【导语】“asgl92040”通过精心收集,向本站投稿了9篇用向量证明线面平行,下面是小编整理后的用向量证明线面平行,希望对大家有所帮助。
- 目录
篇1:用向量证明线面平行
用向量证明线面平行
用向量证明线面平行面垂直就是说直线是面的法向量。单位法向量当然平行这条直线,不过要排除与0向量的讨论。0向量与任何向量都平行。但0向量不垂直与面。
比如单位法向量是(x,y,z)直线的方向向量是m=(a,b,c)
那么m=a(x,y,z) 这不完全对。
比如单位法向量是(0,1,0),难道m=0吗?
只能是a≠0是可以这样。
面面平行:可以证明两个平面的法向量平行。
不过不一定是单位法向量,单位法向量是模等于1的法向量,其实只需证明两平面的法向量垂直就可以了。
当然你要证明分别平行于两平面的直线平行,
或平行一平面的直线与另一平面的法向量垂直也未尝不可。
2
三维空间上一平面上一活动点钟(x,y, z) 而(m,n,p )是在原点与平面的垂线的交点, 我们得
[(x,y,z) - (m,n,p) ] * (m,n,p) = 0
m(x-m)+n(y-n)+p(z-p)=0
mx+ny+pz=m^2+n^2+p^2
所以 ax+by+cz=d 中的a=m, b= n, c=p , d=m^2+n^2+p^2= 原点与平面的垂直距离
x+y+z=1是一个面它垂直和相交(1,1,1) 这支向量
[1,8,-3]×[4,-5,9]≠[0,0,0]
所以两直线的方向向量不平行
即两直线不平行
但是书后的'答案说两直线是平行的。。。
你确定题没有写错吗?
其实直线很简单
[x,y,z]=[4,-3,2]+ t[1,8,-3]
表示通过点[4,-3,2],沿着方向[1,8,-3]延伸
而[1,8,-3]跟[4,-5,9]方向不一样,两直线不平行
平行向量
平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作:a∥b,规定零向量和任何向量平行。
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。以减向量的终点为起点,被减向量的终点为终点(三角形法则)
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ >0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算
篇2:证明线面平行
一,面外一条线与面内一条线平行,或两面有交线强调面外与面内
二,面外一直线上不同两点到面的距离相等,强调面外
三,证明线面无交点
四,反证法(线与面相交,再推翻)
五,空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)
2
【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面
3
篇3:证明线面平行
【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的`直线必平行于另一个平面。
【平面与直线平行的性质】
定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
此定理揭示了直线与平面平行中蕴含着直线与直线平行。通过直线与平面平行可得到直线与直线平行。这给出了一种作平行线的重要方法。
注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。
3
本题就用到一个关键概念:重心三分中线
设E为BD的中点,连接AE,CE
则M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,
因为,EM:EA=1:3
EN:EC=1:3
所以,MN//AC
AC属于平面ACD,MN不在平面ACD内,即无公共点
所以,MN//平面ACD
本题就用到一个关键概念:重心三分中线
设E为BD的中点,连接AE,CE
则M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,
因为,EM:EA=1:3
EN:EC=1:3
所以,MN//AC
AC属于平面ACD,MN不在平面ACD内,即无公共点
所以,MN//平面ACD
篇4:证明线面平行的方法
证明线面平行的方法
证明线面平行的方法线面平行重点难点剖析
线面平行关系的判断和证明是空间线面位置关系的研究重点之一,它包括直线与直线的平行,直线与平面的平行以及平面与平面的平行.
本节复习包括首先要系统梳理有关判断、证明线面平行关系的各种依据,其中既包括有关定义、公理,还包括相应的判定定理或性质定理.梳理中不仅要明确有关判断、证明各有哪些依据,还要体会不同的依据在思维策略上给我们的指导.
例如判断线面平行可有三种思维策略:
(1)从概念考虑,即依据线面平行的'定义作思考,这就需要证明直线和平面没有公共点.证明方法通常选择反证法.
(2)从降级角度考虑,即通过证明线线平行来证明线面平行.其依据为:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.证明方法通常是把平面外的这条直线经过平移,移到这个平面中去.
(3)从升级角度考虑,即通过证明面面平行来证明线面平行.其依据为:两个平面平行,其中一个平面内的直线必平行于另一个平面.证明方法是找出一个与这个平面平行的平面,并且使这条直线正好在所找的平面内.
其中思维策略的选择不仅要注意建立这种意识,还要根据不同问题的不同条件,才能作出恰当的选择.在复习中应注意积累这种思考、选择的经验.
2
题目如图1,已知四边形ABCD,ABEF为两个正方形,MN分别在其对角线BF和AC上,且FM=AN,求证:MN∥平面EBC.一、找“线线平行”思考1如图2,过M作MH∥EF交BE于H,则MHEF=BBMF.过N作NG∥AB交BC于G,则NGAB=CANC.由于四边形ABCD,ABEF为两个全等正方形,则BF=AC,EF=AB,又因为FM=AN,所以MH∥NG且MH=NG,故四边形MHGN为平行四边形,所以MN∥平面EBC.思考2如图3,连结AM并延长交BE于K,则CK在平面EBC内.由题意,知△AFM∽△BKM,则AMMK=BFMM,因为FM=AN,BF=AC,则FMBM=ANNC,所以在△ACK中,有AMMK=ANNC,则MN∥CK,所以MN∥平面EBC.注在平面内找一条直线与平面外直线平行,通常有两种方法可找:①构造平行四边形;②构造三角形,利用对应边成比例.二、找“面面平行”思考3如图4,过M作MH∥BE,交AB于H,连结NH,则BMBF=BBHA.由于四边形ABCD,ABEF为全等的的正方形,又因为FM=AN,则有BMBF=CCNA,所以在
3
线面的我已经给你了
我来补充线线的
1.垂直于同一平面的两条直线平行
2.平行于同一直线的两条直线平行
3.一个平面与另外两个平行平面相交,那么2条交线也平行
4.两条直线的方向向量共线,则两条直线平行
篇5:高中数学证明线面平行方法
一.线面平行判断方法
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
注:线面平行通常采用构造平行四边形来求证。
二.证明线面平行的方法
一,面外一条线与面内一条线平行,或两面有交线强调面外与面内版
二,面外一直线上不同两点到面的权距离相等,强调面外
三,证明线面无交点
四,反证法(线与面相交,再推翻)
五,空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)
三.高中数学必考知识点
必修一:
1、集合与函数的概念 (这部分知识抽象,较难理解)
2、基本的初等函数(指数函数、对数函数)
3、函数的性质及应用 (比较抽象,较难理解)
首先,在高中必考数学知识点归纳整理,集合的初步知识与其他知识点密切联系。
它们是学习、掌握和使用数学语言的基础,是高中数学学习的出发点。
所以同学在集合与函数的概念一定要学扎实。
同学们应该知道,函数在高中是最重要的基本概念之一,老师运用有关的概念和函数的性质,培养学生的思维能力。
必修二:
1、立体几何
(1)、证明:垂直(多考查面面垂直)、平行
(2)、求解:主要是夹角问题,包括线面角和面面角。
立体几何这部分对高一同学是难点,因为需要同学立体意识较强。
在学习立体几何证明:垂直(多考查面面垂直)、平行
在学习空间几何体、点、直线、平面之间的位置关系时,重点要帮助学生逐步形,逐步掌握解决立体几何的相关问题。
必修三:
1、算法初步:高考必考内容,5分(选择或填空)
2、统计:
3、概率:高考必考内容。
在学习算法初步、统计等内容的时候,要注意顺序渐进,不可追求一步到位,特别要注意其思想的重要性。
必修四:
1、基本初等函数(三角函数:图像、性质、高中重难点)这个是高考中占分最多的题目。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
三角函数的学习,对高中同学将进一步了解符号与变元、集合与对应、数形结合等基本的数学思想在研究三角函数时所起的重要作用,在式子与图形的变化中,教师应引导学生通过分析、探索、划归、类比、平行移动、伸长和缩短等常用的基本方法的学习,使学生在学习数学和应用数学方面达到一个新的层次。
同学在高中必考数学知识点归纳整理,一定要把平面向量最基本的知识讲解一定要整理归纳好,平面向量提高学生应用数学知识解决实际问题的能力和实际操作的能力。所以同学们一定要重视起来。
必修五:
1、解三角形:(正、余弦定理、三角恒等变换)
2、数列:高考必考
3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
数列作为一种特殊的函数,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系。
篇6:用向量法证明
用向量法证明
用向量法证明步骤1
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i・a+i・b+i・c
=a・cos(180-(C-90))+b・0+c・cos(90-A)
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a・sinB
CH=b・sinA
∴a・sinB=b・sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3.
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的`圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式.希望对你有所帮助!
2
设向量AB=a,向量AC=b,向量AM=c 向量BM=d,延长AM到D使AM=DM,连接BD,CD,则ABCD为平行四边形
则向量a+b=2c (a+b)平方=4c平方 a平方+2ab+b平方=4c
平方 (1)
向量b-a=2d (b-a)平方=4d平方 a平方-2ab+b平方=4d
平方 (2)
(1)+(2) 2a平方+2b平方=4d平方+4c平方
c平方=1/2(a+b)-d平方
AM^2=1/2(AB^2+AC^2)-BM^2
3
已知EF是梯形ABCD的中位线,且AD//BC,用向量法证明梯形的中位线定理
过A做AG‖DC交EF于P点
由三角形中位线定理有:
向量EP=向量BG
又∵AD‖PF‖GC且AG‖DC ∴向量PF=向量AD=向量GC(平行四边形性质)
∴向量PF=(向量AD+向量GC)
∴向量EP+向量PF=(向量BG+向量AD+向量GC)
∴向量EF=(向量AD+向量BC)
∴EF‖AD‖BC且EF=(AD+BC)
得证
4
先假设两条中线AD,BE交与P点
连接CP,取AB中点F连接PF
PA+PC=2PE=BP
PB+PC=2PD=AP
PA+PB=2PF
三式相加
2PA+2PB+2PC=BP+AP+2PF
3PA+3PB+2PC=2PF
6PF+2PC=2PF
PC=-2PF
所以PC,PF共线,PF就是中线
所以ABC的三条中线交于一点P
连接OD,OE,OF
OA+OB=2OF
OC+OB=2OD
OC+OC=2OE
三式相加
OA+OB+OC=OD+OE+OF
OD=OP+PD
OE=OP+PE
OF=OP+PF
OA+OB+OC=3OP+PD+PE+PF=3OP+1/2AP+1/2BP+1/2CP
由第一问结论
2PA+2PB+2PC=BP+AP+CP
2PA+2PB+2PC=0
1/2AP+1/2BP+1/2CP
所以OA+OB+OC=3OP+PD+PE+PF=3OP
向量OP=1/3(向量OA+向量OB+OC向量)
篇7:用向量证明四点共面
用向量证明四点共面
用向量证明四点共面由n+m+t=1 , 得 t=1-n-m ,代入op=nox+ moy +toz, 得 OP=n OX +mOY +(1-n-m)OZ, 整理,得
OP-OZ =n(OX-OZ) +m(OY-OZ)
即ZP =nZX +mZY
即P、X、Y、Z 四点共面。
以上是充要条件。
2
如和通过四点外的一点(空间中)与四点之间的关系来判断折四点共面
A,B,C,D,4个点,与另外一点O,若OA=xOB+yOC+zOD,x+y+z=1,四点就共面3设一向量的坐标为(x,y,z)。另外一向量的坐标为(a,b,c)。 如果(x/a)=(y/b)=(z/c)=常数,则两向量平行 如果ax+by+cz=0,则两向量垂直。答案补充 三点一定共面,证第四点在该平面内 用向量,另取一点O 如向量OA=ax向量OB+bx向量OC+cx向量OD,且a+b+c=1 则有四点共面 答案补充 方法已经很详细了呀。4线平行线: 两条线的方向向量矢量积为0,且两条线没交点
面平行线:是线平行面吧,线的方向向量和平面法向量垂直,即线的方向向量和平面法向量数量积为0 ,且线不在平面内
三点共面:三点肯定是共面的,我猜你说的是三点共线吧,比如ABC三点,证明共线,证明AB与BC的'方向向量矢量积为0
四点共面:比如ABCD三点证明AB,AC,AD三者满足先求AB,AC的矢量积a,再a和AD数量积为0
3
怎样证明空间任意一点O和不共线的三点A,B,C,向量OP=x向量OA+y向量OB+z向量OC且x+y+z=1,则P,A,B,C四点共面
简明地证明,网上的不具体,不要复制!
证明:由x+y+z=1→x向量OC + y向量OC + z向量OC=向量OC,且:x向量OA+y向量OB+z向量OC=向量OP
将上边两式相减得:向量OP-向量OC=x(向量OA-向量OC)+y(向量OB-向量OC)
即:向量CP=x向量CA+y向量CB
由x向量CA+y向量CB所表示的向量必在平面ABC内→P点必在平面ABC内。
故:A,B,C,P四点共面。
4
可以先随便假设其中3点共面(很简单2点确定一条直线,直线和直线外一点可以确定1个平面) 不防设 A B C 三点共面 只需证明P点在这个平面上即可 以下向量符号省去
证明: PA=BA-BP
=OA-OB-(OP-OB)
=OA-OP
=OA-(a 向量OA+b向量OB+c向量OC )
=(1-a)OA-bOB-cOC
=(b+c)OA-bOB-cOC
=bBA+cCA
到这里 因为ABC已经确定了一个平面 且 PA=bBA+cCA
所以PA平行平面 又A在平面内 所以P点也在该平面内
所以四点共面
篇8:用向量证明正弦定理
用向量证明正弦定理
用向量证明正弦定理如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C
由图1,AC+CB=AB(向量符号打不出)
在向量等式两边同乘向量j,得・
j・AC+CB=j・AB
∴│j││AC│cos90°+│j││CB│cos(90°-C)
=│j││AB│cos(90°-A)
∴asinC=csinA
∴a/sinA=c/sinC
同理,过点C作与向量CB垂直的单位向量j,可得
c/sinC=b/sinB
∴a/sinA=b/sinB=c/sinC
2步骤1
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i・a+i・b+i・c
=a・cos(180-(C-90))+b・0+c・cos(90-A)
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a・sinB
CH=b・sinA
∴a・sinB=b・sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3.
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
3
用向量叉乘表示面积则 s = CB 叉乘 CA = AC 叉乘 AB
=>absinC = bcsinA (这部可以直接出来哈哈,不过为了符合向量的做法)
=>a/sinA = c/sinC
2011-7-18 17:16 jinren92 | 三级
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理 其他步骤2. 在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,
4
过三角形ABC 的顶点A作BC边上的高,垂足为D.(1)当D落在边BC上时,向量AB 与向量AD 的夹角为90°-B ,向量AC 与向量AD 的夹角为90°-C ,由于向量AB、向量AC 在向量AD 方向上的射影相等,有数量积的.几何意义可知 向量AB*向量AD=向量AC*向量AD即 向量AB的绝对值*向量AD的绝对值*COS(90°-B)=向量的AC绝对值*向量AD的绝对值*cos(90°-C)所以 csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得
篇9:《用向量讨论垂直与平行》说课稿
《用向量讨论垂直与平行》说课稿
一、教材分析
1.在教材中的地位与作用
本章内容《空间向量与立体几何》是在学习了立体几何的基本理论(必修2)和空间向量知识(必修4)的基础上提出的,本章的前三节已经将平面向量中的相关知识推广到了空间,为本节的学习和研究奠定了基础.本节主要是利用向量工具研究空间中的线线、线面、面面的位置关系,是立体几何的重要方向,是向量工具应用的重要方面,更是向量法解决立体几何问题的重要课题,是本章的.核心内容.
2.教学目标分析
根据《新课程标准》的理念,基于对教材的理解和分析,考虑到学生已有的认知结构及心理特征,制定如下三维教学目标:
(1)知识与技能目标
能用向量语言表述空间中线线、线面、面面的垂直与平行的位置关系;
掌握平面的法向量的求法.
(2)过程与方法目标
结合已有的立体几何知识,运用向量方法,解决立体几何中垂直与平行的问题.
(3)情感态度与价值观目标
体验科学探索的曲折过程,感受在探索问题的过程中的挫折感和成就感,培养合作意识和创新精神,激发学习兴趣.
3.教学重难点分析
根据以上教学目标,教学重难点确定如下:
教学重点:能用向量方法判断垂直与平行的位置关系;会求平面的法向量.
教学难点:结合已有的立体几何知识,运用向量方法,用向量语言证明垂直与平行的问题.
二、学情分析
学生已经学习了立体几何中线线、线面、面面的位置关系,具备有关知识储备,对坐标法解决几何问题也有了初步的认识.但是利用向量工具解决空间中垂直与平行的问题还没有系统的学习过,需要老师循序渐进的引导.
三、教法学法分析
1.教学:启发引导、数形结合、案例分析、构建模型.
2.学法:观察分析、自主探究、合作交流、讨论归纳.
四、教学过程展示
本节课主要分五个环节来完成:复习引入、自主探究、知识运用、课堂小结及布置作业.
(一)复习引入
给出三个问题,让学生思考:什么是直线的方向向量?什么是平面的法向量?如何利用向量知识判断直线与平面间的平行或垂直问题?
设计意图:1.个问题是引导学生复习已有的知识,为本节课的学习起到铺垫作用;2.个问题是引导学生思考与本节课有关的问题.
(二)自主探究
观察图形,并用向量语言表述以下位置关系:
设计意图:1.本节课本给出的三个例题都是证明题,起点相对较高,考虑到学生的认知结构及心理特征,先给出两个例题(非证明题)作为铺垫.2.引导学生用向量方法思考问题,让学生体会利用向量判断垂直与平行的方法,突破重点.
3.由例1体会到判断线面位置关系时,平面法向量的重要性.如何求平面的法向量?引出例2.
总结:求平面法向量的基本步骤.
设计意图:1.掌握平面法向量的求法.至此突破重点.2.本题用到的理论依据是线面垂直的判定定理,这个定理用向量方法如何证明?引出例3.
例3.(线面垂直判定定理)若一条直线垂直于一个平面内的两条相交直线,则该直线与此平面垂直.
设计意图:让学生从理论上学会用向量方法证明几何问题,从另一个侧面体现了利用向量方法研究垂直与平行的重要性,至此突破难点.
【方法归纳】:用空间向量解决立体几何问题的“三步曲”
(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的位置关系等问题;(进行向量运算)
(3)把向量的运算结果“翻译”成相应的几何意义.(回到图形问题)
设计意图:由例3归纳解题步骤,帮助学生梳理解题思路,构建知识体系.
学生练习:完成课本41页练习:1.2.3.
(以上三道题目考察的知识点依次是:线线位置关系,线面位置关系,面面位置关系)
设计意图:学生自己检验是否掌握了所学知识,并对所学方法加深理解.
(四)课堂小结(讨论归纳)
(1)用向量表示线线、线面、面面垂直与平行的关系;
(2)求法向量的步骤;
(3)用向量方法解决立体几何问题的步骤.
设计意图:引导学生对本节知识进行回顾,同时检验学生对本节知识的掌握程度,有利于教师更好的根据学生的情况进行针对性的辅导.
(五)布置作业(反馈提升)
1.课本42页第2、3题;2.学有余力的同学完成课本41页的思考交流
(第2、3题考察的知识点依次是:线线位置关系,面面位置关系;思考交流是对“面面垂直的判定定理”的证明)
设计意图:分层布置作业,尽可能适应不同层次学生的需要.通过完成作业,学生可以巩固所学知识,反馈学习效果,同时也起到了复习的作用.在做作业的同时,可以加深对知识的理解,提升思维能力.
五、教学反思
(1)以属性结合的思想方法贯穿于整节课,有助于学生更好的理解;
(2)根据学生已有的知识水平合理设计本节课的例题,体现了以学定教,以学生为主体,合作探究的新课程理念;
(3)题目梯度设置合理,有效学生突破重难点;
(4)在知识的巩固练习部分还有待加强,更好的提升学生思维水平和能力。
★ 平行研究范文
★ 平面向量教学反思
★ 复数的向量表示
★ 垂直和平行说课稿
用向量证明线面平行(推荐9篇)




