【导语】“猫兄猫妹”通过精心收集,向本站投稿了10篇证明矩形判定方法,以下是小编收集整理后的证明矩形判定方法,仅供参考,希望对大家有所帮助。
- 目录
篇1:证明矩形判定方法
长方形也称矩形,是特殊的平行四边形之一。即有一个角是直角的平行四边形称为长方形。
有一个角是直角的平行四边形叫做矩形。
周长和面积公式:矩形ABCD的周长=2(a+b);
矩形ABCD的面积S=ab。(当a=b时,可以得到正方形的相应公式)
矩形定理1:
1、矩形的对边平行且相等。
2、矩形的四个角都是直角。
矩形定理2:
1、矩形的对角线相等。
平行四边形ABCD:AC=BD
2、矩形的对角线相互平分
平行四边形ABCD是矩形:OA=OC,OB=OD
矩形的对角线相等,我们可以通过勾股定理证明。
证明:∵△ABC中,∠ABC =90°,
∴AC2=a2+b2
∵△DCB中,∠BCD =90,
∴BD2= a2+ b2
∴AC2=BD2
∴AC=BD
篇2:证明矩形判定方法
性质:1.矩形具有平行四边形的一切性质;2.矩形的对角线相等;3.矩形的四个角都是90度;4.矩形是轴对称图形。矩形的性质
1.矩形具有平行四边形的一切性质
2.矩形的对角线相等
3.矩形的四个角都是90度
4.矩形是轴对称图形
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
4.对角线相等且互相平分的四边形是矩形
证明:因为平行四边形ABCD
∴AB=CD,AB‖CD
∴∠B+∠D=180度
∴BM=MC
∴MA=MD
∴△MAB≌△MDC(SSS)
∴∠B=∠D=90度
∴四边形ABCD是矩形(有一个内角为90度的平行四边形是矩形)。
篇3:证明矩形判定方法
(1)有一个角是直角的平行四边形是矩形;
(2)对角线相等的平行四边形是矩形。
(3)有三个角是直角的四边形是矩形。
(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。
(5)对角线相等且互相平分的四边形是矩形。由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形的性质大致总结如下:
(1)矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;
(2)矩形的四个角都是直角;
(3)矩形的对角线相等;
(4)具有不稳定性(易变形)。
有三个角是直角的四边形是矩形。
对角线互相平分且相等的四边形是矩形。
有一个角为直角的平行四边形是矩形。
对角线相等的平行四边形是矩形。
篇4:证明菱形判定方法
中点四边形:依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为菱形,对角线相等的四边形的中点四边形定为矩形。)
菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。菱形的面积计算:1.对角线乘积的一半。(只要是对角线互相垂直的四边形都可用);由把菱形分解成2个三角形,化简得出;2.底乘高;3.设菱形的边长为a,一个夹角为θ,则面积公式是:S=a^2·sinθ。
有一组邻边相等的平行四边形是菱形。
2.四条边都相等的四边形是菱形。
3. 对角线互相垂直的平行四边形是菱形。
篇5:证明菱形判定方法
已知:如图,在◇ABCD中,对角线AC的垂直平分线分别与AD、AC、BC分别交于点E、O、F。则四边形AFCE是菱形。
证明:
∵ 四边形ABCD是平行四边形,
∴ AE∥FC(平行四边形的对边平行),
∴ ∠EAO=∠FCO.
∵ EF平分AC,
∴ AO=OC.
又∵ ∠AOE=∠COF=90°,
∴ △AOE≌△COF(ASA),
∴ EO=FO,
∴ 四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形)。
又∵EF⊥AC,
∴ 四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形)。
篇6:证明菱形判定方法
证明:
∵AB=CD,BC=AD,
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).
又∵AB=BC,
∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).
2、对角线互相垂直的平行四边形是菱形。
证明:
∵ 四边形ABCD是平行四边形,
∴ OA=OC(平行四边形的对角线相互平分)。
又∵AC⊥BD,
∴ BD所在直线是线段AC的垂直平分线,
∴ AB=BC,
∴ 四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)。
3、有一组邻边相等的平行四边形是菱形。
RF是三角形ABD的中位线,于是RF∥AD,
同理:GH∥AD,RH∥BE,FG∥BE,所以有RF∥GH,RH∥FG,
所以四边形RFGH是平行四边形;
第二步证明△ACD≌△BCE,则AD=BE,于是有RH=RF;所以四边形RFGH是菱形。
篇7:证明角平分线判定方法
角的内部到角的两边距离相等的点,都在这个角的平分线上。
因此根据直线公理。
证明:已知PD⊥OA于D,PE⊥OB于E,且PD=PE,求证:OC平分∠AOB
证明:在Rt△OPD和Rt△OPE中:
OP=OP,PD=PE
∴Rt△OPD≌Rt△OPE(HL)
∴∠1=∠2
∴ OC平分∠AOB
方法一:1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边 于点M,N。
2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧, 两弧交于点P。
3.作射线OP。
射线OP即为所求。
证明:连接PM,PN在△POM和△PON中
∵OM=ON,PM=PN,PO=PO
∴△POM≌△PON(SSS)
∴∠POM=∠PON,即射线OP为角AOB的角平分线当然,角平分线的作法有很多种。
方法二:1.在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD;
2.连接CN与DM,相交于P;
3.作射线OP。
射线OP即为所求。
篇8:证明角平分线判定方法
1.在角的内部,如果一条射线的端点与角的顶点重合,且把一个角分成两个相等的角,那么这条射线就是这个角的平分线。
2.在角的内部,到一个角两边距离相等的点在这个角的平分线上。
3.两个角有一条公共边,且相等。
定理1:角平分线上的点到这个角两边的距离相等。
逆定理:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。
逆定理:如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。
篇9:证明角平分线判定方法
在三角形中的性质。
1.三角形的三条角平分线交于一点,且到各边的距离相等.这个点称为内心 (即以此点为圆心可以在三角形内部画一个内切圆)。
2.三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。
若AD是△ABC的角平分线,则 BD/DC=AB/AC 。
证明:作CE∥AD交BA延长线于E。
∵CE∥AD
∴△BDA∽△BCE
∴BA/BE=BD/BC
∴ BA/AE=BD/DC
∵CE∥AD
∴∠BAD=∠E,∠DAC=∠ACE
∵AD平分∠BAC
∴∠BAD=∠CAD
∴ ∠BAD=∠CAD=∠ACE=∠E
即∠ACE=∠E
∴ AE=AC
又∵BA/AE=BD/DC
∴BA/AC=BD/DC
篇10:证明三角平分线判定方法
1.角平分线线上的点到角两边的距离相等。
若射线AD是∠CAB的角平分线,求证:CD=BD
∵∠DCA=∠DBA
∠CAD=∠BAD
AD=AD
∴△ACD≌△ABD
∴CD=BD
2.三角形内角平分线分对边所成的两条线段,和两条邻边成比例
在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC。
证明:
如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF。
S△ABD:S△ACD=BD/CD
又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC×DF]=AB:AC
所以BD/CD=AB/AC。
★ 矩形练习题
证明矩形判定方法(精选10篇)




