【导语】“周律师”通过精心收集,向本站投稿了6篇施工升降机齿条焊接工艺研究论文,以下是小编为大家整理后的施工升降机齿条焊接工艺研究论文,希望对您有所帮助。
- 目录
篇1:施工升降机齿条焊接工艺研究论文
施工升降机齿条焊接工艺研究论文
1升降机齿条制造要求
SC型施工升降机的齿条安装精度质量,直接关系升降机吊笼运行的平稳性。而齿条长度与标准节等长,为1508mm。标准节是由4个立柱、3个方框、部分腹杆和齿条等焊接而成。结构如图1所示。在GB10054中规定,标准节轴线对端面的垂直度公差不得大于节长的1/1500,所以垂直度不得大于1.005mm[1]。传统焊接是先焊接好方框,然后在焊接专用工装内将立柱、腹杆和齿条焊接成一体。因为焊接工艺与人员操作的关系,在焊接过程中容易造成焊接变形。
2改进前焊接工艺及问题
目前的工艺过程是焊接框架、切削加工框架、加工立柱圆管、加工腹杆,配件安放在专业焊接工装上,进行焊接[2],如图2所示。制造过程中,方框组焊过程中由于焊接的问题也会造成焊接变形。如图3所示,由于方框是由角钢拼焊成一个整体框架的,焊缝存在平焊缝和角焊缝。不同焊缝的收缩系数不同[3],特别是目前采用的焊接工装不能保证焊缝交错焊接,从而造成焊接变形量大的问题。齿条是通过螺栓连接块焊接在方框上的,并与立柱平行。在拼装组焊过程中,用焊接工装将齿条固定在相对位置上然后进行焊接。所以,方框焊接变形就会影响到齿条的位置精度[4]。同时,齿条和方框也会因为螺栓预紧力产生变形,进一步加大了齿条的制造误差。图2常见标准节加工工艺过程
3改进后的'焊接工艺
3.1对方框焊接工艺的改进
由于升降机生产批量大,为了减小焊接变形,可以采取两次装夹焊接的方法。第一次装夹焊接所有的平焊缝,焊后进行处理整形,消除焊接变形。第二次装夹焊接所有角焊缝。这样在一个工序只焊接一种焊缝,工人操作简便,工作效率高,焊接变形量也会减小。
3.2对齿条焊接的工艺改进
实践中,齿条焊接变形的主要原因是:方框焊接变形和连接螺栓预紧力造成角钢拉弯变形。针对上述原因,可采取如下改进。第一,改进标准节工装,使工装可以自由旋转,且便于工人进行翻转操作,在焊接过程中实现对称焊接,以减小焊接方框变形。第二,为减少螺栓预紧力造成的齿条变形,采取分步焊接的方法,即在工装上将所需焊接件安装完成,分别焊接方框与立柱圆管。焊接完连接块和部分水平焊缝后,将螺栓松开,并将夹具松开,消除焊接变形和螺栓连接变形。然后,再次夹紧工装,拧紧齿条螺栓,焊接完剩下的垂直焊缝。由于垂直焊缝对齿条影响小,此时即可将焊接变形和螺栓预紧变形消除到最小。
4改进前后的工艺对比
改进前,产品制造精度不足,产品质量不稳定,工人工作效率较低。经过改进,将变形量大的焊接部分进行分步焊接,从而减小了变形。利用螺栓二次预紧,消除螺栓预紧力造成的变形,之后再通过在焊接工装上的二次夹紧,分步焊接,消除变形。这种方法将常规工艺方法改进为分步焊接。可见,通过合理制定的工艺过程和操作方法,能够有效消除变形,提高产品质量,也可以减小由于制造误差引起的齿轮磨损和运动抖动问题。
5结语
对于施工升降机齿条焊接工艺的改进,针对工艺过程,充分利用分步焊接,实现焊接变形最小化,将焊接工序分解成多步完成。改进工艺既方便工作操作又减小变形,提高效率的同时,提高了齿条安装的精度。
参考文献
[1]安雁秋,戴光群.SC200型施工升降机导轨架焊接方法的改进[J].黑龙江科技信息,2005,(5):4.
[2]陆秀凤.人货两用施工升降机标准节焊装设备简介[J].建筑机械,1994,(8):37-38.
[3]张植盛.施工升降机标准节方框角钢焊接接头分析及加工工艺和模具设计[J].建筑机械技术与管理,2012,(6):87-89.
[4]万传芳,彭成辉.施工升降机导轨架工艺改进[J].金属加工,2015,(9):62-63.
篇2:横向焊接工艺研究管理论文
摘要:基于新型爬行式弧焊机器人对大型构件不同焊接位置的焊接工艺进行了研究,从大量实验中研究焊接速度、焊接电流、焊枪位姿等人工调节因素对焊接质量的影响;总结了针对该系统的各因素的调整方法和量值。实验表明,参数的适当改变使该系统能应用于不同位置的焊接,从而保证大型构件的全位置自动化焊接。
关键词:爬行式;全位置焊;焊接工艺;自动焊;机器人
前言
随着科学技术的发展,大型重要构件的焊接越来越多,仅仅依靠手工焊接难于满足焊接质量和焊接效率的要求,焊接自动化将成为焊接技术发展的必然趋势。在此介绍新型爬行式弧焊机器人的焊接工艺问题,其目的是为了实现大型构件的全位置自动化焊接。
该系统对国内外现有的焊接设备和方法来说是全新的,所以在整个设计、完善和试验过程中不可避免的遇到了很多问题和困难,在此就焊接试验过程中所遇到的问题和采取的解决办法做一说明。
一、爬行式弧焊机器人系统
爬行式弧焊机器人系统的构成主要由永磁履带爬行机构、激光图像传感系统、信息处理及跟踪控制系统所组成。爬行机构是机器人的运动动力系统;图像传感与信息处理系统构成焊接识别系统,以识别焊缝,与跟踪控制系统一起组成焊缝跟踪系统,以实现运动中的焊缝跟踪和焊接。
在十字滑块的上滑块上固定有螺丝可调节钢臂,其平行于机器人车体,用以焊枪的对准调节。前端为摆动器,其上可夹持焊枪,用以完成焊接过程焊枪的摆动,参数可调。
为了保证焊接电流在试验过程中稳定可靠,以使焊接试验能够较准确地反映该套系统用于焊缝跟踪焊接的实际效果,焊接用电源和送丝机构选用芬兰KEMPPI公司生产的KEMPPIPR0500,它的焊接模式、焊接脉冲、电流、电压等多项焊接参数均可随时手动调整,在焊接过程中并能根据已有参数自动稳定焊接电流、电压。
二、焊接工艺与试验
采用该系统我们做了两种位置的焊接试验,分别为立焊和横焊(大型构件主要的焊接位置分为立焊和横焊,针对这两种焊接位置来进行试验研究。)在实际手工焊接的过程中!这两种位置的焊接所采用的焊接方法有很大差异,工艺方法也就有很大不同。
1.试验材料
为符合在工业生产中的造船、制罐等实际用材情况,选用普通碳钢焊丝选用直径1.2mm镀膜焊丝。
2.焊接工艺
(1)焊接方法
采用氩气、CO2混合气体保护MIG脉冲焊;背面使用陶瓷衬垫;单面焊双面成形工艺&盖面根据焊接位置为立焊一道、横焊多道成形。
(2)焊接坡口
a.立焊。坡口选用“V”型坡口,具体坡口形式及尺寸如图2所示。焊前坡口及周围20mm范围内清除水、油、锈等,露出金属光泽,以保证激光图像传感系统对焊缝的顺利识别。
b.横焊。坡口选用不对称“v”型坡口,具体坡口形式及尺寸。焊前需处理坡口表面。
(3)工艺规范
在试验过程中,除对焊机参数的整定和正确调节外,焊枪位置、焊枪的摆动、焊接速度对焊接质量、焊缝成形都有很大的影响。因为这些量依靠手调、特别是焊枪位置、焊枪摆动,在实际操作中不便于测量,调节难度较大。
a.焊枪位置包括焊枪头与工件位置、焊丝与坡口位置(要考虑摆动幅度的影响。
b.焊枪摆动由调节摆动器来实现,主要参数有摆动速度%左中右3个位置的停留时间。
c.焊接速度um为焊前设定值,焊接过程中可调。
d.焊前对焊机电压补尝进行整定,整定值2.6V作为焊机内设参量。常用调节量有送丝速度us、焊接电压U和脉冲幅值。
(4)焊接各项参数
a.立焊
立焊打底时焊枪垂直于工件mm左右上方,加摆后焊丝靠两边坡口1~2mm,第二道盖面,焊枪垂直上调5~8mm,摆动幅度适当调大。
b.横焊
横焊打底时焊枪微向下扎,使焊丝在加有摆动时不至太靠下边坡口,焊枪顺焊接方向向下斜摆,大约与水平成75°~80°;盖面三道成形,均不加摆动,且每次要根据上道次焊接的.效果和位置从新调整焊枪姿态第一道盖面枪头略向下扎,二道时较平,末道枪头略向上抑。
三、试验结果
a.在早期试验中,电流、电压值与焊速的匹配总不令人满意。采用的MIG脉冲焊,其宜于用较小的平均电流进行焊接,特点是熔池体积小,不易淌流,且在脉冲峰值电流作用下,熔滴的轴向性好,故比起普通氩弧焊更有利于焊缝成形,在全位置焊中有很好的效果。试验中早期打底焊焊速一般在8cm/min以上,相应电流值也较高,在95~105A之间,焊接过程不太稳定,背面成形有时也不理想。究其原因,在于脉冲幅值的影响,脉冲电流使熔滴呈喷射过渡,在较大脉冲电流下较小的电压易造成大飞溅、淌流,而大电压表面成形也不理想。我们在试验中不断摸索,后在稳定幅值的前提下适当减小电流、电压并且降低焊速,这样在横向和垂直位置的焊接过程中,充分发挥出了脉冲焊工艺在全位置焊上的优点,焊接过程稳定,飞溅小,两面成形都很理想。立焊焊前加衬垫样板、立焊背面成形、打底和盖面成形样例。
b.手工焊盖面横焊工艺采用的是加摆停留的方法,由于人工操作的灵活性,焊接过程中摆动频率、幅度和停留时间均可实时改变,故一般宽度的盖面焊可一次成形。由于该机器人缺乏人的灵活性,我们通过模仿人工的盖面过程横焊,采用高焊速加快速摆动或不加摆动多道成形的横焊盖面方法。这样就避免了横焊盖面淌流的发生,也取得了不错的效果。打底焊、盖面第一道、第二道、最后盖面成形。
c.除了电流电压和焊速,另一个人为影响较大的因素是摆动器的调节,根据不同位置的焊接要采用不同的摆动方式。
四、结论
试验证明,通过对工艺方法的改进和调整,该套爬壁式弧焊机器人应用在立向和横向焊接上,能够获得稳定的焊接质量和很好的表面成形。当针对不同的材质和焊缝规格时,要有某些值发生变化,则其他值相应也要有所调整。
篇3:高压管道焊接工艺和质量控制研究论文
高压管道焊接工艺和质量控制研究论文
焊接施工是316LMod高压管道安装的重要步骤,焊接过程中由于各种原因,焊缝中可能会出现夹渣、气孔,焊接接头性能质变等问题,影响高压管道的安全。焊接工作中要严格按照工程的实际质量需求编制焊接工艺规程,做好质量控制工作,保证高压管道的安全运行。
1316LMod材料的性能及焊接特点
1.1316LMod材料性能。316LMod是一种强腐蚀不锈钢材料,主要由碳、氮、锰、镍等几种奥氏体形成元素,硅、铬、钼等几种铁素体形成元素以及铁元素组成。常温情况下,316LMod的抗拉强度超过530MPa,屈服强度超过255MPa,50~400℃条件下,316LMod的抗拉强度在530~420MPa左右,屈服强度在145~240MPa左右。尿素生产过程中会产生大量的甲胺溶液、液氨等,高温高压环境下,甲胺溶液对于不锈钢具有极强的晶间腐蚀性,因此,一般的不锈钢材料并不能用于尿素行业。316LMod材料含碳量极低,抗晶间腐蚀能力强,因此在尿素行业中,经常会利用这种材料焊接高压管道。1.2316LMod材料焊接特点。316LMod高压管道的热导率比较小,线膨胀系数比较大,如果选择一般的焊接方法,焊接过程中很容易产生焊接变形,出现晶界贫Cr现象,使得钢材的抗腐蚀性降低。因此316LMod高压管道焊接的方法比较特殊,焊接过程中不需要进行预热,层间温度必须要低于60℃,且焊接接头的冷却速度应尽量的快,为了避免焊条中各种合金元素烧毁,最好选择短弧焊接方式。另外,316LMod管道焊缝中柱状晶体具有很强的方向性,焊接过程中很容易出现低熔点共晶体偏析的现象。因此,316LMod高压管道的焊接方法比较特殊。
2316LMod高压管道焊接技术
2.1焊接工艺方法。就目前来说316LMod管道常用的焊接方法由氩电联焊、钨极氩弧焊等焊接方法。实际的焊接施工之中,现场工作人员需要根据高压管道的管径以及壁厚情况,选择不同的焊接方法。比如,高压管道管径壁厚6mm时,可以选择钨极氩弧焊方式,当高压管道的管径壁厚超过6mm时,可以采用钨极氩弧焊打底焊,利用焊条电弧焊方式填充。2.2焊接工艺参数选择。实际的焊接工作中,通常情况下,选择JQ.HOOCr19Ni12Mo2准1.6mm焊丝即可,焊接电流控制在60~80A,直流正接,焊接电压控制在12~15V左右。焊条主要由CHS022准2.5mm焊条、CHS022准3.2mm焊条以及CHS022准4.0mm焊条等几种,利用不同焊条焊接时,焊接电流、电压、焊接速度都有一定的区别。2.3坡口加工及组对要求。316LMod管道切割时可以选择无齿锯、机械切割等切割方法,一般情况下,需要根据具体的工艺要求,合理选择坡口角度、焊接透度,尤其316LMod高压管道具有管壁厚、热膨胀系数大、导热系数小等特征,坡口选择不当,很容易导致焊接变形问题,一般将坡口角度控制在40°~55°左右较好,坡口倾角最好呈U字型,底部向上缓慢减小,坡口的间隙控制在2.0~2.5mm左右。焊接之前,作业人员要能够利用角磨机将基层焊缝坡口及两侧的锈迹、油污等清理干净,并使用酒精、丙酮等物质将坡口边缘焊接区以及离边缘10mmzu左右的相邻区域清洗干净。坡口加工过程中,要边浇水边加工,水中的氯离子含量需要控制在25mg/L以下,为了保证坡口表面平整光滑,没有毛刺、裂缝等缺陷,需要对坡口进行修磨。同时,焊接过程中保证接焊口组对内壁平齐,内壁错边量小于壁厚十分之一,不超过0.5mm,外壁错边量不超过2.0mm,焊接组对准确性高。2.4316LMod高压管道定位焊。坡口及组对处理完成之后,对坡口进行全面细致的检查,确定没有质量问题之后,可以进行定位焊。定位焊是整个高压管道焊接施工的重要组成部分,定位焊的焊接长度、高度需要根据管道的实际情况进行确定。定位焊要保证焊接没有起泡、裂纹、夹渣等缺陷,为了避免正式焊接过程中,焊接部位无法融合,定位焊起弧及收尾时要做到圆滑过渡。2.5充氩保护316LMod高压管道焊丝打底焊时需要进行充氩保护,采用氩弧焊焊接方式时,需要利用氩气进行管内连续保护,直到两层焊道完成之后方可停止。充氩保护的效果通过焊接接头的颜色进行判断,一般情况下,焊接接头呈现银白色,说明充氩保护效果较好。
3316Lmod管道焊接质量控制
为了保证316Lmod高压管道的焊接质量,焊接施工过程中需要严格按照相关的工艺要求开展焊接工作,加强质量检查,及时发现焊接过程中存在的各种缺陷,制定完善的处理方案,避免焊接工作影响到管道的质量。焊接完成之后必须要及时进行焊接检验。焊接检验内容与管道的管径、壁厚等密切相关,管径壁厚不同,焊接检验的内容也存在一定的区别。当管径小于等于40mm,壁厚小于等于5mm时,焊接检验的内容主要包括外观检验、液体渗透检验、铁素体含量检验几部分。当高压管道管径超过40mm,壁厚大于5mm时,焊接工作分步完成,相应的,焊接检验工作也分步进行。打底焊及第一层填充焊完成之后,进行液体渗透检验、外观检验以及铁素体含量检验,检验结果合格,焊缝没有出现夹渣、裂缝等缺陷后,利用丙酮将坡口表面清理干净,然后进行第二层焊接工作。第二层焊接完成之后,实施渗透检验,如果没有缺陷,利用100%射线探伤方式再次检验。最终焊接完成之后,对整个管道安装工程进行渗透检验、外观检验及100%射线检验,必须要保证管道的安全性。渗透检验过程中,可以选用溶剂去除型着色渗透法,溶剂悬浮显示剂中的.有机溶剂渗透能力非常好,显像灵敏度比较高,选择这种溶剂进行检验效果较好。液体渗透检验过程中,管道表面的温度应控制在15~50℃左右,为了保证溶液能够比较彻底的渗透进管道缺陷之中,渗透时间应控制在15min以上。铁素体含量检验时可以选择探头式测量仪器进行,一般情况下,316Lmod高压管道中最大铁素体含量不得超过0.6%。检验过程中以此为标准对管道的合格性进行判断。检验之前,首先需要利用丙酮溶液将检验探头、校验试件、焊缝等清洗干净,保证表面没有油脂、锈迹等污染物质出现,从而保证检验的精度。检验过程中,为了保证探头没有被污染,确保检验结果的精确度,工作人员需要时常清洗。如果发现检验点铁素体含量超标,需要利用砂轮片、丙酮打磨清洗处理之后再次检验,如果依然不合格,需要核对母材、焊材铁素体检验报告,检查是否存在不准确的地方。或者对焊材的使用过程进行检查,及时发现操作不当的地方,予以修复处理。休氏实验检验是评定焊接试件质量的重要方法,具体的操作过程中,现场工作人员必须要严格按照CWCEC工程设计标准8-A10S-95选择试板位置、尺寸,按照一定的要求将焊接工艺评定试件送到对应的实验室之中,由专业的实验人员开展实验过程。整个实验一共经历5个沸腾周期实验,每一个沸腾周期为48h,如果每个周期内试件的腐蚀平均值不超过3.3um,就说明该材料质量合格,满足工程需要。
4结语
316LMod高压管道的焊接对于尿素生产企业有着十分重要的影响,实际的焊接施工过程中必须要加强焊接质量控制工作。焊接施工之前,结合工程的实际情况选择恰当的焊接技术,焊接施工中严格执行相关的工艺规范,将焊接工艺与现场施工控制工作有效结合起来,因此,焊接单位必须要加强焊接全过程的质量控制,严格控制焊接作业流程,规范工人作业行为,并大力加强对焊接作业的全程质量监督和控制,从而更好的确保压力管道焊接项目的质量和水平。从整体层面把握焊接工作,确保焊接质量符合高压管道安装施工标准要求,保证管道安全有效运行。
参考文献:
[1]谢兰贺.石油化工管道焊接工艺与质量控制对策探究[J].化工管理,2016(06).
[2]韩海英,,徐立泉,董海洋.316Lmod管道焊接技术与质量控制[J].石油工程建设,2012(05).
[3]多洁才仁.化工金属管道焊接施工质量控制要点[J].中国石油和化工标准与质量,2016(21).
篇4:海底输气复合管道焊接工艺研究论文
海底输气复合管道焊接工艺研究论文
1焊丝材料选择
选择焊丝,不但要考虑焊接形式对焊接材料的要求,更重要的是要考虑焊丝熔融后和管材母体材料的熔合后的内部晶像组织结构,从而显现出最终需要的焊道的机械性能。尤其对于复合管道而言,又要同时考虑焊丝与两种不同机体的管材焊接后的焊道机械性能,焊丝的选择则显得尤为重要。
1)Incoloy625合金与X65钢的化学成分差别很大。在焊接时,合理选择两种合金过渡层的焊接材料非常重要。考虑到合金成分的稀释问题,应尽量使用合金成分含量高的焊接材料,同时应尽量使用浅熔深的焊接方法和操作要领,避免合金的进一步稀释。
2)S和Si等杂质在Incoloy625合金的焊缝金属中容易偏析。S和Ni形成Ni-NiS低熔点共晶,在焊缝金属凝固过程中,这种低熔点共晶在晶间形成一层液态薄膜,在焊接应力的作用下可能形成晶间裂纹。焊接过程中Si和O等形成复杂的硅酸盐,在晶界形成一层脆的硅酸盐薄膜,在焊缝金属凝固过程中或凝固后的高温区,形成高温低塑性裂纹。
3)Incoloy625合金与X65级钢在力学性能和物理性能上存在着较大的差异。导热率不同,会改变焊接时的温度场分布,从而改变焊缝的结晶条件。导热率大的金属首先冷却、结晶,造成焊缝成分和组织的不均匀性;导热性差,焊接热量不易通过传导而散出,焊接熔池容易过热,造成室温显微组织晶粒粗大,使晶间夹层增厚,减弱了晶间结合力,延长了焊缝金属的凝固时间,助长了热裂纹的形成。Incoloy625合金与X65级钢的导热率有7倍以上的差别,从而使得这种趋势变得更加明显。
4)Incoloy625合金与X65级钢的线膨胀系数不同。焊接时由于焊接热循环的作用,在这两种合金内部产生交变的加热和冷却,加之这两种合金热膨胀的量和冷却时收缩的量差别较大,会在接头处产生较大的焊接残余应力。
5)Incoloy625合金与X65级钢的磁性不同,一种无磁性,一种有磁性。在焊接时,由于两种材料的磁性不同,容易造成电弧磁偏吹,从而使焊缝成形变差,甚至会造成焊缝夹渣、未熔合等焊接缺陷,影响焊接质量。
6)对于Incoloy625合金及其他的奥氏体不锈钢来说,在450~850℃高温持续服役的过程中存在发生晶间腐蚀的可能性,所以应将焊接时的层间温度控制在合理范围以内,减少t8/5的时间(800℃-500℃冷却需要的时间),减少影响焊接接头性能的因素。而对于X65级钢而言,过快的冷却速度容易产生脆硬性组织,在焊接接头过热区的局部产生魏氏组织,对接头的力学性能不利,故焊接时应注意预热和保持一定的层间温度。
7)焊接复合钢管与焊接复合钢板的不同之处就是受管径的限制。焊接复合钢管时,只能先焊覆层,再焊过渡层,后焊基层。在焊接过程中,应采取有效的'保护措施和焊接技术,以防止覆层金属根焊焊缝的合金元素被烧损和氧化;同时需要合理的焊接操作技术,焊接过程尽量采用浅熔深,避免合金被过渡稀释,影响焊缝的使用性能。
2端口焊接要求
液压胀管技术生产的复合管中,不锈钢内壁与外部碳钢管壁的结合力较低,在焊接过程中,焊接高温作用下,热胀冷缩造成复合管壁的结合界面处分离。为了保证管道焊接处的耐蚀性能,在管道端口处首先进行堆焊,技术及工艺要求见图1、2。堆焊长度大于10mm,堆焊层厚度大于3.5mm。根焊工作是复合管焊接的核心技术,由于衬管壁厚薄,在液压胀管过程中,椭圆度控制难度大,在对口焊接时,尤其要注意错边量的控制,焊接时必须保证不锈钢层的良好熔合。在端口焊接前需要对端口进行矫形,保证端口的圆度。端口堆焊完毕后,对端口表面进行切削,使表面堆焊层表面光滑。准备工作中应重视制定合理的焊接工艺。
3焊接工艺制定
选用MIG焊接。选用Incoloy625镍基焊丝,焊丝直径1.2mm。一般而言,为提高焊缝的耐腐蚀性能,根据YB/T5092-1996《焊接用不锈钢丝》的规定,选用H0Cr26Ni21焊丝,Cr含量为25%~28%,Ni含量为20.0%~22.5%,基本满足不锈钢焊缝的性能要求。但是在焊接复合管时,由于在焊接过程碳钢母材熔化,对焊缝的化学成分产生较大的稀释问题,降低了焊缝的耐腐蚀性能。
4结论
海底输气复合管道既满足对于管道强度、韧性的要求,也满足内壁抗腐蚀性。从长远来看,复合管道代替单一的管线钢是未来发展的趋势,可以大规模推广。采用不同的抗腐蚀钢来作为内衬管,焊接工艺的制定对于管道复合至关重要,机械复合相对于冶金复合制作简单,也可节约成本,合理制定焊接工艺是保证焊接接头强度、韧性等性能。
篇5:高拘束度厚钢板自动焊接工艺研究论文
高拘束度厚钢板自动焊接工艺研究论文
1。概述
现代冶炼和制造技术的不断提高,为大型钢结构的生产和使用提供了有力保障,重型钢结构制造行业日益发展,中厚板的焊接技术也越来越先进,如窄间隙焊接技术和多丝焊接技术的日趋成熟。但因各种限制,也有许多厂矿一时难以推广上述工艺,仍然以单丝埋弧焊工艺为主,关注单丝埋弧焊工艺在中厚板结构中的应用,一段时期内仍具有相当的实际意义。笔者曾从事过大型水泥行业、电力行业管磨机和锻压机床大型压力机的焊接工艺,对厚板焊接特别是高拘束度条件下的焊接工艺进行了大量实践和总结,本文以管磨机支撑段(行业内称滑环)的焊接工艺为例,分析高拘束度厚板焊接工艺的特点。
2。实例情况简介
如图1所示为建材行业采用较多的规格为φ5m的管磨机滑环的基本尺寸,材料一般用20G(现标准为Q245R),也有少部分厂家设计采用Q345―B板,投料尺寸筒体部分一般采用厚度115mm,腹板厚度90mm。
3。焊接性分析
(1)理论分析对常用碳钢如Q245和低合金钢Q345综合评价其焊接性,特别是淬硬性,估算可用碳当量经验公式:Ceq=C+Mn/6+Si/24。一般Ceq≤0。4%时认为焊接性良好,上述钢材Ceq一般在0。4%~0。45%,属于焊接性良好的钢种。对于厚度大的钢材焊接时,必须考虑合金元素和杂质对热裂纹的影响。因此评价焊接热裂纹倾向的碳当量计算公式:Ceq=C+2S+P/3+(Mn―1。0)/8+(Si―0。4)/7。相关资料指出,对于wc≥0。2%的碳钢和低合金钢,当杂质ws≥0。035%时,便足以引起埋弧焊的热裂纹,因此应尽量将钢中和焊丝中杂质S的含量分别控制在0。02%和0。01%以下,同时杂质P的含量也应控制在0。02%以下。由于构件使用的钢板厚度大,同时筒体与腹板组合的环缝拘束度相当高,焊接过程中因厚板传热快,焊缝冷却速度大,虽然是低碳钢或低合金钢,仍然会在焊缝中出现淬硬组织,在厚板形成的三维应力作用下,极有可能产生冷裂纹;而用于一般结构的钢板和焊丝成分,冶炼时达到控制热裂纹所需的杂质最高含量也不完全现实,从而出现热裂纹的几率也大大增加。(2)实际情况在实际制作过程中,由于刚开始没有引起足够重视,结果问题接连出现。首先,考虑厚板冷却速度不周,焊接前只进行了简单预热,结果第一层焊接马上全部开裂,再加焊一层,同样开裂,后来调整了预热工艺,保证底层焊缝质量后,中间层焊缝因焊接参数较大,又在焊缝中心出现大量热裂纹。
4。工艺措施制定
根据理论分析及实际教训,我们认真进行总结并制定了详细工艺措施。(1)预热温度确定参照低合金钢冷裂纹指数Pcm及考虑板厚的预热温度计算公式进行计算,并结合相关资料介绍的经验,确定预热温度如下:钢板对接预热温度:T≥100℃;滑环环缝焊接预热温度:T≥140℃。(2)焊丝焊剂选择为提高抗热裂性能,并考虑到厚板焊接后一般要求进行热处理,碳钢采用含锰焊丝H08MnA,配合HJ431焊剂,低合金钢采用H10Mn2A,配合HJ431或SJ101焊剂,熔炼焊剂使用前250℃烘烤2h,烧结焊剂使用前350℃烘烤2h。(3)焊接参数确定进行了试板试焊(埋弧焊焊丝H08MnA、φ4mm,焊剂HJ431)底层焊接情况如表1所示。(4)焊后消氢处理和焊后消除应力热处理由于此类结构焊接后要进行机加工,必须进行焊后消除应力热处理,若焊后不能进行消除应力处理,需增加消氢处理工序。
5。焊接工艺要点
(1)焊接坡口设计根据多次试验结果,既保证不焊穿又能有效防止底层热裂纹的坡口形式如图3所示。筒体部分采用对称U形坡口,腹板则采用不对称U形坡口,适当增加圆弧部分半径(R10mm左右),减少钝边尺寸(由原来6mm减为3mm),可以在底层焊缝中尽量减少母材的熔入量,对防止根部热裂有明显作用。(2)组装要求钢板对接时采用定位板固定,装配间隙控制在2mm以内。滑环类高拘束度结构件,应先粗加工,保证配合间隙尽量较小,并均匀分布,装配腹板前先划线,用定位板根据结构尺寸进行筒体上定位板的.焊接再装腹板,检验各部位装配质量,不可点焊,否则预热时因膨胀不匀定位焊缝拉裂形成潜在焊接缺陷。(3)预热方法钢板对接:采用煤气(或氧乙炔火焰)预热,温度达到100℃以上。滑环预热:采用筒体远红外履带式电加热结合腹板煤气加热方法,筒体先加热使之膨胀,约30min后腹板开始加热,保证筒体筒体预热达到140~150℃,腹板预热达到100~120℃,坡口间隙以2~3mm为宜。预热范围要求板厚3倍以上,用红外线测温枪近距离(200~350mm)垂直测量,同时预热过程中要求用保温棉进行保温。环境温度较低时预热温度应增加20~30℃。(4)焊接实施根据工艺试验确定焊接材料,实际施焊时,当达到预热温度后,第一层用φ1。2mm丝径的CO2焊接先进行填充以防止焊穿,然后采用埋弧焊焊接,焊接参数如表2所示。焊接过程中保证层间温度碳钢结构≥100℃,低合金钢≥150℃;如果达不到此最低规定,应继续通电预热,但必须注意防止触电等安全(良好接地措施)。一旦焊接除非特殊情况,一般要求连续焊接,禁止中途停留;特殊情况间断后,必须重新预热达到规定温度后才能进行焊接,而且重新预热的加热速度要求控制好,不得高于50℃/h,以免产生应力开裂。自动焊焊缝形状系数在1。3~1。5为佳,偏小的形状系数,在厚板焊接时极易产生结晶裂纹。由于腹板对接必须考虑焊接变形的影响,所以采用不对称坡口,从小坡口侧先焊接,注意两面交替焊接,随时检测角变形量并调整焊接顺序,特别注意盖面层的焊缝对角变形有较大影响;滑环筒体与腹板组合的环缝焊接也同样要注意腹板变形量,一般以8~10mm为宜,达到此值时就必须翻面焊接;而筒体钢板对接时因为钢板长度大,自重大,在对接焊缝焊接时,因为自重作用,相当于进行了刚性固定,可以一次将一面焊接完毕再翻面。必须采用多层多道焊接,这样既有利于减少结晶热裂纹产生的几率,又可大大减少焊接应力,同时每层每道焊缝对上层上道焊缝有回火作用,不仅提高了焊缝力学性能,而且利于焊缝残余氢的逸出,对防止厚板焊接冷裂纹有很大作用。板材对接时焊丝与坡口母材间距以焊丝直径为准,过大边缘未熔合,过小易产生咬边或焊道间未熔合。腹板与筒体组合环缝焊接时,自动焊机应做相应工装,保证焊机焊接速度和焊丝角度方便调节,焊丝与腹板的夹角以70°~80°为宜,焊机改装及实际焊接情形如图4所示。(5)焊后热处理如图5所示,厚板类焊接结构因残余应力较大,一般应进行焊后消除应力热处理,对于板材对接焊缝,消除应力热处理的升温速度可以参照板厚进行计算:升温速度v1≤5500/δ(℃/h);降温速度v2≤7000/δ(℃/h);保温时间t≥2+(δ―50)/100(h);其中,δ为需热处理的板厚。板材对接焊缝可以用履带式加热器进行热处理,滑环类最好进炉内热处理,如果没有合适退火炉,采用功率足够的履带式加热局部热处理也可以得到较好效果。这时因为局部热处理原因,加热速度和冷却速度均应比图5中的参数降低10~20℃/h,并注意围好保温材料,防止空气侵入和热量损失。消除应力后应进行超声波检测,对角接焊缝还应检查层状撕裂缺陷。
6。结语
厚板焊接有其特殊性,预热和连续小规范多层多道焊接是保证焊接质量的基本工艺措施,不能因为材料焊接性好就不引起重视。对拘束度较大的构件,更需强调预热的作用,特别是考虑膨胀收缩原理,通过焊前预热和电弧热,使工件与焊缝同时膨胀和收缩,尽量减少焊缝过大应力,同时还要考虑层状撕裂的问题(如选择Z25以上板材),这样才能保证焊接质量。笔者按照上述方法,焊接过建材行业磨机、锻压机床机架以及电力行业厚管板,均取得较好效果。
篇6:工程施工的工艺研究论文
模板工程施工的工艺研究论文
1施工工艺
1.1施工前的准备工作
1)进行中心线位置的放线。测量建筑的轴线,以此轴线为起点,引出每条轴线。
2)模板放线时,根据施工图用墨线弹出模板的内边线和中心线,柱模板要弹出模板的边线和外侧控制线,以便模板安装和校正。
3)做好标高测量工作。用水准仪把建筑物水平标高根据实际高的要求,直接引测到模板安装位置。
4)找平。模板承垫底部位应先找平,以保证模板位置正确,防止模板底部漏浆。找平方法:沿模板边线用1:3水泥砂浆抹找平层。
5)按施工用的模板及配件,对其规格数量逐项清点检查,未经修复的部件不得使用。
1.2模板的支设安装
1)模板的支设安装,应遵守规定。
2)按配板设计顺序拼装,以保证模板系统的整体稳定。
3)配件必须装插牢固,支柱下的支承面应平整,要有足够的.受压面积。
4)预埋件与预留孔洞必须位置准确,安设牢固。
5)支柱所设的水平撑和剪刀撑,应按构造和整体稳定性布置。
6)多层支设的支柱,上下应设置在同一竖向中心线上。
1.3模板的支设方法
1.3.1柱模板
1)按图纸尺寸制作柱侧模板,先将柱子第一节四面模板就位,调好对角线,并用钢管柱箍固定,然后用同样方法组拼第二节模板,直到柱全高,两垂直方向加斜拉顶撑,校正垂直度及柱顶对角线。
2)安装柱箍。柱箍为时准48×35钢管柱箍,根据柱模尺寸,侧压力的大小等因素,确定柱箍间距为500mm,当柱箍截面>700mm时设置柱中准12穿心螺丝,间距500mm。
3)柱模板安装时,应保证柱模的长度符合要求,不符合部分放到节点部位处理。梁柱模板分两次支设时,最上一段柱模保留,以便与梁模板连接。柱模高度>4m时,应四面支撑。
1.3.2梁模板
1)在柱子上弹出轴线、梁位置线和水平线,钉柱头模板。
2)梁底模板。按设计标支柱的标高,安装梁底模板,拉线找平,梁底板应起拱。当梁跨度>4mm时,高度宜为1/1000~3/1000。主次梁交接时,先主梁起拱,后次梁起拱。
3)梁侧模板。根据墨线安装梁侧模板,固定竖龙骨,间距制作高度应根据梁高及楼板模板压旁确定。
4)梁模板安装时,应特别注意梁口与柱头模板的连接。梁模支柱采用双支柱,间距以60~100cm为宜,纵横方向的水平拉杆的上下间距不宜大于1.5m纵横方向的垂直剪刀撑的间距不大于6m。
1.3.3现浇板模板
1)楼层地面立支柱前垫通长脚手板,采用多层支架支模时,支柱应垂直,上下层支柱应在同一竖向中心线上。
2)从边跨一侧开始安排,先安第一排支柱,再安第二排支柱,依次逐排安装。同时安装大龙骨:支柱的间距为80~120cm,大龙骨找平(准48,壁厚3.5mm)。间距为60~120cm,调整支柱高度,大龙骨找平,铺小龙骨(5×10方木),间距为20cm。
3)铺胶合板模板。平台铺完后,用水准仪测量模板标高进行校正。
4)标高校完后,支柱之间加水平拉杆。一般情况下,离地面20~30cm处设水平拉杆一道,往上纵横方向每隔1.6m左右一道,并应经常检查,保证拉杆牢固。
1.3.4楼梯模板
1)施工前应根据实际层高放样,先安装休息平台梁模板,再安装楼梯模板斜楞,然后铺设楼梯底模,安装外侧模和踏步模板。
2)安装模板时要特别注意斜向支柱(斜撑)的固定,以防浇筑混凝土时模板移动。
2模板拆除
1)墙、柱模板拆除。先拆除穿墙螺栓等附件,再拆除斜撑,用撬棍轻轻撬动模板,使模板离开墙体。
2)楼板、梁模板拆除。应先拆除侧模,再拆除楼板模板。拆除水平拉杆,然后拆除楼板模板支柱,每根龙骨留1~2根支柱暂不拆。操作人员站在已拆除的空隙,拆去近旁余下的支柱,使龙骨自由坠落。拆模区域应设警示线。楼层较高时,支模采用双层排架,使龙骨和模板落在底层排架上。上层模板全部运出后,再拆底层排架。
3)柱模板拆除时,在混凝土强度能保证其表面及棱角不因拆模受损的情况下,方可拆模。墙模板拆除时混凝土必须超过1MPa时,方可拆除。
4)拆下的模板及时清是黏结物,涂刷脱模剂,折下的扣件。
3结语
模板工程在现代工程施工中是非常重要的一项工作,通过在多年的工作实践中总结并参考有关资料,论述了模板工程在施工过程中的施工工艺,旨在引起广大同仁对建筑模板改革创新的积极性,推进我国混凝土结构施工的工艺进程,降低工程成本。
★ 焊接工艺评定报告
施工升降机齿条焊接工艺研究论文(精选6篇)




