变频与传动:高压变频器原理及应用

时间:2023-01-13 04:18:19 作者:谦豫 综合材料 收藏本文 下载本文

【导语】“谦豫”通过精心收集,向本站投稿了8篇变频与传动:高压变频器原理及应用,下面是小编收集整理后的变频与传动:高压变频器原理及应用,供大家参考借鉴,希望可以帮助到有需要的朋友。

篇1:变频与传动:高压变频器原理及应用

变频与传动——高压变频器原理及应用,1.引言电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的

1.引言

电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的节能潜力,所以大力发展高压大功率变频调速技术具有时代的必要性和迫切性。

目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大 功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用领域和范围也越来越为广范,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。

2.几种常用高压变频器的主电路分析

(1)单元串联多重化电压源型高压变频器

单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。但其存在以下缺点:

a)使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装 置的体积太大,重量大,安装位置和基建投资成问题;

b)所需高压电缆太多,系统的内阻无形中增大,接线太多,故障点相应的增多;

c)一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终 究会导致电动机的损坏;

d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出;

d)输出电压波 形在额定负载时尚好,低于25Hz以下畸变突出;

e)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV 三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的内部环流,必将引起内阻的 增加和电流的损耗,也相应的就造成了变压器的铜损增大。此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。这 种情况在越低于额定负荷运行时,越是显著。10kV时,变压器有近400个接头、近百根电缆。在额定负荷时效率可达96%,但在轻负荷时,效率低于 90%。

(2)中性点钳位三电平PWM变频器

该系列变频器采用传统的电压型变频器结构,

中性点钳位三电平PWM变频器的逆变部 分采用传统的三电平方式,所以输出波形中会不可避免地产生比较大的谐波分量,这是三电平逆变方式所固有的。因此在变频器的输出侧必须配置输出LC滤波器才 能用于普通的鼠笼型电机。同样由于谐波的原因,电动机的功率因数和效率、甚至寿命都会受到一定的影响,只有在额定工况点才能达到最佳的工作状态,但随着转速的下降,功率因数和效率都会相应降低。

多电平多重化高压变频器。多电平 多重化高压变频器的本意是想解决高压IGBT的耐压有限的问题,但此种方式,不仅增加了系统的复杂性,而且降低了多重化冗余性能好和三电平结构简单的优点。因此此类变频器实际上并不可取。

此类型变频器的性能价格优势并不大,与其同时采用多电平和多重化两种技术,还不如采用前面提到的高压IGBT的多重化变频器或者三电平变频器。

(3)电流源型高压变频器

功率器件直接串联的电流源型高压变频器是在线路中串联大电感,再将SCR(或GTO、SGCT等)开关速度较慢的功率器件直接串联而构成的。

这种方式虽然使用功率器件少、易于控制电流,但是没有真正解决高压功率器 件的串联问题。因为即使功率器件出现故障,由于大电感的限流作用,di/dt受到限制,功率器件虽不易损坏,但带来的问题是对电网污染严重、功率因数低。并且电流源型高压变频器对电网电压及电机负载的变化敏感,无法做成真正的通用型产品。

电流源型高压变频器是最早的产品,但凡是电压型变频器到达的地方,它都被迫退出,因为在经济上、技术上,它都明显处于劣势。

3.IGBT直接串联的直接高压变频器

3.1 主电路简介

图1.IGBT直接串联高压变频

如图1所示,图中系统由电网高压直接经高压断路器进入变频器,经过高压二极管全桥整流、直流平波电抗器和电容滤波,再通过 逆变器进行逆变,加上正弦波滤波器,简单易行地实现高压变频输出,直接供给高压电动机。

功率器件IGBT直接串联的二电平电压型 高压变频器是采用变频器已有的成熟技术,应用独特而简单的控制技术成功设计出的一种无输入输出变压器、IGBT直接串联逆变、输出效率达98%的高压调速系统。

对于需要快速制动的场合,采用直流放电制动装置,如图2所示:

图2.具有直流放电制动装置的IGBT直接串联高压变频器主电路图

篇2:高压变频调速技术应用现状与发展趋势

1前言

通常,我们把用来驱动1kV以上交流电动机的中、大容量变频器称为高压变频器,按照国际惯例和我国国家标准,当供电电压大于或等于10kV时称高压,小于10kV时称中压。因此,相应额定电压1~10kV的变频器应分别称为中压变频器和高压变频器。但考虑到在这一电压范围内的变频器有着共同的特征,且我们习惯上也把额定电压为3kV或6kV的电动机称为“高压电机”,因此,为简化叙述起见,本文也称之为“高压变频器”。

截止底,我国发电装机总容量已突破5亿kW,为5.08亿kW。其中火电装机约占80%,为4亿kW左右。全国年发电量已突破2万亿kWh。而我国的能源利用率却平均比发达国家低20%左右!

全国电动机装机总容量已达4亿多kW,年耗电量达12000亿kWh,占全国总用电量的60%,占工业用电量的80%;其中风机、水泵、压缩机的装机总容量已超过2亿kW,年耗电量达8000亿kWh,占全国总用电量的40%左右。70%以上的风机、水泵、压缩机应调速运行,而至今仅有约5%左右调速运行。

若按风机、水泵和压缩机总装机容量的50%进行调速节能改造,则可改造容量达1亿kW,其中40%为中高压电机,容量占60%。若按电机平均出力为 60%,年运行4000小时,平均节电率为20~30%(平均25%)计算,则年节电潜力为600亿kWh!整个电机系统的节电潜力约为1000亿 kWh,改造和更新预计需投入2000~3000亿元人民币。

根据国家节能计划,我国每年应节约和少用能源7000万吨标准煤,通过基本建设项目及技术改造措施,每年可形成约3000万吨标准煤的节能能力,而每形成一吨标准煤的节能能力需投资2000元(约为开发等量能源费用的三分之一),则每年需节能投资600亿元,“十五”期间共需3000亿元人民币, “十一五”期间将更多。

由于我国经济的高速发展,发电装机仍以高速发展。但电力运行的一些主要指标和装备指标与发达国家相比仍有很大差距:我国火电机组的平均煤耗为 400g/kWh,比发达国家高出约70~100g/kWh;发达国家发电厂的厂用电率为3.7%~6%,而我国的厂用电率为4.7%~10.5%,加之线损,我国送到用户的电能要比发达国家多耗电9.5%,相当于22000MW装机容量,即22个百万大厂的年发电量。因此,我国的节能形势十分严峻!

2变频调速技术的发展历史及现状

变频调速技术涉及到电力、电子、电工、信息与控制等多个学科领域。随着电力电子技术、计算机技术和自动控制技术的发展,以变频调速为代表的近代交流调速技术有了飞速的发展。交流变频调速传动克服了直流电机的缺点,发挥了交流电机本身固有的优点(结构简单、坚固耐用、经济可靠、动态响应好等),并且很好地解决了交流电机调速性能先天不足的问题。交流变频调速技术以其卓越的调速性能、显著的节电效果以及在国民经济各领域的广泛适用性,而被公认为是一种最有前途的交流调速方式,代表了电气传动发展的主流方向。变频调速技术为节能降耗、改善控制性能、提高产品的产量和质量提供了至关重要的手段。变频调速理论已形成较为完整的科学体系,成为一门相对独立的学科。

20世纪是电力电子变频技术由诞生到发展的一个全盛时代。最初的交流变频调速理论诞生于20世纪代,直到60年代,由于电力电子器件的发展,才促进了变频调速技术向实用方向发展。70年代席卷工业发达国家的石油危机,促使他们投入大量的人力、物力、财力去研究高效率的变频器,使变频调速技术有了很大发展并得到推广应用。80年代,变频调速已产品化,性能也不断提高,发挥了交流调速的优越性,广泛地应用于工业各部门,并且部分取代了直流调速,

进入90年代,由于新型电力电子器件如IGBT(绝缘栅双极型晶体管InsolatedGateBipolarTransistor)、IGCT(集成门极换流型晶闸管IntegratedGateCommutatedThyristor)等的发展及性能的提高、计算机技术的发展,如由16位机发展到32位机以及DSP(数字信号处理器Digital SignalProcessor)的诞生和发展(如磁场定向矢量控制、直接转矩控制)等原因,极大地提高了变频调速的技术性能,促进了变频调速技术的发展,使变频器在调速范围、驱动能力、调速精度、动态响应、输出性能、功率因数、运行效率及使用的方便性等方面大大超过了其它常规交流调速方式,其性能指标亦已超过了直流调速系统,达到取代直流调速系统的地步。目前,交流变频调速以其优异的性能而深受各行业的普遍欢迎,在电力、轧钢、造纸、化工、水泥、煤炭、纺织、铁路、食品、船舶、机床等传统工业的改造中和航天航空等高新技术的发展应用中无不看到变频调速技术的踪影,变频调速技术取得了显著的经济效益。

变频调速技术的现状具有以下特点

(1)在功率器件方面,近年来高电压、大电流的SCR、GTO、IGBT、IGCT等器件的生产以及并联、串联技术的应用,使高电压、大功率变频器产品的生产及应用成为现实。

(2)在微电子技术方面,16位、32位高速微处理器以及DSP和ASIC(专用集成电路ApplicationSpecificIC)技术的快速发展,为实现变频器高精度、多功能化提供了硬件手段。

(3)在控制理论方面,矢量控制、磁通控制、转矩控制、智能控制等新的控制理论为研制高性能变频器的发展提供了相关理论基础。

(4)在产品化生产方面,基础工业和各种制造业的高速发展,促进了变频器相关配套件的社会化、专业化生产。

3国内外高压变频器的分类、比较和应用情况

目前世界上的高压变频器不象低压变频器一样具有成熟的一致性的主电路拓扑结构,而是限于功率器件的电压耐量和高压使用条件的矛盾,国内外各变频器生产厂商,采用不同的功率器件和不同的主电路拓扑结构,以适应不同的电压等级和各种拖动设备的要求,因而在各项性能指标和适用范围上也各有差异。

一般来讲,在高压供电而功率器件耐压能力有限的情况下,可采用将功率器件串联的方法来解决。但是功率器件在串联使用时,因为各器件的动态电阻和极间电容不同,而存在静态均压和动态均压问题。如果采用与器件并联R和Rc的均压措施,会使电路复杂,损耗增加;同时,器件的串联对驱动电路的要求也大大提高,要尽量做到串联器件同时导通和关断,否则由于各器件开断时间不一致,承受电压不均,会导致器件损坏甚至整个装置崩溃。

谐波问题是所有变频器的共同问题,尤其在高压大功率变频调速中更为突出。谐波会污染电网,殃及同一电网上的其它用电设备,甚至影响电力系统的正常运行;谐波也会干扰通讯和控制系统,严重时会使通讯中断、系统瘫痪;谐波电流还会使电动机损耗增加,因而发热增加,效率及功率因数下降,以至不得不“降额” 使用。

还有效率问题,变频调速装置的容量愈大,调速系统的效率问题也就愈加重要。采用不同的主电路拓扑结构,使用的功率器件的种类和数量的多少,以及变压器、滤波器等的使用,都会影响系统的效率。为了提高系统效率,必须设法尽量减少功率开关器件和变频调速装置的损耗。

可靠性和冗余设计问题:一般的高压大功率拖动系统都要求很高的系统可靠性,尤其是国民经济的重要部门如电力、能源、冶金、矿山和石化等行业,一旦设备出现故障,将会造成人民生命财产的巨大损失。因此高压变频装置设计中是否便于采用冗余设计及旁路控制功能也是至关重要的。

根据高压变频器有无直流环节,可以分为交—交变频器和交—直—交变频器;根据直流环节滤波元件的性质又可以分为电流源型变频器和电压源型变频器;电流源型变频器又可以分为负载换流式晶闸管变频器(LCI)和采用自关断器件(GTO、SGCT)的电流源型变频器;电压源型变频器则可以分为:a)功率器件串联二电平直接高压变频器,b)采用HV—IGBT、IGCT的多电平电压源变频器,c)采用LV—IGBT的单元串联多重化电压源变频器等。

篇3:高压变频器在空压机上的应用

一、引言

空压机在工业生产中有着广泛地应用,它担负着为所有气动元件,包括各种气动阀门,提供气源的职责。因此它运行的好坏直接影响生产工艺。空压机的种类主要有活塞式、螺杆式、离心式,但其供气控制方式几乎都是采用进气口调节与加、卸载控制方式的控制模式。

首先来了解一下空压机的基本工作原理。空压机结构复杂,运转时间长,配备的功率大。以活塞式空压机为例,在空压机工作过程中,活塞在气缸内作往复运动,周期性地改变缸内的容积,从而使气缸内气体容积发生变化,并与气缸内气阀相应的开启和闭合动作相配合,通过吸气、压缩、排气等动作,将自然气体或较低压力的气体(一级缸气体)升压,最终输出到储气罐内。为了满足设备的用气需求,储气罐内气体必须保持一定的压力,以作缓冲作用,加上设备自身的原因,空气压力变化幅度必然很大,通常采用切断进气的调节方式来改变排气量。理想状态是供气压力刚好满足需求,保持压力不变,实际上通过进气门控制起来不太理想,通常是空压机排气量大于实际用气量,空压机保持恒速运转,此时储气罐内气体越积越多,直到压力上升到设定的最高压力。通常采取以下两种方法解决高压问题:一是使空压机卸荷运行,保持运转但不产生气体,此时空压机消耗的功率一般在额定功率的30%左右,全是无用功;二是停止空压机的运行,这样看起来是节约了电能消耗,但是大功率电动机的启动会带来诸多问题,而且空气储存的容积有限,当气压低于下限压力值时,空压机再次以额定转速给储气罐加压,直到压力达到上限压力而停止运行,如此循环,

二、空压机加、卸载供气控制方式存在的电能浪费

2(1)交流异步电动机的转速公式为:

n=60f(1-s)/p

其中 n―电机转速 f―运行频率;

p―电机极对数 s―转差率;

2(2) 空压机加、卸载供气控制方式存在的问题

2.1 能耗分析

加、卸载控制方式使得压缩气体的压力在Pmin~Pmax之间来回变化。Pmin是最低压力值,即能够保证用户正常工作的最低压力。一般情况下,Pmax、Pmin之间关系可以用下式来表示:

Pmax=(1+δ)Pmin

δ是一个百分数,其数值大致在15%~30%之间。

在加、卸载供气控制方式下的空压机,所浪费的能量主要在2个部分:

(1) 加载时的电能消耗

在压力达到最小值后,原控制方式决定其压力会继续上升直到最大压力值。在加压过程中,一定要向外界释放更多的热量,从而导致电能损失。另一方面,高于压力最大值的气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样是一个耗能过程。另外,空压机本身通过检测压力,自动调节进气门,一部分能量消耗在进气门上。

(2) 卸载时电能的消耗

当压力达到压力最大值时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。这种调节方法要造成很大的能量浪费。据我们测算,空压机卸载时的能耗约占空压机满载运行时的10%~25%(这还是在卸载时间所占比例不大的情况下),

换言之,该空压机 20%的时间处于空载状态,在作无用功。很明显在自动调节进气门与加卸载供气控制方式下,空压机电机存在很大的节能空间。

2.2 其它不足之处

(1)靠机械方式调节进气阀,使供气量无法连续调节,当用气量不断变化时,供气压力不可避免地产生较大幅度的波动。用气精度达不到工艺要求。再加上频繁调节进气阀,会加速进气阀的磨损,增加维修量和维修成本。

(2) 频繁采用打开和关闭放气阀,放气阀的耐用性得不到保障。

三、恒压供气控制方案的设计

电机型号:Y450-2

功率因数:0.87

额定电压:10KV

额定电流:35.1A

额定功率:500KW

额定转速:2975rpm

空气压缩机

额定流量:120 m3/min

额定压力:0.3MPa

变频器: 深圳市科陆变频器有限公司CL2700-10-0630-9QY高压变频器

控制模式:PID恒压控制

在以上PID恒压控制模式下,我们根据用户现场的需要,把压力设定值P0设定为0.25 Mpa,当用户生产用气量加大,管网压力低于0.25 Mpa时,变频器输出频率增加,电机转速加快,空气压缩量增大,压力随之上升;当生产用气量减少,管网压力高于0.25 Mpa时,变频器输出频率减小,电机转速减慢,空气压缩量减小,压力随之下降,始终使压力保持在0.25Mpa左右。

四、改造效益

4.1 工频运行参数测量

电机运行参数:电压:10KV, 有功功率385KW,年运行时间约7200小时,电费0.8元/度;

空压机运行参数:进口阀门开度40%,出口阀门开度100%,出气口压力:0.25MPa。

4.2 变频运行参数测量

电机运行参数:运行频率46HZ, ,有功功率330KW,年运行时间约7200小时,电费0.8元/度;

空压机运行参数: 进口阀门开度80%,出口阀门开度100%,出气口压力0.25 Mpa。

4.3 经济效益

节约电功率:385-330=55(kW)

节电率:(385-330)÷385=14.28%

每年节约电能:55×7200÷10000=39.6(万度)

每年节约电费:39.6×0.8=31.68(万元)

4.4 附加经济效益

1) 解决压力波动幅度大,提高精度。

2) 解决阀门磨损成本和降低维修量。

篇4:高压变频器在循环流化床锅炉中应用

一、概述

高压交流变频调速技术是上个世纪90年代迅速发展起来的一种新型电力传动调速技术,主要用于交流电机的变频调速,其技术和性能远远胜过以前采用的调速方式(如串级调速、液力耦合器调速、转子水阻调速等),高压变频以其显著的节能效益、完善的保护功能、方便的通信功能以及高调速精度、宽调速范围,得到了广大用户的认可,成为企业电机节电方式的首选方案。

江苏森达沿海热电有限公司现有三台循环流化床锅炉,三大风机采用液力耦合器调速,三大风机的稳定运转对正常生产至关重要,对设备要求特别苛刻,因此在高压变频器的选用上非常谨慎,12月15日我公司扩建一台4#炉UG-130/5.3-M8采用了北京合康HIVERT-Y06/096高压变频器2台和HIVERT-Y06/048高压变频器1台在公司4#炉安装调试,稳定运行至今,为国产高压变频器赢得了荣誉。

二、循环流化床锅炉工艺

循环流化床是一种适于固体燃料的清洁高效燃烧技术。固体颗粒(燃料、石灰石、砂粒、炉渣等)在炉膛内以一种特殊的气固流动方式(流态化)运动,离开炉膛的颗粒又被分离并送回炉膛循环燃烧。炉膛内固体颗粒的浓度高,燃烧、传质、传热、混合剧烈,温度分布均匀,固体颗粒在炉膛内的内循环和外循环十分强烈,在炉膛内的停留时间较长,保证了较高的燃烧效率。

循环流化床燃烧技术是近二十多年来发展的洁净煤燃烧技术,其燃烧方式特别适用于高灰分低挥发的煤矸石、洗中煤等劣质煤,具有较好的燃料适应性,可变废为宝,体现节能要求。另外,循环流化床锅炉在燃烧过程采用炉内加石灰石、低温燃烧,可同时达到脱硫脱硝的目的,具有较好的环保特性。

燃料由给煤机送入炉膛;一次风由锅炉底部送入,主要用于维持燃料粒的流化;二次风沿燃烧室侧壁多点送入,主要用于增加燃烧室的氧量,提高燃烧效率;燃烧后的大量颗粒随烟气进入旋风分离器,与烟气分离;分离出来的颗粒经回料阀回到燃烧室继续燃烧;分离出来的烟气则经过除尘器除尘后,由引风机引入烟囱排出。实际运行中,循环流化床的燃烧效率可高达97%~99%。

三、技术方案分析

由于其独特的燃烧特性,与传统的煤粉炉相比,循环流化床锅炉对风量、风压的控制有更高的要求:为了保证锅炉燃烧的经济性,当燃料量改变时,必须相应地调节送风量,使之与燃料量匹配;为了保证锅炉运行的安全性,必须使引风量与一次风量相配合以保证炉膛压力在正常范围内;通过一次风量及风压的调节以保证炉膛内物料的正常流化。

与常规煤粉炉相比,循环流化床锅炉配置的风机压头较高,目前调节风量的主要是通过调节风门开启度或采用变频调速技术控制风机转速。当采用调节风门开启度的方式进行风量控制时,容易出现这样几个问题:(1)节流损失大;(2)系统响应速度慢、调节品质差,自动投入率低,难以满足实际要求;(3)执行机构易出问题,维修费用高;(4)电机启动时会产生过电流,影响电机绝缘性能和使用寿命。变频调速技术由于较好地解决了上述问题,正逐步在循环流化床机组中得以运用。

由于循环流化床锅炉中的一次风机、二次风机、引风机均属于二次方转矩负载,在忽略风道变化因素后,有风量与转速成正比、风压与转速二次方成正比、机械轴功率与转速立方成正比的关系。当采用高压变频器对这些电机进行变频调速控制时,仅通过相对小范围内的频率改变,调节电机转速,即可实现风量的控制,而且调节精度及响应速度有很大改善。同时,当电机转速降低时,由于轴功率与转速三次方成正比的对应关系,电机的轴功率显著下降,节能效果明显,

四、高压变频装置特点

高压变频技术的具体实现有多种方式,国内外的高压变频器厂家目前主要采用如下一些解决方案:高-低-高方案、三电平-多电平方案、电流源方案、功率单元串联方案等等。高-低-高方案需要输入、输出变压器,存在中间低压环节电流大、效率低、可靠性下降、体积大等缺点,只适合很小容量的高压电动机;三电平-多电平方案存在控制复杂、需要加滤波器等缺点,只有少数国外厂家采用。电流源存在输入功率因数低,维护成本高等缺点。

在实际运行中,性能优良的高压变频器对电网谐波污染小,北京合康亿盛科技有限公司采用多重化的脉宽调制技术,输出波形为非常完美的正弦波。噪音低,发热低,不会引起电机转矩脉动,对电机没有特殊要求。由于使用移相技术和二极管整流,在整个调速范围内功率因数达到95%以上,且整机效率R97%,无需进行功率因数补偿。电压输入范围较大,输入电压在-20%~15%,频率在45Hz~55Hz波动范围内设备均能正常工作。采用空间矢量PWM控制方式,单元叠波输出,有效抑制输出谐波含量,避免输出共模电压过大。采用双电源切换技术,独特的供电设计,特有的过电压保护技术,保证高压变频器稳定、可靠运行。实践证明采用单元串联、直接高-高方式的拓朴结构的高压变频器在负载连续运转要求严格的环境中应用具有独到的优势。

五、变频前后耗电情况对比

我公司于2012月起开始将高压变频器应用4#炉UG-130/5.3-M8的三大风机(引风机,一次风机,二次风机),目前高压变频运转稳定,平均节电率达到20%以上,取得了显著的经济效益。以下为我公司安装高压变频前后数据对比:

节能计算:

工频条件下:4#炉三台风机平均每小时耗电量为:1558.1 kWh

变频条件下:4#炉三台风机平均每小时耗电量为:1185.9 kWh

平均每小时的节电量:1558.1-1185.9=372.2kWh

年节电量:372.2×6500=2419300kWh(按年运行6500小时计算)

年节电收益:2419300×0.45=108.8万元(按每度电0.45元计算)

成本回收时间: 4#炉三台风机年节电收益108.8万元情况下,具有显著的经济效益。短期内就能回收成本。

除了明显的节电效益,采用变频器还有以下优点:(1)高压变频器优良的软启动/停止功能(可以零转速启动),启动过程最大电流小于额定电流,大大减小了启动冲击电流对电动机合电网的冲击,有效减少了电机故障,从而大大延长了电机的检修周期和使用寿命,同时还可有效避免冲击负荷对电网的不利影响;(2)使用变频后,原调节风门全开,大大减少其磨损,延长了风门使用寿命,降低检修维护费用,进一步降低了风道阻力;(3)使用变频后,原液力耦合器取消,节省了液力耦合器的维护费用;(4)高压变频器特有的平滑调节减少了风机以及电机的机械磨损,同时降低了轴承、轴瓦的温度,有效减少了检修费用,延长了设备的使用寿命。

六、结论

高压变频调速器已经在多家电厂、水泥厂、化工厂、金属冶炼厂的风机和离心式水泵中得到实际应用,并取得良好的运行效果和节能效益。作为未来大型节能锅炉的发展趋势,循环流化床锅炉中包含大量能应用高压变频调速技术的设备,由于循环流化床燃烧介质多样性,风系统、水系统设计选型时比煤粉炉偏大,实际节能效果比煤粉炉明显。因此,将高压变频调速技术应用于循环流化床锅炉的设计和改造,对于降低损耗、节约能源、减少成本、提高自动化控制水平,具有十分重要的意义和广阔的前景。

篇5:高压变频调速装置在电厂的应用

摘要:根据山东十里泉电厂供水泵应用高压变频调速装置的实效,说明国产高压变频调速装置的技术已日趋成熟,大力推广应用它所带来的经济效益和社会效益是十分可观的。

关键词:高压变频调速;水泵流量调节;节能

引言

山东十里泉电厂是一个具有5台125MW,2台300MW及一台140MW机组的中型电厂。

十里泉发电厂目前由30km外的水源地供水,水源地共装有5台水泵,均由560kW/6kV高压电动机拖动,多数情况下启动1~2台泵就可满足发电要求,采用手动节流调节方法控制水流量。如果节流阀开度不大、并且水流量足够,则停一台水泵;如果节流阀全开仍不满足水流量要求,则再开启一台水泵,由于管道长达30km,且节流阀始终处于调节状态,如选择一台水泵进行变频调速改造,节流阀全开,实现恒水压控制,不但具有良好的节能效果,泵站的控制特性也大为改善。

篇6:高压变频调速装置在电厂的应用

对于6kV等级,目前主要有3种方式的高压变频装置:单元串联多电平型、三电平型和电流源型。由于单元串联多电平方式容易实现冗余运行,在单元故障时能进行旁路而不影响电动机连续运行,并且具有谐波小、dv/dt低、技术成熟等显著优点,因此,决定采用这种方式的高压变频器。

在对国内外各厂家的单元串联多电平高压变频装置,进行性能价格比较和运行可靠性评估后,选用了上海发电设备成套设计研究所和上海科达机电控制有限公司生产的MAXF700-6000/750型高压变频调速装置,该类型产品具有如下6个特点:

1)功率单元冗余运行、故障时自动快速旁路,确保电机正常运行;

2)可在线更换功率单元,不须停机;

3)采用无极性电力电容代替电解电容,提高了装置寿命和整体可靠性,内不须更换电容;

4)采用特制散热器,使功率单元温升低,装置体积减小(宽3800,深1200,高2200);

5)输出dv/dt低(在500V以下),电动机绝缘不受损害;

6)电网自动重合闸后继续运行。

2变频运行的其它优点

该泵站经高压变频改造后,除了节能外,水流量控制特性以及电动机和泵的'运行特性明显改善,主要有以下6项优点。

1)实现恒母管水压控制操作人员只须改变母管压力设定值,不再调整节流阀,运行自动化程度大为提高,运行和维护工作量降低。

2)管道压力降低原来节流调节时,流量变小时,管道压力反而升高,容易爆管,不利于管道安全运行,而采用变频调节后,流量变小时,管道压力亦变低。

3)电动机软启动避免水泵频繁启停经测量,变频运行时起动电流<5A,而工频直接起动电流>300A,因此,变频运行完全消除了因直接启动造成的对电动机和电网的冲击,降低了电动机故障率(电厂电动机因直接启动造成故障已屡见不鲜)。

4)功率因素提高从电网侧看,工频运行时功率因数为0.85左右,变频运行时功率因数达到0.95,因此,即使同样是满负荷运行,变频运行时,高压输入电流明显比工频运行时小,这也有利于节能和设备安全运行。

5)电机和泵运行寿命延长设备转速降低后,运行噪声降低,磨损减少,设备寿命延长。

6)控制响应速度增快改变水压设定值后,装置迅速改变运行转速,使母管水压迅速跟踪设定值。

3 现场实际操作

交流会上来自山东黄台,德州,石横,白杨河,里彦,聊城,凯赛,皱县,莱城,临沂,威海,危房,滕州,辛店,章丘,青岛等17个电厂及上海宝钢电厂等50余名代表,在现场进行了实地操作,并重点观察了以下4项试验。

1)单元切换和自动平衡试验在额定负荷时,切换1~15中任意功率单元,电动机始终保持连续运行,且单元投切后三相电压电流保持平衡。

2)自动手动切换试验在自动恒水压控制和手动恒频率控制之间切换,装置运行频率和水压波动不超过规定值。

3)自动运行时阶跃响应试验由于变频泵在运行时,要承受工频泵的开停冲击,这相当于约20%的阶跃信号,因此,试验时,在自动运行状态下对设定值施加20%阶跃变化,超调量和振荡次数不超过规定值。

4)变频泵运行时,工频泵投切试验系统自动运行时,当升高设定值到装置给出“压力过低”报警信号时,投入一台工频泵,此时变频泵自动降低转速并将母管压力调节到设定值,超调量和振荡次数不超过规定值,报警信号自动消失。当降低设定值到装置给出“压力过高”报警信号时,切除一台工频泵,此时变频泵自动降低转速并将母管压力调节到位,超调量和振荡次数不超过规定值,报警信号自动消失。

4 节能效果

高压变频调速装置投入运行后,节流阀全开,采用远方自动恒水压控制方式,平时操作值班人员只须改变压力设定值(在操作室用按钮进行升降设定),多数情况下,变频器运行在40Hz左右,功率270kW左右,高压输入电流不到30A,而50Hz定速运行时功率约530kW,高压输入电流60A左右。

运行平均负荷按0.95×560kW计算,每年运行300天,即7200h,节电1340MWh。按上网电价计算,两年不到便可收回投资,如按电的售价算,因为该装置投资不到73万元,则一年就可以收回全部投资。

5 结语

国产高压变频调速装置用于拖动发电厂大型风机和泵电动机,不仅节能,而且大大改善了控制特性和运行特性。目前,高压变频技术日趋成熟,其运行可靠性已达到发电厂要求,建议大力推广使用。

篇7:高压变频调速装置在电厂的应用

高压变频调速装置在电厂的应用

摘要:根据山东十里泉电厂供水泵应用高压变频调速装置的实效,说明国产高压变频调速装置的技术已日趋成熟,大力推广应用它所带来的经济效益和社会效益是十分可观的。

关键词:高压变频调速;水泵流量调节;节能

引言

山东十里泉电厂是一个具有5台125MW,2台300MW及一台140MW机组的中型电厂。

十里泉发电厂目前由30km外的水源地供水,水源地共装有5台水泵,均由560kW/6kV高压电动机拖动,多数情况下启动1~2台泵就可满足发电要求,采用手动节流调节方法控制水流量。如果节流阀开度不大、并且水流量足够,则停一台水泵;如果节流阀全开仍不满足水流量要求,则再开启一台水泵,由于管道长达30km,且节流阀始终处于调节状态,如选择一台水泵进行变频调速改造,节流阀全开,实现恒水压控制,不但具有良好的节能效果,泵站的控制特性也大为改善。

1 高压变频调速装置选型依据

对于6kV等级,目前主要有3种方式的高压变频装置:单元串联多电平型、三电平型和电流源型。由于单元串联多电平方式容易实现冗余运行,在单元故障时能进行旁路而不影响电动机连续运行,并且具有谐波小、dv/dt低、技术成熟等显著优点,因此,决定采用这种方式的'高压变频器。

在对国内外各厂家的单元串联多电平高压变频装置,进行性能价格比较和运行可靠性评估后,选用了上海发电设备成套设计研究所和上海科达机电控制有限公司生产的MAXF700-6000/750型高压变频调速装置,该类型产品具有如下6个特点:

1)功率单元冗余运行、故障时自动快速旁路,确保电机正常运行;

2)可在线更换功率单元,不须停机;

3)采用无极性电力电容代替电解电容,提高了装置寿命和整体可靠性,20年内不须更换电容;

4)采用特制散热器,使功率单元温升低,装置体积减小(宽3800,深1200,高2200);

5)输出dv/dt低(在500V以下),电动机绝缘不受损害;

6)电网自动重合闸后继续运行。

2变频运行的其它优点

该泵站经高压变频改造后,除了节能外,水流量控制特性以及电动机和泵的运行特性明显改善,主要有以下6项优点。

[1] [2] [3]

篇8:高压变频器在发电厂凝结水泵上的应用

本文以国产多电平型高压变频器在国电滦河发电厂凝结水泵的应用为例,分别对凝结水泵应用高压变频器前后的运行工况、基本原理及注意事项进行阐述,并通过电耗对比试验,对凝结水泵变频调节和传统的挡板调节的节能效果比对,近而说明,发电厂采用国产高压变频器对凝结水泵等设备进行调速节能改造的应用方法,并具有投资省,见效快等特点。

国电滦河发电厂位于河北省承德市,拥有二台100M W国产凝汽式汽轮发电机组。分别于1993、1997年投入运行。2005年3月,国电滦河发电厂对大批设备进行变频改造。采用北京HARSVERT- A06/130高压变频器,用于二台100M W机组的凝结水泵改造项目。目前,凝结水泵变频器运行稳定,节能效果明显。

1 凝结水泵的运行工况

在汽轮机内做完功的蒸汽在凝汽器冷却凝结之后,集中在热水井中,这时凝结水泵的作用是把凝结水及时地送往除氧器中。维持凝结水泵连续、稳定运行是保持电厂安全、经济生产的一个重要方面。

监视、调整凝汽器内的水位是凝结水泵运行中的一项主要工作。在正常运行状态下,凝汽器内的水位不能过高或过低。当机组负荷升高时,凝结水量增加,凝汽器内的水位相应上升。当机组负荷降低时,凝汽器内水位相应降低。

凝结泵电机为6KV/1000KW电机,设计有一定裕量。每台机组配备二台凝结泵,一台运行,一台备用。

没有使用变频器之前,凝汽器内的水位调整是通过改变凝结水泵出口阀门的开度进行的,调节线性度差,大量能量在阀门上损耗。同时由于频繁的对阀门进行操作,导致阀门的可靠性下降,影响机组的稳定运行。

使用高压变频器后,凝结水泵出口阀门全部打开,通过调节变频器的输出频率改变电机的转速,达到调节出口流量满足运行工况的要求。

2 HARSVERT-A06/130型高压变频器原理及特点

Harsvert-A系列高压变频器采用单元串联多电平PWM拓扑结构(简称CSML)。由若干个低压P W M变频功率单元串联的方式实现直接高压输出,高压主回路与控制器之间为光纤连接,安全可靠;精确的故障报警保护;具有电力电子保护和工业电气保护功能,保证变频器和电机在正常运行和故障时的安全可靠。

采用功率单元串联,而不是功率器件串联,器件承受的最高电压为单元内直流母线的电压,器件不必串联,不存在器件串联引起的均压问题。直接使用低压IG BT功率模块,器件工作在低压状态,不易发生故障;6kv变频器共使用42对1200V低压I G BT,低压IG BT门极驱动功率较低,驱动电路非常简单,开关频率很低,不必采取均压电路和浪涌吸收电路,系统效率高,同时功率单元采用电容滤波的结构,总体技术成熟可靠。 变频器可以承受30%的电源电压下降而继续运行,变频器的6K V主电源完全失电时,变频器可以在3秒内不停机,能够全面满足变频器动力母线切换时不停机的需要。另外6KV主电源欠压时可不停机,自动降额,电压正常后再恢复到原来速度。采用二极管不可控整流电路结构,变频器对浪涌电压的承受能力较强,雷击或开关操作引起的浪涌电压可以经过变压器(变压器的阻抗一般为 8%左右)产生浪涌电流,经过功率单元的整流二极管,给滤波电容充电,滤波电容足以吸收进入到单元内的浪涌能量,另外变压器一次侧安装了压敏电阻浪涌吸收装置,起到进一步保护作用,

功率单元为多极模块串联,某个模块发生故障时自动旁路运行,便于现场采取对应措施;即在每个功率单元输出端之间并联旁路电路,当功率单元故障时,封锁对应功率单元IGBT的触发信号,然后让旁路SCR导通,保证电机电流能通过,仍形成通路,大大提高了系统运行的可靠性。

电机可实现软启动、软制动,转速自动控制;启动电流小于电机的额定电流;电机启动时间可连续可调,减少了对电网影响。变频器预装具有自主版权的全中文操作和监控软件,本机及远程启停操作、功能设定、参数设定、故障查询、运行记录查询等均采用全中文的WINDOWS操作界面;配备12.1\"彩色液晶触摸显示屏,可实现完整的通用变频器参数设定功能,可打印输出运行报表;调整触摸式面板,可随时显示电压及电流波形、频率和电机转速,可非常直观地显示电机在任何时间的实时状态;具有很强的诊断、指示能力:可检测变频器各部分的运行状态,完整的故障监测电路、精确的故障定位,所有的功率模块均为智能化设计,当有故障发生时,将故障信息返回到主控单元中,主控单元会及时将主要功率元件I G BT关断,保护主电路,同时在中文人机界面上精确定位显示故障位置、类别,使故障点一目了然,适应于一般操作工人和维护人员的技能水平。

采用外部模拟信号控制变频器输出频率时(变频器作为DCS的执行机构),如果发生模拟信号掉线或短路时,变频器可以提供报警信号,同时保持原有输出频率不变。变频器控制电源可接收交流220V和直流220V输入,并配备有UPS,在控制电源发生故障时可以继续运行,同时提供报警。

3 应注意的问题

凝结水母管压力不能过低,以防止空气由排水阀经凝结水再循环管进入凝汽器中,而破坏真空。在凝结水再循环管处,当除氧器侧的压力大于凝结水母管水压时,则除氧器内的汽、水要通过再循环管返回凝汽器,这将使凝结水母管发生水击。因此。变频运行时凝结泵出口阀门调整门开度不能为100%。

4 节能效果

为比较变速调节和传统的挡板调节凝结泵电耗情况,确定其节能效果,于2005年5月17日对#6机组的#1凝结泵变频装置作了电耗对比试验,机组在 100MW、75MW、50MW负荷下运行时,变频调节比传统的挡板调节分别节电470k W、611k W、631kW,节电幅度为47.4%、70.8%、78.4%。变频调节节能效果明显,具体数值见下表:试验数据表。

根据试验结果计算,#6机组凝结泵变频器全年节电量为4639MWh,按照每1MWh上网电量310元计算,全年可获经济效益143.8万元,一年半即可收回全部投资,经济效益十分显著。而且减少了对截门的冲刷,保持了系统恒定的水压。

5 总结

高压交流变频调速技术是90年代迅速发展起来的一种新型电力传动调速技术,应用了先进的电力电子技术、计算机控制技术、现代通信技术和高压电气、电机拖动技术等综合性学科领域的最新成果,其技术和性能胜过以往其它任何一种调速方式。通过多年的不断努力,国产高压变频器的性能、可靠性已经有了很大提高,今后必将有更宽阔的舞台。

高压变频调速装置在电厂的应用论文

数据库原理与应用教学设计

谈变频器发展和应用的几个趋势

变频器注意事项

高压变频调速装置在转炉烟气净化及煤气回收系统的应用及发展前景

《电解原理的应用》测试题

RF2903的原理及在扩频通信中的应用

浅谈数控机床原理、分类与选择

《变压器原理与结构》说课稿

遥感的原理与实践

变频与传动:高压变频器原理及应用(推荐8篇)

欢迎下载DOC格式的变频与传动:高压变频器原理及应用,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档