隧道工程施工地表变形研究论文

时间:2024-04-28 03:36:04 作者:圣谚立 综合材料 收藏本文 下载本文

【导语】“圣谚立”通过精心收集,向本站投稿了4篇隧道工程施工地表变形研究论文,小编在这里给大家带来隧道工程施工地表变形研究论文,希望大家喜欢!

篇1:隧道工程施工地表变形研究论文

隧道工程施工地表变形研究论文

隧道在施工过程中,将不可避免地会产生地表变形,当地表变形达到一定程度时,则会对地表既有建筑物产生一定程度的损害。因此,为了研究和掌握东海隧道施工引起的地表变形是否会对地表既有建筑物发生损害或发生损害程度,应对施工地表变形对既有建筑物安全性的影响进行科学分析和评价。本文以东海隧道为例,从建筑物沉降、倾斜、结构应力三个方面探讨隧道工程施工地表变形对既有建筑物影响。

1工程概况

东海隧道工程属典型的城市隧道工程,线路起点位于云山村北侧,下穿国公爷山,从黎明大学北侧操场、宝珊花园下穿过,通过宝秀小区,终点止于既有东海大街。项目全长约4.2km,其中隧道全长约2.2km,设计采用双洞方案,按双向四车道城市I级主干道标准进行建设,设计行车速度为60km/h。东海隧道作为一个典型的城市隧道工程,应具有城市隧道工程修建的共性要求,即与山岭隧道相比,城市隧道修建更要注重对周围环境的影响问题,也就是说周围环境将会对城市隧道修建起到一定程度的制约作用。

2既有建筑物影响对工程施工影响分析

在东海隧道工程修建过程中,主要存在着如下工程难点问题:隧道沿线地表既有建筑物分布密集,对施工引起的爆破振动、地表沉降等控制要求高,施工难度大。东海隧道沿线地表既有建筑物主要包括宝珊花园别墅区、宝秀小区、厂房及办公楼等,据现场实地调查统计结果可知,处于隧道施工影响范围内的主要既有建筑物数量多达29座,既有建筑物距隧道距离最小在10m以内,因此,隧道施工所引起的爆破振动、地表沉降等必将会对建筑物结构安全及其建筑物内人员的正常生活造成一定程度的影响,为确保建筑物结构安全,尽量减少对建筑物内人员正常生活的干扰,施工中必须对爆破振动、地表沉降等进行严格控制,从而增加了施工难度。

3建筑物结构安全地表变形控制指标

建立建筑物结构安全地表变形控制基准,其前提必须建立合适的地表变形控制指标。实际上,隧道施工引起的地表沉降和变形对建筑物的影响因素有很多。除地层特征以外,建筑物遭受损害的程度与建筑物的基础与结构型式、建筑物所处的位置,以及地表的变形性质和大小有关,若全部将其作为地表变形控制指标,现场操作十分不便,研究也不易实现。因此,研究中重点以地表变形中对建筑物损害程度最大的因素作为其变形控制指标。隧道开挖施工引起的对于地表以及建筑设施的'损害可以分为直接开挖损害和间接开挖损害两种情况。位于主要影响范围内的对象(建筑物、管线、道路等)所受的损害称为直接开挖损害;但是在个别情况下,在主要影响范围以外比较远的地方,也可发现开挖影响的存在,这种影响也与隧道开挖施工有关,称为间接开挖损害,如开挖引起的大范围的地下水的变化对环境的影响等。因此,本文主要选用地表沉降损害、地表倾斜损害、结构应力三个控制指标。

4施工地表变形对既有建筑物结构安全影响数值模拟分析

为了进一步了解和掌握东海隧道整个施工过程引起的地表变形对既有建筑物结构安全性影响,采用数值模拟方法进行了细致研究和分析。计算过程中,以静力分析为主,未考虑爆破开挖的动力效应影响。

4.1建筑物沉降及倾斜计算结果及分析

为了掌握整个施工过程地表建筑物沉降及倾斜情况,计算中共选取了10个阶段工况进行详细说明。东海隧道施工引起的最大建筑物沉降值约为0.377mm,最大建筑物倾斜率约为0.0054×10-3,由东海隧道建筑物结构安全变形控制标准可知,上述数值均远小于相应控制标准值,说明施工地表变形不会对建筑物结构产生破坏,建筑物结构是安全的。

4.2建筑物结构应力计算结果及分析

为了掌握整个施工过程地表建筑物结构应力变化情况,计算中还对各施工阶段建筑物结构内力结果进行了分析和评价,将各计算工况结果进行汇总。

5小结

综上,本文以东海隧道为例,通过理论分析、数值模拟、现场实测等综合研究手段,确定了隧道地表建筑物结构安全控制标准,并给出了相应的建筑物结构安全控制措施,其成果可直接用于指导施工作业,有效地确保隧道地表建筑物结构安全,避免了工程经济赔偿纠纷现象发生。当然,由于能力有限,一些问题需要在以后的工作中深入完善。

篇2:盾构隧道施工地表沉隆变位影响因素研究论文

盾构隧道施工地表沉隆变位影响因素研究论文

摘要:研究目的:探明盾构隧道施工中各制约因素取值差异对地表沉隆变位分布规律的影响。

研究方法:本文以某拟建地铁城市区间盾构隧道试验段为研究对象,引入荷载释放系数和纵向等效刚度系数,采用三维有限元法对盾构隧道施工引起的地表横向沉降槽和纵向沉隆曲线进行了研究。

研究结果:揭示了围岩条件、隧道埋深和顶推力等因素变化对盾构隧道施工引起地表沉隆变位的影响,运用三维曲线探讨了盾构隧道施工过程中的地表沉隆变位曲线空间分布变化规律。

研究结论:围岩条件恶化、隧道埋深减小和顶推力增大都将导致施工引起地表沉隆变位影响的加剧,建议工程施工中采取调整顶推力等措施以降低施工对地表环境的影响。

关键词:盾构隧道;横向沉降槽;纵向沉隆曲线;三维有限元;顶推力

盾构隧道施工中盾构机每推进一环管片幅宽长度,毛洞即可在盾壳的支护下进行管片环拼装,并通过同步和壁后注浆向紧靠盾壳后部的开挖洞壁与脱离盾尾衬砌环间注入大量浆液,以防止由于周围土体向盾尾空隙移动而引起的较大地层扰动和地表沉降。

众多学者对盾构隧道施工引起地表沉隆变位分布变化规律进行研究并取得了大量成果。文献[1]采用现场监测和数值计算相结合的研究手段对广州地铁二号线区间隧道盾构法施工引起地表沉隆变位分布变化规律进行了总结分析;文献[2]结合上海地铁明珠线盾构隧道施工提出了地表沉降预测计算公式及参数确定方法;文献[3]在选用人工智能神经网络结构及相关预测模型基础上,对上海地铁明珠二期盾构隧道施工引起地表变形进行了小样本智能预测;文献[4]采用现场监测手段分析得出了掌子面与监测点距离对沉降量的影响规律,并对盾构顶推施工中的地表沉降进行了阶段划分。

现有研究成果主要是针对相关工程具体展开,缺乏对各影响因素的对比分析。因此,本文在盾构法施工隧道对围岩扰动影响基础上,结合装配式衬砌环向和纵向刚度等效特性,对围岩条件、隧道埋深和顶推力等因素影响下的地表沉降槽(带)空间分布变化规律进行了三维有限元数值模拟和定性分析,研究成果可供工程设计和施工参考。

1 工程概况

某拟建地铁城市二号线试验段区间盾构隧道位于南北向交主干道下方,地表线路两侧为1~4层砖混结构民房。区间隧道纵断面两端高中间低,线路全长1408m,间距13m,隧道结构拱顶埋深7.8~14m,位于上第四系更新统风积新黄土、第四系上更新统冲击层和中砂层,地下水位较低且对混凝土结构无腐蚀性。试验段区间隧道穿越地层在地下水位附近断续分布5m厚的软化层,地层处于硬塑一软塑状态,地下水位以上土层具有湿陷性,隧道围岩分级为Ⅵ级、局部Ⅴ级。试验段区间盾构隧道穿越地层地质条件围岩相关物理力学参数如表1所示。

试验段区间盾构隧道衬砌环采用C50预制钢筋混凝土管片,管片环外直径6m,内直径5.40m,管片厚0.30m,标准管片幅宽1.50m。整环采用“1+2+3”模式(即1个封顶块,2个邻接块和3个标准块)构筑而成。

2 计算模型及施工模拟

2.1 计算模型

计算采用三维有限元法进行,计算模型如图1(a)所示。为缩短计算时间,消除边界效应并满足较高计算精度要求,模型长48m,宽60m,高36m,单次循环进尺3m,共完成16组(原型32环)管片拼装施工,已拼装完成管片环、注浆层和盾构机如图1(b)所示。

计算围岩土体采用实体单元模拟,本构关系符合摩尔-库仑准则,相关材料参数如表1所示。盾构隧道是由若干环向和纵向接头连接而成的复杂带状空间体,计算中衬砌管片环、壁后注浆层及盾构机头均采用实体单元进行模拟,其中由文献[5]取管片环环向刚度折减系数0.7,由文献[6]取管片环纵向等效刚度折减系数0.01,泊松比和容重不折减,计算选用各结构材料参数如表2所示。由文献[7]取隧道施工引起围岩荷载释放系数0.25。

2.2 施工过程模拟

计算采用生死单元法[8]进行盾构隧道开挖过程的模拟,即通过单元的“杀死”来模拟隧道核心土体的开挖,通过单元的“激活”来模拟盾构隧道盾尾注浆和管片支护的形成。

根据盾构隧道施工特点,采用三维有限元模拟隧道的施工全过程主要包括如下几个步骤:(1)求解土体初始应力场,明确各单元的初始应力状态;(2)“杀死”单元,模拟核心土体开挖,形成洞周径向荷载释放;(3)“激活”单元,模拟管片环拼装和注浆层的形成;(4)循环进行,直至整条隧道贯通。

3 成果与分析

3.1 横向沉降槽

计算得盾构隧道分别完成第4环、第8环、第12环管片拼装和全隧道贯通后,不同围岩条件和隧道埋深下,顶推力改变所引起的目标断面1和目标断面2的地表横向沉降槽分布变化规律分别如图2和图3所示。

对比分析图2和图3可以看出:盾构机到达前,受刀盘顶推力对前方土体的挤压效应影响,掌子面前方一定距离处地表形成隆起;盾构机通过时,受脱离盾壳管片环和土壁间隙引起地层应力损失影响,地表形成较大沉降量且该沉降速率较大,同时隧道两侧土体向隧道中线移动,施工影响范围扩大,地表形成较大横向沉降槽;随着掌子面的逐渐远离,施工对地表沉隆变位的影响逐渐减小,地表横向沉降槽渐趋稳定且不再变化。

盾构隧道施工过程中,围岩条件、隧道埋深和顶推力等因素差异都在较大程度上制约着地表横向沉降槽的变化和沉降量的增加。以目标断面1地表横向沉降槽为例对各影响因素作用下的地表沉降量进行分析,计算得Ⅴ类围岩、2D埋深和0.3MPa顶推力作用下掌子面下穿目标面时的地表沉降量为0.62cm,约占隧道贯通后总沉降量的40%;围岩条件减弱,Ⅵ类围岩地表沉降量为0.57cm,约占隧道贯通后总沉降量的20%;埋深减小,1D埋深地表最大沉降量为0.39cm,约占隧道贯通后总沉降量的27%;顶推力增大,0.40MPa顶推力引起的地表沉降量为0.57cm,约占隧道贯通后总沉降量的40%。由此可以看出,修建盾构隧道所引起的地表沉降量更多地产生于施工后期,即长期固结期,而受施工阶段盾尾孔隙、壁后注浆和施工围岩扰动等影响相对较小。

3.2 纵向沉隆曲线

点绘计算所得各影响因素作用下,盾构隧道分别完成第4环、第8环、第12环管片拼装和全隧道贯通时的`隧道纵轴线正上方地表纵向沉隆变位分布曲线如图4所示。由图中可以看出,受顶推力等因素影响,掌子面前方一定距离处地表形成隆起,随后逐渐下沉,但下沉趋势不断减缓并最终趋于稳定。分析计算数据可以看出,Ⅴ类围岩、2D埋深和0.3MPa顶推力作用引起前方地表最大隆起点距掌子面约15m,围岩条件减弱,Ⅵ类围岩中该距离约为13.5m;隧道埋深减小,1D埋深下该距离约为6m;顶推力增加对地表最大隆起量出现位置几乎没有影响,由此可以看出,该隆起点位置受掌子面顶推力影响较小,而隧道埋深和围岩条件差异是制约地表纵向沉隆曲线变化规律的关键因素,而其中又以隧道埋深的影响最大,如当埋深由2D减小为1D后,该最大隆起量出现位置可缩短约40%。

由各影响因素作用下地表纵向沉隆曲线随施工进程的分布变化规律可以看出,隧道所处围岩条件、埋深和顶推力等因素均将在较大程度上影响和制约着地表沉隆曲线的变化规律。围岩状况恶化或隧道埋深的减小都将引起隧道纵轴线正上方地表沉隆变化区域及变位量的显著增加;顶推力降低,隧道施工对地表的影响相应削弱。

3.3 沉隆变位分布

由计算所得地表横向沉降槽和纵向沉隆曲线,点绘Ⅴ类围岩、2D埋深、0.3MPa顶推力作用下盾构隧道分别完成第8环管片拼装和隧道全长贯通后的地表沉隆变位三维分布曲线如图5所示。由图中可以看出,盾构隧道顶推施工将引起掌子面后方地表形成较大沉降量,受沉降围岩带动影响,两侧围岩拥向隧道中轴线,从而形成沉降槽。受顶推力影响,掌子面前方围岩产生向上、向前移动趋势,从而形成地表隆起,远侧围岩受隧道施工影响较小,地表沉隆变位不明显。隧道贯通后,地表形成沿纵轴线对称沉降槽,受围岩次固结效应影响,早期施工完成管片环上方形成较大沉降量。

4 结论与建议

结合广州地铁三号线大-沥区间盾构隧道施工,采用三维有限元法对隧道施工过程中的地表沉隆变位分布变化规律进行了深入研究和定性分析,揭示和探讨了围岩条件、隧道埋深、顶推力等因素变化引起的地表沉隆变位差异,通过本文研究可得出如下结论:

(1)盾构隧道施工地层应力损失导致后方及掌子面附近地表横向形成类似于Peck沉降曲线的单一沉降槽,刀盘顶推力挤压效应引起前方地表横向隆起。地表沉降量主要产生于施工后期的长期固结期而受施工期影响相对较小。

(2)施工地层应力损失、后期固结沉降和掌子面顶推力导致地表纵向呈前隆后沉趋势变化。掌子面前方最大隆起点出现位置受隧道埋深影响较大,而隆起量则受围岩条件影响较大。

(3)分析不同影响因素作用下的地表沉隆变位分布变化规律可知,围岩条件恶化、隧道埋深减小和顶推力的增大都将导致施工对地表影响的增加,工程设计中应在结合围岩差异基础上适当调整隧道埋深,并在施工中适时调整顶推力以降低施工对地表环境的影响。

参考文献:

[1]刘招伟,王梦恕,董新平.地铁隧道盾构法施工引起的地表沉降分析[J].岩石力学与工程学报,2003(8):1297-1301.

[2]沈培良,张海波,殷宗泽.上海地区地铁隧道盾构施工地表沉降分析[J].河海大学学报(自然科学版),2003(5):556-559.

[3]安红刚,孙钧,胡向东,等.盾构法隧道施工地表变形的小样本智能预测[J].成都理工大学学报(自然科学版),2005(4):362-367.

[4]高俊强,胡灿.盾构推进和地表沉降的变化关系探讨[J].南京工业大学学报.2005(4):44-48.

[5]道t合技g研究所.道造物等O省ね解h(シル?ドトンネル)[M].丸善株式会社,1997.

[6]曾东洋.盾构隧道衬砌结构力学行为及施工对环境的影响研究[D].成都:西南交通大学,2005.

[7]松井春.都市トンネルのH(合理的なO?施工法をめさし)[M].鹿岛出版社,1998.

[8] 潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995.

篇3:地铁隧道工程施工中风险管理的研究论文

地铁隧道工程施工中风险管理的研究论文

1.地铁隧道工程施工风险管理概念

对于地铁隧道工程施工风险管理含义的解释,国内外许多专家站在不同的立场上提出了各自的解释。角度不同,对风险管理内涵的定义也就不相同。综合各种含义之后,可以得出以下定义:地铁隧道工程施工风险管理主要是指在对潜在的各种风险进行识别和分析之后,从中发掘可能存在的安全风险隐患,同时建立相应的风险评估模型,对存在的风险进行专业的估测,寻找对工程施工带来的潜在安全隐患,从而制定相应的解决措施,并从中选择出最佳设计方案,来应对潜在的风险,最大限度的降低风险给工程带来的损失。另外,风险管理的本质是事先对工程可能发生的风险进行预测,并作出相应的应对措施。

2.地铁隧道工程施工风险管理流程

要加强对地铁隧道修筑过程中潜在风险的预防,必须要建立一套内容充实、分工明确、体系完备的风险管控流程,依据建立好的流程就能够对风险进行有效的管控了。地铁隧道工程施工流程如下:首先,明确地铁隧道工程的特点,依据本身的特点签署工程保险;其次,对工程风险分析的方法进行明确,然后对潜在的风险因素进行识别,识别时要与业主以及施工单位进行详细的探讨,之后建立明确的风险因素清单;第三,依据清单对风险进行量化,然后建立起风险评估模型;第四,建立模型之后,要对风险进行初步的评估,如果潜在的风险不利于工程的施工,或者在施工过程中可能会发生难以预料的事故,首先应该减缓风险,如果风险不足以造成施工过程中的事故发生,那么就可以对剩余的.风险进行评估了;最后,经过评估之后,将能够预测的潜在风险寻找出来,然后制定相应的防范措施。

3.地铁隧道工程施工风险管理措施分析

前面分析了隧道工程施工中风险管理的内涵以及管理的流程,明确了以上相关知识后,就可以对工程施工中的风险进行管理了。下面结合某地地铁一号线的建设实际,来探讨进行隧道施工风险管理的措施。

3.1隧道施工风险管理门得建设

上海交通大学土木工程系和上海铁路局联合联合组成课题组,在对一线技术和管理人员进行详细调查后,提出了“风险管理门”的概念(RiskManagementGate)。根据对一线施工管理人员进行调查问卷的结果,可以将隧道建设中潜在的风险分成3类:技术、管理、地质情况。其中,技术方面又可以分成施工准备情况、洞口部分的施工、开挖情况以及监控测量几个部分;管理方面只有施工管理一项;地质情况则包括膨胀性围岩地段的施工、涌泥突水地段的施工以及岩爆情况和瓦斯层的施工几个部分的内容。通过对这几个方面的风险进行分析,可以将施工的过程分成7道风险管理门,这7道风险管理门主要分为三个阶段:施工准备阶段、操作阶段以及完工阶段。

3.2隧道施工风险管理研究

建立了风险管理门之后,就明确了施工的各个步骤,同时就可以依据相它对潜在的风险进行分析了。某市地铁一号线是连接老城区与新城区的主要地下交通线之一,全场25千米。根据地质勘查结果,地铁一号线的施工条件比较复杂,施工中不仅会穿过粉土、粉砂、粉质粘土等底层,同时还穿过几座重要的文物保护建筑,这样就加大了施工的难度,如果不能对潜在的风险进行评估,很容易会造成文物建筑损坏等后果。

3.2.1潜在风险辨识

进行风险辨识是进行风险管理的首要工作,应该由相关的专家和施工单位共同组成风险辨识小组,结合搜集到的资料,并仔细的分析当地的地质特点以及地下环境,对风险进行辨识。根据本市地铁一号线的具体情况,将风险分为基坑施工潜在风险、盾构施工潜在风险以及管网施工潜在风险等三个方面。其中,基坑施工潜在风险主要有基坑开挖土体是否具有稳定性、基坑开挖对周围文物建筑的是否具有破坏性以及雨季防汛风险;盾构施工风险主要有盾构进洞阶段的风险和出洞阶段的风险;管网施工潜在风险主要有施工对天然气管、污水管和雨水管等带来的风险、管线改移、悬吊的安全风险以及地下水对地铁站带来的风险等。

3.2.2潜在风险评估

辨识完潜在的风险之后,要对这些风险进行评估,进而制定应对措施。通过对某市地铁一号线进行风险评估,地铁某段的潜在风险依据对不同风险因素对周围环境的影响是不同的。通过对这些不同点进行实事求是的分析,进而制定风险应对措施。

3.2.3潜在风险应对

在对风险辨识以及评估完成之后,就可以依据得出的风险因素制定相应的应对措施。根据某市地铁一号线实际存在的风险因素,可以制定以下应对措施:(1)本车站的基坑比较宽,开挖的也比较深,因此可以使用长大内支撑体系来进行支撑,等到结构混凝土的强度应该达到80%以上后才可以将支撑拆除。(2)本地区的地质条件比较差,地下水位比较高,很容易出现地下水喷涌的现象。针对这种情况,可以将地下水降低到坑以下30m,在降水的同时,务必确保收到良好的降水效果,另外还不能损坏周围的建筑物。(3)强化施工监测力度,在施工中要及的通过监测获取工程进度数据,对这些数据进行分析,从中预测出施工的下一过程可能要出现的风险因素,以便及时的制定计划,尽可能的减少风险因素给施工带来的不良后果。

4.结语

随着地铁建设的飞速发展,地铁隧道施工时所隐藏的风险也在不断的增加,如果事先不及时的进行预防,就会给施工人员造成生命危险,同时也会造成巨大的经济损失。本文主要分析了隧道施工风险管理的内涵、管理流程以及管理措施,期待本文的论述分析能够有助于减少隧道建设的风险。

篇4:公路涵洞及隧道工程施工技术研究论文

公路涵洞及隧道工程施工技术研究论文

1、工程概括

赤水至望谟高速公路黔西至织金段项目主要工程量如下:路基土石方776万m3,路基填筑578万m3,防护及排水工程31.37万m3,涵洞及通道4014.99m/124道,分离式隧道2890m/3座,互通式立体交叉3处,中、小桥662.249m/17座,大桥2567m/8座,特大桥2511.66m/2座(钢构、斜拉桥),沥青混凝土路面75.9万m2。由上可知,工程量较大,并且涉及到的桥梁涵洞工程较大,因此必须要加强对桥梁涵洞工程施工技术的重视,提高工程质量。

2、涵洞施工技术问题

2.1盖板预制及安装

在赤水至望谟高速公路黔西至织金段项目中,公路盖板涵工程在具体施工中,盖板顶层覆土较厚,若在具体施工中,有重型车辆通过,在盖板上容易出现裂缝,最终将会对工程的质量造成不良影响。在预制盖板过程中,在加工主要受力钢筋时,端头的长度和角度都会对其造成一定影响。安装盖板时,底板隔离需要深入到混凝土中,从而最大长度降低钢筋与混凝土自两者之间的摩擦力,进一步降低主要受力钢筋与混凝土之间的摩擦力。

2.2台背填土施工

台背回填是公路涵洞施工中质量控制作为薄弱的一个环节,在具体施工中,如果没有采取合理的措施对施工内容进行处理,导致回填处出现大范围沉降,将会引发严重的路基病害。例如,“吊车”、路面破坏、路基沉陷等。在具体施工过程中,引起台背填土不合理的原因主要有以下几点:

(1)原地面上的台背回填宽度并没有达到台高的两倍,回填材料与填筑材料压缩模量相比,存在较大的差异性。

(2)在回填过程中,分层填筑厚度与规定范围相比超出了标准值,同时由于回填材料的质量存在问题,导致施工中,压实程度无法满足相应的规定要求。

(3)压重时间不足,将会降低路面稳定性,通车之后有可能会导致沉降情况的发生,影响工程后期的使用效果,并且缩短工程的使用寿命。

3、解决涵洞施工的技术问题

3.1盖板涵施工的合理性

盖板涵施工的流程见图1盖板涵的具体施工如下:

(1)严格依据施工图纸进行基础定位防线,依据工程的实际情况完成对中线、变现、标高的确定。

(2)基坑开挖,严格的依据技术交底、安全进行。如果在基坑开挖过程中采取人工的方式开挖深沟,在对施工环境检后,确认地线无管线后,可以利用挖掘机进行开挖工作,在具体施工过程中要避免超挖现象的出现,同时要确保边坡的`准确性,针对施工中深度超过4m的盖板箱涵基坑,针对边坡需要利用塑料薄膜完成相应的防护。在利用机械开挖接近设计的边坡边界或坑底标高时,应当预留30.0cm的厚度层,采用人工配合的方式进行开挖。堆到基槽边200cm外,需要施工人员注意的是,高度要低于150cm。在工程施工中,做好对支撑和边坡的检查控制工作,施工中所使用的车辆的行走需要远离边坑,避免对工程的质量造成不良影响。

(3)基坑休整。在挖好基坑后,需要对基坑进行休整与抄平处理。

3.2台背回填技术

涵洞工程中,在具体施工中针对量测均匀的涵台的锥坡和台背进行填土作业时,作业运输机械的选择要依据填土的具体厚度而定。如果涵顶填土厚度不大于50cm,在施工中不得应用施工机械或重型车辆,涵顶厚度接近100cm时,不得利用大型机械施工,同时也不得有大型机械行驶,以上内容都是台背回填过程红必须要主要的内容,在赤水至望谟高速公路黔西至织金段项目中施工中,加强对以上内容的注意,可以明显发现工程的质量与类似工程相比有所提高,由此可见注重以上内容对于公路涵洞工程的质量来说意义重大。此外,在台背回填压实过程中,对回台背填料进行分层摊铺,从而确保压实工作能够得到标准。在本次工程具体施工中,当填至设计标准时,继续填,直到超过设计标准20cm后,在进行压实工作,强制沉降回填料。此外,应当在施工情况允许下,尽量延长压重时间,避免通车后发生大幅度沉降,影响工程的后期施工。此外,在涵洞施工过程中还需要做好沉降缝的设置。在具体施工过程中,要依据相关的设计要求,在箱涵涵身中,每隔约9m设施变形缝,但凡是地基填挖交接以及地基土质出现变化时,都需要设置相应的变形缝,一般情况下,变形缝的宽度应当控制在2~3cm。在变形缝内侧镶嵌经受油浸的软木板,厚度通常为2cm,在外层填塞止水密封膏。在具体施工过程中,为了确保整个变形缝不仅呈竖直情况,而且都处于同一平面上,因此立模堵头出必须坚固、稳定,沉降缝的布置见图2。

4、隧道施工技术

结合赤水至望谟高速公路黔西至织金段项目的具体施工情况,对隧道施工技术进行总结,具体内容如下。

4.1明洞施工

在具体施工前,需要做好测绘放样工作,要控制好基槽挖掘力度。在洞挖处,在具体施工过程中可以应用敞口放坡法。对于承载力基底物探工作开展中,对基底的探测可以通过地质雷达进行,同时在对地基进行承载力实验过程中可以利用重型动力触探仪完成[4]。在确定基地承载力能够满足具体的设计要求后,要及时完成仰拱混凝土的浇筑工作,从而确保整个工程的质量能够满足标准,延长工程的施工寿命。

4.2钢支撑技术

在隧道施工过程中,要对工程施工中存在的断面情况进行认真检测。检测挖掘平面的具体情况,如果在具体施工过程中出现了挖掘力度未达到施工标准或过度挖掘的情况,需要对挖掘平面进行再一次处理,从而确保证挖掘面的质量能够得到标准。通过检测在确定挖掘面符合要求后,要尽早完成混凝土的喷射工作,与此同时还需要对钢架的方位进行明确,为日后施工的开展提供强有力的数据支持,促进我国公路隧道工程行业的发展。

5、结语

公路涵洞及隧道工程施工中,应用良好的施工技术对于确保工程的整体质量有着重要意义。因此,在具体施工中不仅要掌握国家对于工程的规范和具体要求,而且还需要在工程实践中不断的对工程施工中涉及到的经验进行积累,从而不断使工程的质量能够得到提高。与此同时,在工程施工的各个环节,需要施工人员的共同努力,从而使公路涵洞及隧道工程的质量能够得到提升,实现社会效益和经济效益的双赢。

盾构隧道施工地表沉隆变位影响因素研究论文

双孔平行隧道施工地表沉降

土木工程施工安全管理研究论文

隧道工程管理系统设计研究论文

市政工程施工项目成本控制研究论文

土木工程施工论文

隧道施工技术管理初探论文

市政园林工程施工与质量管理措施研究论文

矩形顶管施工引起地表变形的实测分析

高层房屋建筑工程施工论文

隧道工程施工地表变形研究论文(精选4篇)

欢迎下载DOC格式的隧道工程施工地表变形研究论文,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档