平面向量的数量积的物理背景及其含义教学反思

时间:2023-03-20 04:02:22 作者:海颜气泡水 教学心得 收藏本文 下载本文

【导语】“海颜气泡水”通过精心收集,向本站投稿了14篇平面向量的数量积的物理背景及其含义教学反思,下面是小编整理后的平面向量的数量积的物理背景及其含义教学反思,希望能帮助到大家!

篇1:《平面向量数量积物理背景及其含义》教学反思

《平面向量数量积物理背景及其含义》教学反思

平面向量的数量积是一种非常重要的运算,同其线性运算一样,既有其深刻的数学背景,也有其现实的物理背景。本节课从总体上说是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,在数量积概念的引入过程中,我从数学和物理两个角度创设问题情景,使学生明白研究这种运算不仅是数学本身发展的必然,更是研究客观世界的需要,从而产生强烈的求知欲望。相对于线性运算而言,数量积的结果发生了本质的变化,为了让学生理解这一点,我首先安排让学生讨论影响数量积结果的`因素并完成表格,其次将数量积的几何意义提前,这样使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识。通过尝试练习,一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。

数量积的性质和运算律是数量积概念的延伸,教材中这两方面的内容都是以探究的形式出现,为了让学生很好的完成这两个探究活动,我始终按照先创设一定的情景,让学生去发现结论,再由学生或师生共同完成证明。比如数量积的运算性质是将尝试练习的结论推广得到,数量积的运算律则是通过和实数乘法相类比得到,这样不仅使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。在应用这个环节中,对教材中提供的四个例题,我重点讲解例2和例4,例1和例3则由学生独立完成,这样既加强了学生的练习,同时也便于通过观察、问答等方式对学生的掌握情况做出适当的评价。达到提高认识,形成体系的目的,同时也为下一节课的内容做好铺垫,不断激发学生的求知欲。

篇2:平面向量的数量积的物理背景及其含义教学反思

平面向量的数量积的物理背景及其含义教学反思

1.1 教材的地位与作用

本节课是在学生学习了向量的概念和向量的加法、减法、数乘向量等线性运算的基础上,探索向量的又一种新的运算,它既是前面所学知识和方法的延续,又是后继学习解三角形、解析几何以及空间向量等内容的基础,因此本节内容具有承上启下的重要作用.1.2 学情分析

(1)学生已经学习了任意角的三角函数、向量的概念和线性运算等知识.

(2)学生对向量的物理背景有了一定的了解.如:力、位移、速度的合成与分解,力做功的有关知识.

(3)学生已经具备了一定的数学建模能力,能从简单的物理背景及生活背景抽象出数学概念.

2 教学目标分析

依据课程标准和以上分析,制定本节课的三维目标如下:

知识与技能目标

通过物理中“功”的实例,理解平面向量数量积的含义及其物理意义,掌握平面向量数量积的性质.

过程与方法目标

经历从物理背景的分析,抽象概括出概念的过程,培养学生归纳概括,类比迁移的能力;经历通过不同的方式探究、发现平面向量数量积性质的过程,体会从特殊到一般、分类讨论、数形结合的数学思想方法.

情感、态度、价值观目标

通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会各学科之间的密切联系,感受知识的形成过程,提高数学学习的兴趣,形成独立自主的钻研精神和合作交流的科学态度.

3 重点、难点分析

根据教学目标以及学情分析,确定本节课的教学重点、难点.

重点:平面向量数量积的概念和性质.

难点:向量在轴上的正射影的概念的理解和平面向量数量积的性质的发现.

在教学中,注意遵循学生的认知规律.从学生感兴趣的物理实例入手,通过层层分析, 形成数量积的概念,并经历概念辨析、深化理解、学以致用等过程,来突出重点.通过练习和探究问题的设计,将五个性质分散开来,通过课件动画、问题引领、自主探究、合作交流等手段,从理性认识到实践练习,再到应用,使性质自然呈现,既突出了重点,又突破了难点.

4 教学策略分析

基于数量积的知识特点及学生的认知规律,采用启发式和问题探究相结合的教学方法.著名数学教育家波利亚指出:“学习任何东西,最好的途径是自己去发现”.因此,指导学生采用发现式学习法.在课堂上坚持以教师为主导,学生为主体,以抽象类比与问题探究为主线.同时,为了有效实现教学目标,采用多媒体和自编学案辅助教学.

5 教学过程分析

本节课的教学流程如下:

具体分析如下:

5.1 创设情境 展示背景

教师录像展示“大力士拉车”的情境实例,提出物理问题.

问题1 大力士拉车,沿着绳子方向上的力为F,车移动的位移是s,力和位移的夹角为θ,大力士所做的功为多少?

设计意图 从学生已有的认知水平出发,通过熟悉的生活实例,创设数量积的物理背景,激发学生的学习热情.

5.2 分析背景 形成概念

该环节,依据本套教材的特点,以物理背景作为总的抓手,通过抽象、概括、归纳,形成了两个向量的夹角、向量在轴上的正射影和向量的数量积定义三个概念.

第一步:背景的初次分析

问题2 决定功的大小的量有哪几个?它们是标量还是矢量?当力和位移的大小一定时,功的大小取决于那个量?

问题3 这个夹角抽象到我们数学中,就是今天我们要学习的两个向量的夹角,把力F、位移s换作数学中任意两个非零向量a与b,你能尝试着给出向量a与b夹角的概念吗?

设计意图 通过力做功的几个因素的分析,突出夹角在做功中的作用,形成两个向量夹角的概念.

1.两个向量的夹角

已知非零向量a与b,作OA=a,OB=b,则∠AOB称作向量a与b的夹角,记作:〈a,b〉.

问题4 下面几种情形中(锐角、钝角、直角、共线同向、共线反向),两向量的夹角分别是什么角?

设计意图 通过几种类型的夹角的给出,让学生直观感知夹角的范围,帮助学生理解夹角范围规定的合理性.

规定: 0≤〈a,b〉≤π,且〈a,b〉=〈b,a〉.

特别的:当〈a,b〉=π2时,叫做a与b垂直,记作a⊥b;

两向量的垂直符号同几何中的垂直符号是一致的.

问题5 请回顾:0的方向是怎样规定的?

规定:0与任意向量垂直.

前面曾规定:0与任意向量平行.

设计意图 概念呈现后,注意与前面所学知识进行对比,便于学生理解,记忆.图1

练习: 如图1,正△ABC中,求

(1)AC与AB的夹角;

(2)AB与BC的夹角.

注:确定两向量的夹角的关键是:通过平移使两向量共起点.

设计意图 及时巩固所学概念,强调确定两向量夹角的一般方法.

第二步:背景的再次分析

问题6 真正使汽车前进的力是什么?它的大小是多少?

设计意图 让学生借助已有的认知经验,类比物理背景中拉力F在位移方向上的分力,它的大小是Fcos θ,自然引出向量在轴上的正射影及其数量的.概念.从特殊到一般,符合学生的认知规律,突破难点.

2.向量在轴上的正射影

已知向量a和轴l,作OA=a,过点O、A分别作轴l的垂线,垂足分别为O1、A1,则向量O1A1叫做向量a在轴l上的正射影(简称射影).

向量在轴上的正射影的数量

该射影在轴l上的坐标, 称作a在轴l上的数量或在轴l的方向上的数量. OA=a在轴l上正射影的坐标记作: al,若向量a的方向与轴l的正向所成的角为θ,则al=|a|cos θ.

问题7 向量在轴上的正射影与向量在轴上的正射影的数量有什么区别?

问题8 向量在轴上的正射影的数量一定是正实数吗?

注: a在轴l上的正射影的数量是个实数,可正、可负、可为零.

向量a在b方向上的正射影及数量

如果向量b在轴l上且与轴同向,那么,向量O1A1叫做向量a在向量b方向上的正射影,它的数量是acos.

设计意图 让学生理解正射影及其数量的含义,并引申出向量a在向量b方向上的正射影及其数量,为数量积的概念的学习做准备

篇3:平行向量数量积的物理背景及含义的教案

一、教材分析

1.教材的地位及作用

《平面向量的数量积》是普通高中课程标准实验教科书数学4(必修)第二章第四节的内容。将平面向量引入高中课程,是现行数学教材的重要特色之一。由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数与形的结合和转换的桥梁。而这一切之所以能够实现,平面向量的数量积功不可没。本课时的内容是平面向量数量积的物理背景及其含义,包括数量积的定义、几何意义、性质及运算律。它是继向量的加、减法,实数与向量的积等线性运算之后又一新的运算,是前面知识的延续,又是学好后续知识的基础,起承上启下的作用。

2.教学目标

(1)知识目标

理解平面向量数量积、投影的定义;掌握平面向量数量积的性质及其运算律。

(2)能力目标

通过对平面向量数量积性质及运算律的探究,培养学生发现问题、分析问题、解决问题的能力,使学生的思维能力得到训练。

(3)情感、态度、价值观目标

通过本节课的学习,激发学生学习数学的兴趣和善于发现、勇于探索的精神,体会学习的快乐。体会各学科之间是密不可分的。培养学生思考问题认真严谨的学习态度。

3.教学重点:平面向量数量积的定义、几何意义、性质及运算律

教学难点:平面向量数量积性质及运算律的探究。

二、教法分析

为更好地培养学生的探究能力。在教学上,我着重以引导探究的方法为主(创设情境、激发思维――展示目标、引导探究――达到目标、发展思维――归纳小结、深化目标)贯彻“教师为主导、学生为主体、训练为主线、思维为主攻”的教学思想。

学情分析:

考虑到学生已学过任意角的三角函数和物理学中的力做功知识,应该能解决简单的物理问题。所以我主要采用从物理知识出发引导学生,激发学生学习的兴趣与热情,让学生自主探究逐步得出数学上的重要结论。

三、教学手段

根据本节内容特点,为了更好地突出重点,突破难点,提高课堂效率,利用多媒体辅助手段。

四、教学程序设计

1.复习回顾

通过前面学过的向量的线性运算引出向量之间是否可以进行乘法运算?引出课题。接着让学生思考下列问题:

(1)在物理课上学过的矢量有哪些?

启发学生从物理方面解释,从数学方面证明。学生可以体会到不同的运算其运算律不尽相同。这有助于培养学生思考问题认真严谨的学习态度。主动探究式的学习,全面培养学生综合运用所学知识的能力,收集和处理信息的能力,分析和解决问题的能力,语言文字表达能力以及团结协作能力。

3.巩固训练:教科书例2、例3、例4

让学生独立完成例题解答,巩固所学知识。可以让学生说明自己是如何解答出来的。这样可以查缺补漏,同时也给不太会解答的同学解释一下。

4.课堂小结

让学生回顾本节课主要内容并小结。培养学生归纳总结的能力,同时让学生体会各学科是密不可分的。

5.布置作业

五、板书设计

篇4:平行向量数量积的物理背景及含义的教案

一、教学内容分析

以物体受力做功为背景引入数量积的概念,使向量数量积运算与物理知识联系起来;向量数量积与向量的长度及夹角的关系;进一步探究两个向量的夹角对数量积符号的影响及有关的性质、几何意义和运算律。

本节内容安排在《普通高中课程标准实验教科书•数学必修4》(A版)第二章、第4节第1课时。它是平面向量的核心内容,向量的平行、垂直关系是向量间最基本、最重要的位置关系,而向量的夹角、距离又是向量的重要数量特征,向量的数量积恰好是解决问题的一个重要工具。

本节的知识结构:

二、学生学习情况分析

本节以力对物体做功作为背景,研究平面向量的数量积。但是,学生作为初学者不清楚向量数量积是数量还是向量,寻找两向量的夹角又容易想当然,以及对运算律的理解和平面向量的数量积的灵活应用。通过情景创设、探究和思考引导学生认知、理解并掌握相关的内容。利用向量数量积运算讨论一些几何元素的位置关系、距离和角,这些刻画几何元素(点、线、面)之间度量关系的基本量学生容易混淆。利用数量积运算来反映向量的长度和两个向量间夹角的关系解决问题,是学生学习本节内容的重点又是难点。由向量的线性运算迁移、引申到向量的乘法运算这是个很自然的过渡,深入浅出、符合学生的认知规律,也有利于明确本节课的教学任务,激发学生的学习兴趣和求知欲望。

三、设计思想

《高中数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”,转变学生的学习方式,激发学生的学习积极性,让学生乐于参与到探索性和创造性的学习活动中来,这是新课程数学教学的基本要求。《高中数学课程标准》还明确提出了提高学生的知识与技能、重视学生的学习过程与方法,培养学生的情感态度、价值观的三维目标。为此,结合本节课的教学内容,教学中注重过程、方法,注重引导学生自觉去看书,不断提出问题,研究问题,并解决问题。重视在师生,生生互动、交流的过程中渗透情感态度与价值观。

篇5:平行向量数量积的物理背景及含义的教案

教学目标

1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;

2、体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算;

2学情分析

学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法。 在功的计算公式和研究向量运算的一般方法的基础上,学生基本上能类比得到数量积的含义和运算律,对于运算律不一定给全或给对,对运算律的证明可能会存在一定的困难,教学中老师要注意引导学生分析判断.

3重点难点

重点是平面向量数量积的概念、用平面向量数量积表示向量的模及夹角;

难点是平面向量数量积的定义及运算律的理解,平面向量数量积的应用。

4教学过程 4.1第一学时 教学活动 活动1【讲授】创设问题情景,引出新课

1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

答:向量的加法、减法及数乘运算。这些运算的结果是向量。

2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

答:物理模型→概念→性质→运算律→应用

3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算。导入课题:平面向量数量积的物理背景及其含义

[设计意图]:1.明白新旧知识的联系性。2.明确研究向量的数量积这种运算的途径。

2.4.1平面向量数量积的物理背景及其含义

课时设计 课堂实录

2.4.1平面向量数量积的物理背景及其含义

1第一学时 教学活动 活动1【讲授】创设问题情景,引出新课

1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

答:向量的加法、减法及数乘运算。这些运算的结果是向量。

2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

答:物理模型→概念→性质→运算律→应用

3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算。导入课题:平面向量数量积的物理背景及其含义

[设计意图]:

1.明白新旧知识的联系性。

2.明确研究向量的数量积这种运算的途径。

篇6:平面向量数量积练习题

平面向量数量积练习题

平面向量数量积教学要求学生掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示,分享了平面向量数量积的练习题,欢迎借鉴!

一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)

1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m的值为(  )

A.-2          B.2

C.-12       D.不存在

解析:由题设知:a=(m+1,-3),b=(1,m-1),

∴a+b=(m+2,m-4),

a-b=(m,-m-2).

∵(a+b)⊥(a-b),

∴(a+b)(a-b)=0,

∴m(m+2)+(m-4)(-m-2)=0,

解之得m=-2.

故应选A.

答案:A

2.设a,b是非零向量,若函数f(x)=(xa+b)(a-xb)的图象是一条直线,则必有(  )

A.a⊥b    B.a∥b

C.|a|=|b|    D.|a|≠|b|

解析:f(x)=(xa+b)(a-xb)的图象是一条直线,

即f(x)的表达式是关于x的一次函数.

而(xa+b)(a-xb)=x|a|2-x2ab+ab-x|b|2,

故ab=0,又∵a,b为非零向量,

∴a⊥b,故应选A.

答案:A

3.向量a=(-1,1),且a与a+2b方向相同,则ab的范围是(  )

A.(1,+∞)  B.(-1,1)

C.(-1,+∞)  D.(-∞,1)

解析:∵a与a+2b同向,

∴可设a+2b=λa(λ>0),

则有b=λ-12a,又∵|a|=12+12=2,

∴ab=λ-12|a|2=λ-12×2=λ-1>-1,

∴ab的范围是(-1,+∞),故应选C.

答案:C

4.已知△ABC中,  ab<0,S△ABC=154,

|a|=3,|b|=5,则∠BAC等于(  )

A.30°    B.-150°

C.150°    D.30°或150°

解析:∵S△ABC=12|a||b|sin∠BAC=154,

∴sin∠BAC=12,

又ab<0,∴∠BAC为钝角,

∴∠BAC=150°.

答案:C

5.(2010辽宁)平面上O,A,B三点不共线,设 则△OAB的面积等于(  )

A.|a|2|b|2-(ab)2

B.|a|2|b|2+(ab)2

C.12|a|2|b|2-(ab)2

D.12|a|2|b|2+(ab)2

解析:cos〈a,b〉=ab|a||b|,

sin∠AOB=1-cos2〈a,b〉=1-ab|a||b|2,

所以S△OAB=12|a||b|

sin∠AOB=12|a|2|b|2-(ab)2.

答案:C

6.(2010湖南)在Rt△ABC中,∠C=90°,AC=4,则 等于(  )

A.-16    B.-8

C.8     D.16

解析:解法一:因为cosA=ACAB,

故 cosA=AC2=16,故选D.

解法二: 在 上的投影为| |cosA=| |,

故 cosA=AC2=16,故选D.

答案:D

二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)

7.(2010江西)已知向量a,b满足|b|=2,a与b的夹角为60°,则b在a上的投影是________.

解析:b在a上的投影是|b|cos〈a,b〉=2cos60°=1.

答案:1

8.(2010浙江)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.

解析:由于α⊥(α-2β),所以α(α-2β)=|α|2-2αβ=0,故2αβ=1,所以|2α+β|=4|α|2+4αβ+|β|2=4+2+4=10.

答案:10

9.已知|a|=2,|b|=2,a与b的夹角为45°,要使λb-a与a垂直,则λ=________.

解析:由λb-a与a垂直,(λb-a)a=λab-a2=0,所以λ=2.

答案:2

10.在△ABC中,O为中线AM上的'一个动点,若AM=2,则 )的最小值是________.

解析:令| |=x且0≤x≤2,则| |=2-x.

=-2(2-x)x=2(x2-2x)=2(x-1)2-2≥-2.

∴ 的最小值为-2.

答案:-2

三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)

11.已知|a|=2,|b|=1,a与b的夹角为45°,求使向量(2a+λb)与(λa-3b)的夹角是锐角的λ的取值范围.

解:由|a|=2,|b|=1,a与b的夹角为45°,

则ab=|a||b|cos45°=2×1×22=1.

而(2a+λb)(λa-3b)=2λa2-6ab+λ2ab-3λb2=λ2+λ-6.

设向量(2a+λb)与(λa-3b)的夹角为θ,

则cosθ=(2a+λb)(λa-3b)|2a+λb||λa-3b|>0,且cosθ≠1,

∴(2a+λb)(λa-3b)>0,∴λ2+λ-6>0,

∴λ>2或λ<-3.

假设cosθ=1,则2a+λb=k(λa-3b)(k>0),

∴2=kλ,λ=-3k,解得k2=-23.

故使向量2a+λb和λa-3b夹角为0°的λ不存在.

所以当λ>2或λ<-3时,向量(2a+λb)与(λa-3b)的夹角是锐角.

评析:由于两个非零向量a,b的夹角θ满足0°≤θ≤180°,所以用cosθ=ab|a||b|去判断θ分五种情况:cosθ=1,θ=0°;cosθ=0,θ=90°;cosθ=-1,θ=180°;cosθ<0且cosθ≠-1,θ为钝角;cosθ>0且cosθ≠1,θ为锐角.

12.设在平面上有两个向量a=(cosα,sinα)(0°≤α<360°),b=-12,32.

(1)求证:向量a+b与a-b垂直;

(2)当向量3a+b与a-3b的模相等时,求α的大小.

解:(1)证明:因为(a+b)(a-b)=|a|2-|b|2=(cos2α+sin2α)-14+34=0,故a+b与a-b垂直.

(2)由|3a+b|=|a-3b|,两边平方得3|a|2+23ab+|b|2=|a|2-23ab+3|b|2,

所以2(|a|2-|b|2)+43ab=0,而|a|=|b|,所以ab=0,则-12cosα+32sinα=0,

即cos(α+60°)=0,

∴α+60°=k180°+90°,

即α=k180°+30°,k∈Z,

又0°≤α<360°,则α=30°或α=210°.

13.已知向量a=(cos(-θ),sin(-θ)),b=cosπ2-θ,sinπ2-θ,

(1)求证:a⊥b;

(2)若存在不等于0的实数k和t,使x=a+(t2+3)b,y=-ka+tb满足x⊥y,试求此时k+t2t的最小值.

解:(1)证明:∵ab=cos(-θ)cosπ2-θ+

sin(-θ)sinπ2-θ=sinθcosθ-sinθcosθ=0.

∴a⊥b.

(2)由x⊥y,得xy=0,

即[a+(t2+3)b](-ka+tb)=0,

∴-ka2+(t3+3t)b2+[t-k(t2+3)]ab=0,

∴-k|a|2+(t3+3t)|b|2=0.

又|a|2=1,|b|2=1,∴-k+t3+3t=0,

∴k=t3+3t,

∴k+t2t=t3+t2+3tt=t2+t+3

=t+122+114.

故当t=-12时,k+t2t有最小值114.

篇7:《平面向量数量积》说课稿

《平面向量数量积》说课稿

一:说教材

平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。

二:说学习目标和要求

通过本节的学习,要让学生掌握

(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三:说教法

在教学过程中,我主要采用了以下几种教学方法:

(1)启发式教学法

因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法

主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!

主要辅助教学的手段(powerpoint)

(3)讨论式教学法

主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

四:说学法

学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!

五:说教学过程

这节课我准备这样进行:

首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?

继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?

引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:

(1) 模的计算公式

(2)平面两点间的距离公式。

(3)两向量夹角的余弦的坐标表示

(4)两个向量垂直的标表示的充要条件

第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。

例题1是书上122页例1,此题是直接用平面向量数量积的'坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。

例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。

再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

然后是学习小结(由学生完成)

最后作业布置!

篇8:《平面向量的数量积》说课稿

(2)能力目标:

通过对平面向量数量积定义的剖析,培养学生分析问题发现问题能力,使学生的思维能力得到训练。

(3)情感目标:

通过本节课的学习,激发学生学习数学的兴趣,体会学习的快乐。

3、教学重点:平面向量的数量积定义。

4、教学难点:平面向量的数量积定义及平面向量数量积的运用。

第二部分:教法分析:

采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。

第三部分:教学程序设计:

完整版

篇9:《平面向量的数量积》说课稿

济南世纪英华实验学校—周鹏

尊敬的各位评委、各位老师:

大家好!

今天我说课的题目是《平面向量的数量积》。下面我将从四个方面阐述我对本节课的分析和设计。

第一部分:教学内容分析:

1、教材的地位及作用:

将平面向量引入高中课程,是现行数学教材的重要特色之一。由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。而这一切之所以能够实现,平面向量的数量积功不可没。《平面向量的.数量积》是高一数学下册第五章第六节的内容。平面向量数量积是中学数学的一个重要概念。它的性质很多,应用很广,是后面学习的重要基础。本课是第一课时,学生对概念的理解尤为重要。

2、教学目标的设定:

(1)知识目标:

篇10:《2.4平面向量的数量积》测试题

一、选择题

1.已知向量满足,且,则与的夹角为(  ).

A. B. C. D.

考查目的:考查平面向量的数量积的意义.

答案:C.

解析:根据平面向量数量积的意义,及可得,.

2.已知向量,是不平行于轴的单位向量,且,则等于(  ).

A.  B. C. D.(1,0)

考查目的:考查平面向量数量积的坐标运算.

答案:B.

解析:利用排除法. ∵在D中,,∴D不合题意;∵在C中向量不是单位向量,∴也不符题意;∵A是向量会使得,同样不合题意,答案只有选B.

3.(2010四川理)设点M是线段BC的中点,点A在直线BC外,,,则(   ).

A.8 B.4 C.2 D.1

考查目的:考查平面向量加、减法运算的几何意义,以及数形结合思想.

答案:C.

解析:∵,∴是以A为直角顶点的直角三角形.又∵M是BC的中点,∴.

二、填空题

4.已知,则与方向相同的单位向量为 .

考查目的.:考查方向相同的单位向量的求法和运算.

答案:.

解析:∵,∴与方向相同的单位向量.

5.已知:,与的夹角为,则在方向上的投影为 .

考查目的:考查平面向量投影的概念与计算.

答案:.

解析:在方向上的投影为.

6.(2009天津文)若等边的边长为,平面内一点M满足,则= .

考查目的:考查平面向量的加、减法运算和平面向量的数量积运算.

答案:-2.

解析:∵,∴,,∴.

三、解答题

7.已知,若,试求实数的值.

考查目的:考查平面向量的数量积运算和平面向量垂直的性质等.

答案:.

解析:∵,∴,即,得.

8.已知向量,,.

⑴求的最小值及相应的值;

⑵若与共线,求实数.

考查目的:考查平面向量的坐标运算与求函数最值等的综合运算.

解析:⑴∵,∴,∴,当且仅当时取等号;⑵∵,与共线,∴,∴.

篇11:高中数学平面向量的数量积教案设计

案例名称平面向量数量积的设计 主备人 组员 课时 3课时 一、教材内容分析平面向量数量积是人教版高一下册第五章第六节内容,本节课是以解决某些几何问题、物理问题等的重要工具。学习本节要掌握好数量积的定义、公式和性质,它是考查数学能力的一个结合点,可以构建向量模型,解决函数、三角、数列、不等式、解析几何、立体几何中有关长度、角度、垂直、平行等问题,因此是高考命题中“在知识网络处设计命题”的重要载体。 二、教学目标(知识,技能,情感态度、价值观) (一)知识与技能目标

1、知道平面向量数量积的定义的产生过程,掌握其定义,了解其几何意义;

2、能够由定义探究平面向量数量积的重要性质;

3、能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直、共线关系

(二)过程与方法目标

(1)通过物理学中同学们已经学习过的功的概念引导学生探究出数量积的定义并由定义探究性质;

(2)由功的物理意义导出数量积的几何意义;

(三)情感、态度与价值观目标

通过本节的自主性学习,让学生尝试数学研究的过程,培养学生发现、提出、解决数学问题的能力,有助于发展学生的创新意识。

三、学习者特征分析 学生已经学习了有关向量的基本概念和基础知识,同时也已经具备一定的自学能力,多数同学对数学的学习有相当的兴趣和积极性。但在探究问题的能力、合作交流的意识等方面发展不够均衡,尚有待加强。 四、教学策略选择与设计 教法:观察法、讨论法、比较法、归纳法、启发引导法。

学法:自主探究、合作交流、归纳总结。

教师与学生互动:学生自主探究,教师引导点拨。 五、教学环境及资源准备 三角尺 六、教学过程 教学过程 教师活动 学生活动 设计意图及资源准备

创设情景引入新课

问题1 在物理学中,我们学过功的概念,如果给出力的大小和位移的大小能否求出功的大小? 师】:提出学生已学过的问题设置疑问,激发学生兴趣。

【生】:W=FS cos 让学生复习已学过的物理知识激发学生兴趣,并能够分析此公式的形式。 问题2 在上述公式中的 角是谁与谁的夹角?两向量的夹角是如何定义的? 【师】:提问 角从而引出两向量夹角的定义。

【生】:指出 角是力与所发生的位移的夹角 能够通过物理学中功的概念及公式中夹角的定义,从而给出两向量夹角的定义。

师生互动探索新知

1 引出两个向量的夹角的定义

定义:向量夹角的定义:设两个非零向量a=OA与b=OB,称∠AOB= 为向量a与b的夹角, (00≤θ≤1800)。

(此概念可由老师用定义的方式向学生直接接示)

【师】:给出任意两个向量由学生作出夹角并通过作图引导学生归纳、总结出两向量夹角的特征及各种特殊情况。

【生】:学生作图,任意两向量的夹角包括垂直,同向及反向的情况。

注:(1)当非零向量a与b同方向时,θ=00

(2)当a与b反方向时θ=1800 (共线或平行时)

(3)0与其它非零向量不谈夹角问题

(4)a⊥b时θ=900

(5)求两向量夹角须将两个向量平移至公共起点

实际应用巩固新知

1 实际问题我能行

例1 在三角形ABC中,∠ABC=450,BA 与 BC 夹角是多少?BA 与 CB 夹角呢? 【生】:以四人为小组合作、交流。

篇12:高中数学平面向量的数量积教案设计

教材分析:

教科书以物体受力做功为背景,引出向量数量积的概念,功是一个标量,它用力和位移两个向量来定义,反应在数学上就是向量的数量积。

向量的数量积是过去学习中没有遇到过的一种新的乘法,与数的乘法既有区别又有联系。教科书通过“探究”,要求学生自己利用向量的数量积定义推导有关结论。这些结论可以看成是定义的直接推论。

教材例一是对数量积含义的直接应用。

学情分析:

前面已经学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积,教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到数量积与向量模的大小有及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

三维目标:

(一)知识与技能

1、学生通过物理中“功”等实例,认识理解平面向量数量积的含义及其物理意义,体会平面向量数量积与向量投影的关系。

2、学生通过平面向量数量积的3个重要性质的探究,体会类比与归纳、对比与辨析等数学方法,正确熟练的应用平面向量数量积的定义、性质进行运算。

(二)过程与方法

1、学生经历由实例到抽象到抽象的的数学定义的形成过程,性质的发现过程,进一步感悟数学的本质。

(三)情感态度价值观

1、学生通过本课学习体会特殊到一般,一般到特殊的数学研究思想。

2、通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.

四、教学重难点:

1、重点:平面向量数量积的概念、性质的发现论证;

2、难点:平面向量数量积、向量投影的理解;

五、教具准备:多媒体、三角板

六、课时安排:1课时

七、教学过程:

(一)创设问题情景,引出新课

问题:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

新课引入:本节课我们来研究学习向量的另外一种运算:平面向量的数量积的物理背景及其含义

新课:

1、探究一:数量积的概念

展示物理背景:视频“力士拉车”,从视频中抽象出下面的物理模型

背景的第一次分析:

问题:真正使汽车前进的力是什么?它的大小是多少?

答:实际上是力 在位移方向上的分力,即 ,在数学中我们给它一个名字叫投影。

“投影”的概念:作图

定义:| |cos(叫做向量 在 方向上的投影.投影也是一个数量,不是向量;

2、背景的第二次分析:

问题:你能用文字语言表述“功的计算公式”吗?

分析: 用文字语言表示即:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积;功是一个标量,它由力和位移两个向量来确定。这给我们一种启示,能否把“功”看成是这两个向量的一种运算结果呢?

平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量| || | 叫 与 的数量积,记作 · ,即有 · = | || | (0≤θ≤π).并规定 与任何向量的数量积为0.

注:两个向量的数量积是一个实数,不是向量,符号由cos 的符号所决定.

3、向量的数量积的几何意义:

数量积 · 等于 的长度与 在 方向上投影| |cos(的乘积.

篇13:高中数学平面向量的数量积教案设计

一、总体设想:

本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。

二、教学目标:

1.了解向量的数量积的抽象根源。

2.了解平面的数量积的概念、向量的夹角

3.数量积与向量投影的关系及数量积的几何意义

4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算

三、重、难点:

【重点】1.平面向量数量积的概念和性质

2.平面向量数量积的运算律的探究和应用

【难点】平面向量数量积的应用

课时安排:

2课时

五、教学方案及其设计意图:

1.平面向量数量积的物理背景

平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F的所做的功为W ,这里的(是矢量F和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。

平面向量数量积(内积)的定义

已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos(叫a与b的数量积,记作a(b,即有a(b = |a||b|cos(,(0≤θ≤π).

并规定0与任何向量的数量积为0.

零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a(b = |a||b|cos(无法得到,因此另外进行了规定。

3. 两个非零向量夹角的概念

已知非零向量a与b,作 =a, =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.

, 是记法, 是定义的实质――它是一个实数。按照推理,当 时,数量积为正数;当 时,数量积为零;当 时,数量积为负。

4.“投影”的概念

定义:|b|cos(叫做向量b在a方向上的投影。

投影也是一个数量,它的符号取决于角(的大小。当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当( = 0(时投影为 |b|;当( = 180(时投影为 (|b|. 因此投影可正、可负,还可为零。

根据数量积的定义,向量b在a方向上的投影也可以写成

注意向量a在b方向上的投影和向量b在a方向上的投影是不同的,应结合图形加以区分。

5.向量的数量积的几何意义:

数量积a(b等于a的长度与b在a方向上投影|b|cos(的乘积.

向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分: 。此概念也以物体做功为基础给出。 是向量b在a的方向上的投影。

6.两个向量的数量积的性质:

设a、b为两个非零向量,则

(1) a(b ( a(b = 0;

(2)当a与b同向时,a(b = |a||b|;当a与b反向时,a(b = (|a||b|. 特别的a(a = |a|2或

(3)|a(b| ≤ |a||b|

(4) ,其中 为非零向量a和b的夹角。

例1. (1) 已知向量a ,b,满足 ,a与b的夹角为 ,则b在a上的投影为______

(2)若 , ,则a在b方向上投影为 _______

例2. 已知 , ,按下列条件求

篇14:《平面向量的数量积》几何教学微课

《平面向量的数量积》几何教学微课

王志友

(浙江省安吉县孝丰高级中学)

摘 要:在分析平面向量数量积的作用、地位和教学目标的基础上,引出平面向量数量积的重要性质,以历年高考中的经典例题为例进行分析,采用微课的教学方式,旨在提高学生解决问题的能力,并培养他们的创新解题思维和实践能力。

关键词:平面向量;数量积;性质;运用

一、平面向量的数量积

1.平面向量数量积的作用及地位

平面向量的数量积是高中必修第四版的内容,作为高中课程中的重要内容,在教学中有着很重要的地位。向量是图形位置的直观体现,而且又具有很好的运算性质,是运算与图形进行有机结合的重要途径。通过把空间图形的特性间接转化为向量的运算,简化了空间直线和平面所带来的问题,是研究物理学和其他工程技术的重要工具。

2.平面向量数量积的教学目标

针对学生对平面向量的`数量积的学习,在微课程教学中要达到以下目标才能让学生充分掌握平面向量数量积的性质和应用方法。首先是认知目标,应理解平面向量数量积的含义和物理意义,学会基本的数值计算以及向量垂直关系的判断方法。其次是能力目标,通过平面向量数量积的学习,培养学生运用数学知识解决实际问题的意识和能力,激发他们学习的欲望和热情,注重自主学习能力的培养。

二、平面向量数量积的性质与应用

在设计微课时,为了更好地了解平面向量数量积的性质,提高学生解决问题的能力,要具体介绍平面向量的数量积的性质和运算规律,下面将以高考中的实例进行分析。

1.平面向量的数量积的重要性质与运算律

2.平面向量的数量积例题精讲与运用

平面向量的数量积在计算时,一般有两种考查形式,()一种是纯向量形式,一种是以几何图形为载体,侧重点还是对数量积的运算。

评析:在这道题的求解过程中,运用到了数量积的几何形式计算,基本思路就是要建立基向量思维,选取一组基底,把需要求解的向量用基底表示出来,再运用平面向量的数量积公式和法则进行求解,解这类几何图形问题,要注意把握几何图形之间的关系和性质。

答案:A。

评析:本题是考查向量模的取值范围大小问题,对向量的基本知识和运用进行了全面的考查,尤其是向量的概念、线性计算与数量积、角度与模值之间的相互计算等,计算方法可以采用代数法和几何法两种。

从上述例1、2中可以看出,平面向量的数量积是高考考查的重点和难点,不仅局限于对向量概念的考查,更多的是对立体几何、解析几何和三角函数等一系列的知识点进行综合考查,近年来又逐渐加入了不等式、线性规划等方面的内容。

对于平面向量数量积的应用,要学会把几何问题和物理学问题转变为向量问题。利用微课的教学优势,通过平面向量数量积的微课程学习,充分调动学生学习的积极性,不断提高他们的数学素养。

参考文献:

高维玺。探究高中数学新课程中的向量及其教学[J]。新课程:中旬,2013(07)。

高中数学平面向量的数量积教案

平面向量教学反思

平面向量知识点总结

面积的含义教学反思

物理教学的一些反思

九年级物理教学反思

初中物理教学反思

八年级物理教学反思

高三物理教学反思

八年物理教学反思

平面向量的数量积的物理背景及其含义教学反思(精选14篇)

欢迎下载DOC格式的平面向量的数量积的物理背景及其含义教学反思,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档