【导语】“likai383978744”通过精心收集,向本站投稿了7篇二次根式中蕴涵的数学思想方法,今天小编在这给大家整理后的二次根式中蕴涵的数学思想方法,我们一起来看看吧!
- 目录
篇1:二次根式中蕴涵的数学思想方法
二次根式中蕴涵的数学思想方法
数学思想方法是数学的灵魂,是解决数学问题的金钥匙.为帮助大家理解数学思想方法,下面将二次根式中所蕴含的思想方法向大家介绍一下,希望对提高大家的学习有所帮助.
㈠ 不等式的思想
对于所求的数学问题,通过列不等式来解决问题的一种数学解题策略.
例1: 在两个连续整数a和b之间,a<
分析:距离10最近的两个平方数是9和16,而 所以可知 的整数范围.
解:∵9<10<16, ∴ < < ,即3< <4,所以 在3和4之间.故填3或4.
㈡ 方程思想
通过列方程(组)来解决问题的一种解题策略.
例2:已知
分析: 非负, 非负,而它们的和为0,所以 =0, =0,即a+1=0,b-1=0,从而可求出a,b,再 的值.
解: ∵ 且 ≥0, ≥0,
∴ =0, =0.而a+1=0,a=-1,b-1=0,b=1. ∴ =
㈢数形结合思想
数与形是一个问题的两个方面,数无形不直观,形缺数难入微,数形结合既有助于找到解答思路,也常使解答简捷.数形结合的关键在于能将代数问题蕴含的几何图形,几何知识抽取,转化出来,再进行解决.
例3:实数a、b在数轴上的位置如图所示,那么化简|a-b|- 的结果是( )
(A)2a-b (B)b (C)-b (D)-2a+b
分析:观察数轴可知:a>0,b<0,∴a-b>0,∴|a-b|- =|a-b|-|a|=(a-b)-a=a-b-a=-b.故选C.
㈣分类讨论思想
对于有的数学问题,可能有几种情况,在未具体指明哪种情况时,需要对各种情况分类考虑.保证解答完整准确,做到“不重不漏”.
例4:已知 , ,且 ,则 的值为( )
(A)8 (B)-2 (C)8或-8 (D)2或-2
分析:由 , ,可得a=±5,b=±3,再由 ,可知a、b同号,从而求得a、b的`值,进而求出 的值.
解:∵ , ∴a=±5,b=±3.
又∵ ∴a、b同号,
即a=-5,b=-3或a=5,b=3.
∴ =±8.故选C.
(五) 整体思想
整体思想就是在数学问题中,对于有的问题,可以从整体角度思考问题,即将局部放在整体中去观察分析、探究问题的解决方法,从而使问题得以简捷巧妙地解决.
例5:已知 求: 的值.
解:x+y= +( =2 ,x×y= =1.
=
说明:本题如果直接代入计算,则计算量较大,而且容易出错.通过观察已知条件和欲求值的式子,发现它们都可以化简,这样采取变更问题的条件和结论的方法,然后采取整体代入的思想,比较容易求出问题的解来.
(六)转化思想
解数学题时,碰到陌生的问题常把它设法转化成熟悉的问题,碰到复杂的问题常设法把它转化成简单问题,从而使问题获得解决的方法.
例6:化简 得( )
(A)2 (B)-4x+4 (C)-2 (D)4x-4
分析:因为原式可化为: 而要使原式有意义,需使2x-3≥0,即: x≥ ,而此时2x-1>0,∴原式=2x-1-(2x-3)=2. 故选A.
说明:算术平方根的问题总能转化为绝对值的问题,因为解决算术平方根的化简与运算问题的关键是将其转化为绝对值的运算问题.
数学思想较多,除了以上几种外,还有类比、转化等数学思想,只要大家认真思考,灵活应用,数学思想一定能给你的学习带来事半功倍的效果.
篇2:初中数学二次根式概念
二次根式的应用主要体现在两个方面:
1.利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
2.利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。
常见考法
(1)设计一些规律探索问题提高学生的想象力和创造力;(2)联系生活实际设计一些方案探究题。
误区提醒
(1)不能通过观察,归纳、猜想寻找出共同的规律,并运用这种规律解决问题;
(2)不会应用数学的知识解决实际生活中的问题。
【典型例题】小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长、宽比为3:2,不知道能否裁出来,正在发愁你能帮他解决吗?
二次根式的运算主要是研究二次根式的乘除和加减.
(1)二次根式的加减:
需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。
注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数.
(2)二次根式的乘法:
(3)二次根式的除法:
注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.
(4)二次根式的混合运算:
先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运算的,可适当改变运算顺序进行简便运算.
注意:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,以便使运算过程简便.二次根式运算结果应尽可能化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数.
篇3:初中数学二次根式概念
一、说教材
本节课选自人教版九年级数学上册第二十一章二次根式第一节的内容。“二次根式”是《课程标准》“数与代数”的重要内容。本章是在第13章实数(13.1平方根;13.2立方根;13.3实数)的基础上,进一步研究二次根式的概念、性质、和运算。本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也为以后将要学习的“锐角三角函数”、“一元二次方程”和“二次函数”等内容打下重要基础。
二、说学情
学生已经学习了平方根(算术平方根)等有关知识,有了一定的知识基础和认识能力。本课时及后面的知识的学习,对学生思维的严谨性、分类讨论及类比的数学思想等都有了更高的要求,如果学生在此不能很好地理解和正确地认知,将对后续的学习产生很大的影响,所以要求学生积极探究与思考,及时加以训练巩固,克服学习困难,真正“学会”。
三、说教学目标
根据大纲的要求和教材结构内容分析,结合九年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:
1.知识与技能:掌握二次根式的概念,二次根式的取值范围和被开方数的取值范围
2.过程与方法:根据条件处理问题的能力及分类讨论问题的能力
3.情感态度价值观:严谨的科学精神
四、说教学重点和难点
教学重点:二次根式中被开方数的取值范围
教学难点:二次根式的取值范围
五、说教法
教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。
六、说学法
新课程标准指出:学生是学习的主体。要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。本节课主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学。先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念;再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简的学习。通过对本节课的学习,使学生们的发散性思维得以启发,学生们的观察、分析、发现问题的能力得以锻炼,学生辩证唯物主义观点得以培养。
学好初中数学的建议
一、掌握预习学习方法,培养数学自学能力
预习就是在课前学习课本新知识的学习方法,要学好初中数学,首先要学会预习数学新知识,因为预习是听好课,掌握好课堂知识的先决条件,是数学学习中必不可少的环节.预习可以用“一划、二批、三试、四分”的预习方法.“一划”就是圈划知识要点,基本概念.“二批”就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方;“三试”就是尝试性地做一些简单的练习,检验自己预习的效果.“四分”就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习.
二、掌握课堂学习方法,提高课堂学习效果
课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;
耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结.另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;
口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;
眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;
心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极.关键是理解并能融汇贯通,灵活使用.对于老师讲的新概念,应抓住关键字眼,变换角度去理解.
三、掌握练习方法,提高解答数学题的能力
数学的解答能力,主要通过实际的练习来提高.数学练习应注意以下几点:
1.端正态度,充分认识到数学练习的重要性.实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现.
2.要有自信心与意志力.数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯.
3.要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答.解答后,还应进行检查.
4.细观察、活运用、寻规律、成技巧.
四、掌握复习方法,提高数学综合能力.
复习是记忆之母,对所学的知识要不断地复习,复习巩固应注意掌握以下方法.
1.合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习.
2.采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,形成完整的知识体系.
3.突破薄弱环节的复习方法.要多在薄弱环节上下功夫,加强巩固好课本知识,只有突破薄弱环节,才利于从整体上提高数学综合能力.
篇4:初中数学二次根式教案有哪些
初中数学二次根式教案
教 学目 标
1. 熟练地运用二次根式的性质化简二次根式;
2. 会运用二次根式解决简单的实际问题;
3. 进一步体验二次根式及其运算的实际意义和应用价值。
教学设 想 本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。
教 学 程序 与 策 略
一、预习检测:1.解决节前问题:
如图,架在消防车上的云梯AB长为15m,AD:BD=1 :0.6,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?
归纳:
在日常生活和生产实际中,我们在解决一 些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。
二、合作交流:
1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到0.01米)
让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?
注意解题格式
教 学 程 序 与 策 略
三、巩固练习:
完成课本P17、1,组长检查反馈;
四、拓展提高:
1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm²。
师生共同分析解题思路,请学生写出解题过程。
五、课堂小结:
1.谈一谈:本节课你有什么收获?
2.运用二次根式解决简单的实际问题时应注意的的问题
六、堂堂清
1: 作业本(2)
2:课本P17页:第4、5题选做。
教后反思录
初中八年级数学上册教案:分式
学习目标
1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
3、能分析出一个简单分式有、无意义的条件。
4、会根据已知条件求分式的值。
学习重点
分式的概念,掌握分式有意义的条件
学习难点
分式有、无意义的条件
教学流程
预习导航
一、创设情境:
京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:
(1)货运列车从北京到上海需要多长时间?
(2)快速列车从北京到上海需要多长时间?
(3)已知从北京到上海快速列车比货运列车少用多少时间?
观察刚才你们所列的式子,它们有什么特点?
这些式子与分数有什么相同和不同之处?
合作探究
一、概念探究:
1、列出下列式子:
(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是
(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是 元。
(3)正n边形的每个内角为 度。
(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花 ______㎏。
2、两个数相除可以把它们的商表示成分数的形式。如果用字母 分别表示分数的分子和分母,那么 可以表示成什么形式呢?
3、思考:
上面所列各式有什么共同特点?
(通过对以上几个实际问题的研讨,学会用 的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)
分式的概念:
4、小结分式的概念中应注意的问题.
① 分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;
② 分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
③ 如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的条件。
二、例题分析:
例1 : 试解释分式 所表示的实际意义
例2:求分式 的值 ①a=3 ②a=—
例3:当取什么值时,分式 (1)没有意义?(2)有意义?(3)值为零。
三、展示交流:
1、在 、、、、、、中,是整式的有_____________________,是分式的有________________;
2、写成分式为____________,且当m≠_____时分式有意义;
3、当x_______时,分式 无意义,当x______时,分式的值为1。
4、若分式 的值为正数,则x的取值应是 ( )
A. , B. C. D. 为任意实数
四、提炼总结:
1、什么叫分式?
2、分式什么时候有意义?怎样求分式的值
八年级数学上册教案初中:菱形
一、教学目的:
1.掌握菱形概念,知道菱形与平行四边形的关系.
2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.
3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、重点、难点
1.教学重点:菱形的性质1、2.
2.教学难点:菱形的性质及菱形知识的综合应用.
八年级数学上册教案三、例题的意图分析
本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.
四、课堂引入
1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
菱形定义:有一组邻边相等的平行四边形叫做菱形.
【强调】 菱形(1)是平行四边形;(2)一组邻边相等.
让学生举一些日常生活中所见到过的菱形的例子.
五、例习题分析
例1(补充) 已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
求证:∠AFD=∠CBE.
证明:∵四边形ABCD是菱形,
∴ CB=CD, CA平分∠BCD.
∴∠BCE=∠DCE.又 CE=CE,
∴ △BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2 (教材P108例2)略
六、随堂练习
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.
3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.
4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.
七、课后练习
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为 8cm,求菱形的高.
2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.
篇5:初中数学二次根式基础知识点
1.二次根式概念:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:
3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。4.二次根式的_质:
a(a0)22(1)(a)=a(a≥0);(2)aa
0(a=0);
5.二次根式的运算:
a(a0)
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式
单项式和多项式统称为整式。
1.单项式:
1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及_质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:
1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:
1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的_质符号,因此在排列时,仍需把每一项的_质符号看作是这一项的一部分,一起移动
初中数学一元二次方程常见考法
1.考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查①根与系数的推导,有关规律的探究②已知两根或一根构造一元二次方程,这类题目一般比较开放;
2.在一元二次方程和几何问题、函数问题的交汇处出题。(几何问题:主要是将数字及数字间的关系隐藏在图形中,用图形表示出来,这样的图形主要有三角形、四边形、圆等涉及到三角形三边关系、三角形全等、面积计算、体积计算、勾股定理等);
3.列一元二次方程解决实际问题,以实际生活为背景,命题广泛。(常见的题型是增长率问题,注:平均增长率公式。
篇6:初中数学二次根式基础知识点
2.1整式
①单项式:表示数或字母积的式子
②单项式的系数:单项式中的数字因数
③单项式的次数:一个单项式中,所有字母的指数和
④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。
⑤多项式里次数最高项的次数,叫做这个多项式的次数。
⑥单项式与多项式统称整式。
2.2 整式的'加减
①同类项:所含字母相同,而且相同字母的次数相同的单项式。
②把多项式中的同类项合并成一项,叫做合并同类项。
③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
篇7: 《二次根式》初中数学教学反思
《二次根式》初中数学教学反思
本节课采用“自主互助,诱导探究”八环节教学模式。
这是我校经过一年多来的课堂教学实践而摸索出来的教学模式。“激趣导学”激发学生的求知的欲望,让学习进入学习的状态。“明确目标”让学生明确本节课学习的'任务。“指导阅读”让学生带着问题去自学,体现的自主学习。在“自主互助”环节中,我让同组之间的学生相互讨论、互相学习,让学快生教学慢生,从而掌握二次根式的概念与性质。
通过“说一说”、“做一做”“反馈”学习在自学的掌握情况,把课堂还给学生。在“诱导探究”环节中,通过学生看教材,启发诱导学生,解决学生在自学中不能解决的问题,从而突破难点。“当堂训练”检测学生对所学知识的掌握情况。我设计的题目由浅入深,学生可以运用今天所学的知识解决问题。最后在“小结提升”中,让学生说说自己的收获,形成知识体系。
我觉得整堂课下来,不足之处在于花在“说一说”、“做一做”的时间多了些,导致后面的“当堂训练”中的点评少了些,时间上把握不是很到位。以后的教学中我会努力的去改进,让每一个学生都能真正投入到课堂中来。
★ 二次根式教案
二次根式中蕴涵的数学思想方法(共7篇)




