使得某某条件成立,比如,某条线平行于某个面等等”。

对于这种题目,大家直接用假设法,假设存在,然后进行证明,最后与已知条件矛盾或者无解,则不存在,如果,证明存在,那就假设成立。

立体几何的解题技巧:一般都需要借助于“空间坐标系”。

建立空间坐标系技巧:有棱柱、棱锥类的图形,还有线垂直于面、底面是正方形等已知条件,则要能想到建立空间坐标系。

但是,一般来说,第一问较为简单,可能不需要借助坐标系也能解答,所以,先快速解决第一问。

比如,下面这道题,给出的是一个四棱锥,底面是正方形,并且,PD⊥于底面ABCD,暗示非常明显了。

具体解答过程如下。

第一问,直接证明,比较简单。

第二问,先建立空间直角坐标系,然后,求出各个点的坐标,再利用线段长度,向量、用法向量求直线与面夹角的方法来解答。

④ 解析几何解答题

解析几何类解答题,让很多同学比较头大,这类题目一般有两到三问,特别是第二、三问,很多同学无从下手。

其实,这类题目的关键在于画出图形,然后,就会比较直观,如果,画不出来或者画不对图形,那么,做起来可能就会比较抽象,做题也很费劲。

所以,在平时做题的过程中,注意训练自己的作图能力。

常考的题目第一问比较简单,一般是求圆、椭圆、双曲线等的解析式。

主要考察的是这些圆锥曲线的性质(对称性、顶点坐标、焦点坐标、准线等等),熟练应用就能够解答出来。

第二问的解题思路:

一般是通过假设“动点”坐标,然后得到直线方程,再将直线方程与圆锥曲线方程联立,最后利用韦达定理(x1+x2、x1__x2),找到几个量之间的关系。

当然,有时候还会用到弦长公式,以及面积公式等等。

最后,再进行求解。

举个例子:下面这道题就是一道比较经典的高考数学解析几何题。

第一问:求椭圆方程,也就是求解a、b,根据点过直线等已知条件,再结合椭圆性质(顶点坐标)很容易求解。

第二问:相当于一个动点问题,最后转化为求二次方程的最值问题,求解过程较为麻烦,但是,只要作出图形,再在图形上进行比划就非常直观了。

⑤ 概率统计解答题

高考数学概率问题,一般来说都比较基础,主要考察对基本概念的理解以及应用统计学知识解决实际问题的能力,不过,需要静下心来读懂题目才行。

主要考察的知识点有:独立重复实验、回归直线方程、离散型随机变量(期望、方差)、茎叶图、样本的数字特征(中位数)、各种概率的计算等等。

易错点:概念混淆,比如,“互斥与独立”、“有放回抽样与无放回抽样”等等。

解题技巧:理解几种常见的概率类型,并且熟练牢记各个公式,定理。

举个例子:北京卷的一道题。

⑥ 极值不等式(导数)证明

这一部分内容相对来说属于比较难的知识点。

主要考察通过函数的导数来进行极值(最值)的计算,单调区间的求值等等。

然后,再利用函数的相关性质进行不等式的证明。

解题思路:

① 先求函数定义域,然后,再求导数,再确定单调区间,学会利用已知条件。

② 解后面几问的时候,一定要有意识利用前一问的结论。

③ 在讨论问题的时候,防止遗漏,注意分类讨论。

④ 对于不等式问题,要有意识往构造函数上靠。

举个例子:

第一问:比较常规,对函数直接求导,然后求出切点坐标,再求出切线方程,然后由切线求出与坐标轴交点坐标,最后,由三角形面积公式进行计算。

第二问:按照前面的思想,看到不等式就往函数上面靠。

然后,将原不等式进行一系列转换,最终得到函数g(x),然后,再通过化简得到h(x),最终转换为讨论h(x)的单调性问题。

看得出来,整个过程是挺复杂的,但是,思路却只有一个,那就是将不等式往函数转换,当转换为函数以后,就会有各种工具进行求解了。

比如,利用函数的求极值、单调性等等。

除了以上几类题目外,有些省份可能还有选做题,可能会有对极坐标方程的考察,所以,尽可能不要对高中知识点有遗漏。

总之,高考数学解答题,一般来说前面几道题较为基础,最后压轴题比较难,但是,第一问一般又比较容易。

所以,我们在做题的过程中,也要注意策略。

写在最后的话

高考数学,相对来说,基础题占到了将近70%,所以,如果你的目标不是清华北大,我想,只要基础足够扎实,概念清晰,130+并不是很难。

高考数学考察知识点比较固定,所以说,建议大家在平时做题的过程中,多总结积累模型以及解题技巧,然后,看到题目以后,立马会想到之前做过的类似题目。

然后,做题也就会又快准确率又高。

最后,在我们考试做题的过程中,注意策略,因为,在有限的时间内拿到更多的分数才是我们的终极目标。

篇5:高考数学必考题型及答题技巧

进入考试先审题

考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。

所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。

充分利用考前5分钟

很多学生或家长不知道,按照大型的考试的要求,考前五分钟是发数学卷时间,考生填写准考证。这五分钟是不准做题的,但是可以看题。发现很多考生拿到试卷之后

就从第一个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

节约时间的关键是一次做对

有些学生,好不容易遇到一个简单的题目,就一味地求快,争取时间去做不会做的题目,这是严重的误区。希望学生在考试的时候,一定要培养一次就做对的习惯,不要指望通过最后的检查力挽狂澜。

越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在里面出不来,抬起头来的时候已经开始收卷了。

高考数学答题注意事项

越是容易的题要越小心,因为这样的题很可能有陷阱。

出现怪异的答案的题要小心,因为很有可能计算错误。

任何带有数字的题要多问一下自己,有没有遗漏答案,如出现2的答案,就要考虑-2有没有可能也是答案。

最后一道填空题很有可能是难题,如果不能马上解出,应迅速放在一边进行下面答题,毕竟这道题再难也分数也有限,不应恋战。

篇6:高考数学必考题型及答题技巧

高考数学答题注意事项

(1)填写好全部考生信息,检查试卷有无问题;

(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);

(3)对于不能立即作答的题目,可一边通览,一边粗略地分为a、b两类:a类指题型比较熟悉、容易上手的题目;b类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

篇7:高考数学必考题型及答题技巧

1、三角变换与三角函数的性质问题

解题方法:①不同角化同角;②降幂扩角 ;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。

答题步骤:

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

2、解三角形问题

解题方法:

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

答题步骤:

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

3、数列的通项、求和问题

解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。

答题步骤:

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

4、离散型随机变量的均值与方差

解题思路:

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

答题步骤:

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

5、圆锥曲线中的范围问题

解题思路;①设方程;②解系数;③得结论。

答题步骤:

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

6、解析几何中的探索性问题

解题思路:①一般先假设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的假设代入已知条件求解;③得出结论。

答题步骤:

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。

数学常考题答题套路

恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。

圆锥曲线的题目优先选择它们的定义完成,直线与圆维曲线相交问题,若与弦的中点相关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。

求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。

求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。

三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。

篇8:2022高考数学必考题型答题技巧

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0两种情况为或型

②配成平方型:

(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。即:

9、观察法

10、代数式求值

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

12、恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14、平移规律

图像的平移规律是研究复杂函数的重要方法。平移规律是:

15、图像法

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域图像在X轴上对应的部分

值域图像在Y轴上对应的部分

单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像点处有值,图像最低点处有最小值

奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

方程的根

<<<返回目录

高考数学偷分技巧

调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

<<<返回目录

高考数学答题注意事项

1、规律的作息时间和合理的饮食习惯。每天保证有7个左右时间的休息,和饮食习惯不要在考前改变太多,适量多吃蛋白质高的食物。

2、经常对自己进行心理暗示。好的心理暗示作用巨大,只要你时刻提醒自己,你一定能克服心理障碍,发挥最好的考试状态。

3、集中经历和精神。把多余的事项放一边,全身心投入考前复习工作。不要太多剧烈的活动,适当静坐,能让你更加清醒,也能让你的头脑更加灵活

4、对自己准确定位,知道知己的优缺点。不盲目设定目标,给自己创造宽松自然的考前氛围,用平常心对待即将来临的高考。相信自己平时的努力一定能得到好的回报。

<<<返回目录

篇9:2023高考数学必考题型及答题技巧

数学常考题答题套路

恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。

圆锥曲线的题目优先选择它们的定义完成,直线与圆维曲线相交问题,若与弦的中点相关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。

求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。

求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。

三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。

篇10:2023高考数学必考题型及答题技巧

1.数列问题

数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

2.立体几何问题

立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

3.导数

导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

4.概率

概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

5.换元法

遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

6.二项分布

注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

7.绝对值问题

绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

8.平移

与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

高考数学答题注意事项

(1)填写好全部考生信息,检查试卷有无问题;

(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);

(3)对于不能立即作答的题目,可一边通览,一边粗略地分为a、b两类:a类指题型比较熟悉、容易上手的题目;b类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

高考数学重点题型答题技巧

数学题型特点和答题技巧

小升初数学必考题型

高考数学答题技巧及经验

高考散文阅读常见题型答题技巧

高中语文题型答题套路及技巧

高考数学函数答题方法和技巧

高考数学答题技巧有哪些介绍

高考数学答题

高考答题技巧点拨

高考数学必考题型答题技巧(精选10篇)

欢迎下载DOC格式的高考数学必考题型答题技巧,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档