漫谈机械能守恒定律物理学论文

时间:2023-03-08 03:58:56 作者:斗室旮旯 综合材料 收藏本文 下载本文

【导语】“斗室旮旯”通过精心收集,向本站投稿了16篇漫谈机械能守恒定律物理学论文,以下是小编为大家整理后的漫谈机械能守恒定律物理学论文,希望能够帮助到大家。

篇1:漫谈机械能守恒定律物理学论文

漫谈机械能守恒定律物理学论文

机械能守恒定律可以认为是力学方面的能量转化和守恒定律。它的条件是系统只有重力、弹力做功。在这样的系统中,尽管动能和势能在相互转化,但总的机械能恒定。这里谈机械能守恒定律的应用。

首先,机械能守恒是对系统而言的,而不是对单个物体。如:地球和物体、物体和弹簧等。对于系统机械能守恒,要适当选取参照系,因为一个力学系统的机械能是否守恒与参照系的选取是有关的。

其次,适当选取零势能面(参考平面),尽管零势能面的选取是任意的,但研究同一问题,必须相对同一零势能面。零势能面的选取必须以方便解题为前提。如研究单摆振动中的机构能守恒问题,一般选取竖直面上轨迹的最低点作为零势能面较为恰当。

再次,适当选取所研究过程的初末状态,且注意动能、势能的统—性。

用机械能守恒定律解题有两种表达式,可根据具体题目灵活应用:

①位置1的机械能E1=位置2的E2,

即:Ek1+Ep1=Ek2+Ep2

②位置1的Ep1(Ek1)转化为位置2的Ek2(Ep2)

即;Ep1-Ep2=Ek1-Ek2

下面提供二个例子:

[例1]如图1所示,一光滑斜面置于光滑水平地面上,斜面顶端有一物体由静止开始沿斜面下滑;在物体下滑过程中,下列说法正确的有:

(A)物体的重力势能减少,动能增加。(B)斜面的机械能不变。

(C)物体的机械能减少。(D)物体及斜面组成的系统机械能守恒。

[分析]物体在下滑过程中对斜面有垂直于该斜面的压力。由于斜面不固定,地面又光滑斜面必将向右产生加速度;其动能及其机械能增加。所以(B)项错误。物件一方面克服斜面对它的.压力做功:机械能减少;另一方面由于它的重力做功,重力势能减少,动能增加,因此选项(A)(C)正确。对于物体与斜面组成的物体系;只有物体重力做功,没有与系统外物体发生能量的转化或转移,机械能守恒,故(D)项正确。

答案为:(A、C、D)

[例2]如图2,长为l的细绳系于0点,另一端系一质量为m的小球,0点正下方距0点1/2处有一小钉,将细绳拉至与竖宣方向成q=30o角位置由静止释放,由于钉子作用;细绳所能张开的最大角度为a;则角a为多大?(不计空气阻力和绳与钉碰撞引起的机械能损失,a用三角函数表示)

[解法]∵小球在运动过程中只有重力做功

∴根据机械能守恒定律,取小球运动轨迹的最地点为参考平面:

Ek1+Ep1=Ek2+Ep2

篇2:惯性物理学论文

摘 要:对经典力学范围内现行的惯性观提出了不同的看法,认为对于惯性要区分:个别研究对象的性质与存在的性质;保持某种状态的性质与改变某种状态的性质;物理学规律的动力学特性与审美性。

关键词:惯性 存在 空间

惯性是经典力学中的一个基本概念,同时它又是人们日常生活中的一个基础性观念,并且惯性问题也是经常被物理学界讨论的一个话题。

可是,尽管经典力学经过了漫长的发展时期,大部分的物理教师在此问题上还存在着很多的混乱性,本文试从几个方面对惯性进行了讨论,望引起大家的共识。

一、惯性的意义

大家知道,惯性是物体保持静止状态或匀速直线运动状态的性质。

一个物体,只要不受外力作用,原来静止的就会一直静止下去,而原来运动的则会一直作匀速直线运动。

这里的问题在于:惯性是否是物体的性质?依据牛顿第一运动定律,任何物体均具有惯性。

因而,看来惯性不是被研究物体的性质,因为这一性质是一切物体所具有的,也就是说它与物体的个别特征无关。

因而,惯性只能是存在的一个特征,是被研究对象周围的环境在此对象上的表现。

换一句话说,它是存在于物体周围的一种条件,一种约束。

二、惯性与物体运动状态变化的难易程度无关

通常认为质量是物体惯性大小的量度是据于这样的理由:质量大的物体在相同的力作用下其运动状态不容易改变。

这是由牛顿第二定律所得到的基本结论。

而事实上物体运动状态是否变化,物体运动状态的变化是难还是容易是与惯性无关的。

惯性所揭示出的物体之性质不在于其使(或抗拒)物体运动状态的`改变或代表改变的难易程度的能力,而在于它的保持某种特定状态(静止或匀速直线运动)的本领。

惯性不是一种由个别物体自身所具备的原因(诚然,所有物体均会表现出惯性),它不是我们的一种吃力的、需要支撑的、痛苦感的反映,事实上,它是存在之美感的绽开。

因而“惯性是物体对任何改变其运动状态的外来作用的阻抗的性质”这样一种说法就是不当的。

因为这一注释还是从对牛顿第二定律的基本分析而来的,在这一注释中已经隐藏了牛顿第二定律及对惯性与物体质量等价的认同感。

其实,惯性是一种令人十分安全的、舒适的、和谐的存在之性质,它使物体的存在行为非常简单,而人们也往往由于常见到这种存在的简单性而忽视了它的深层含义。

静止的永远静止,运动的永远作匀速直线运动,惯性就是将存在如此单调而重复地显现在人们眼前。

凡是背离了这两种物体的存在情况而用惯性去解释其存在原因的,作者以为均属一种不当的诡辩行为。

可是这种诡辩行为不仅麻木了人的脑神经而且充斥着各种各样的教科书,我们来看一些下面的例子。

例1.惯性也有不利的一面,高速行驶的车辆因惯性而不能及时制动常造成交通事故。

所以,在城市的市区,对机动车的车速都有一定的限制,以利于行车安全。

在这里,不能及时制动是由于惯性还是由于制动力不够大?略作思考,读者就可判断出是由于后者。

将惯性看成一种破坏力是十分荒唐的。

而发生交通事故的真正原因是,由于车辆质量较大,而相应的制动力在如此质量的物体上所产生的加速度很小,不能使车辆很快地减速,从而在短时间内停下来。

倘若对于质量较大的车辆来说制动力也允许更大,那么作者认为还是可以在一定的时间内制动车辆的。

并且,这个例子中的“高速行驶的车辆”及“对机动车的车速都有一定的限制”的字句很容易使学生认为惯性和物体的运动速度有关。

这对于初学者来说是一个很大的误导。

所有的老师都要求学生不要把惯性与惯性定律混为一谈,可是当我们的老师用动力学的观点来看待惯性――也就是说,把惯性与牛顿第二定律混为一谈的时候,对学生的这一期望是合适的吗?其实这是一个误区:当教完一些物理学的基本概念与规律以后,就要求学生用它们解释自然现象。

事实上,物理学中有些基本概念与规律不是要求我们去解释自然现象,它没有这个功能,它只是告诉我们要去感受些什么,它提供给我们的不是一种推理的方式,而是一个判断的原则 :它促成我们的判断更接近于自然之美的呈现。

参考文献

[1]邹荣. 质量是物体惯性大小的量度吗[M]新世纪教育文集. 中国广播电视出版社,2000,11,1版,454.

[2]邓昭镜.邓玉兰. 质量是惯性的量度,还是物质之量的量度. 物理教师,2000,12,33.

[3]徐祖年. 质量是惯性或引力的量度. 物理教师,2001,11,27.

[4]梁昆淼.力学,上册(修订版).高等教学出版社,1978,12修订第2版,64.

[5]漆安慎 杜婵英. 力学, 高等教育出版社. 1997,7,1版,222.

[6]〔美〕阿 ・ 热.可怕的对称.湖南科学技术出版社,1992,2.1版,126.

[7]曾谨言. 量子力学 卷Ⅱ.科学出版社, 1993,9,1版,231.

[8]尼采文集,查拉斯图拉卷.青海人民出版社,1995,11,1版,163.

篇3:物理学论文参考文献

物理学论文参考文献

参考文献一:

[1] 杨力. 现代光学制造工程[M]. 北京: 科学出版社,2009.

[2] 郑玉权,等.星载高光谱成像光学系统的选择与设计[J].光学精密工程,2009,17( 11) :2629 -2637.

[3] G R Lemaitre. Astronomical optics and elasticity theory[M].New York: Springer, 2009.

[4] Seok-Hwan O. Immersion Lithography: Now and the Future[C]. The 3th InternationalSymposium on Immersion Lithography. Japan, 2006.

[5] 段萌. 非球面光学系统在空空导弹上的应用研究[J].航空兵器,2007, 4: 19-21.

[6] 潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社,2004.

[7] 王权陡. 计算机控制离轴非球面制造技术的`研究[D]: [博士学位论文]. 长春:中国科学院长春光学精密机械与物理研究所, 2001.

[8] Robert A. Jones. Fabrication of a large, thin, off-axis aspheric mirror [J]. Optical engineering,1994, 33:4067-4075.

[9] Jerrold Zimmerman. Continuous process improvement: manufacturing optics in thetwenty-first century [J].SPIE, 1994.

[10] Ajay Sidpara. Magnetorheological finishing: a perfect solution to nanofinishing requirements[J]. Optical Engineering, 2014, 53(9): 092002.

[11] 辛企明.近代光学制造技术[M].北京:国防工业出版社,1997.

[12] W.J. Rupp. The development of optical surfaces during the grinding process [J]. AppliedOptics, 1965, 4(6):743-748.

[13] 刘振宇,罗霄,邓伟杰,等. 大口径非球面的组合加工[J]. 光学精密工程,2013,21(11):2791-2797.

[14] 罗霄.采用平转动应力盘技术加工超大口径非球面的研究[D]: [博士学位论文]. 长春:中国科学院长春光学精密机械与物理研究所, 2011.

[15] 刘振宇. 大口径非球面反射镜组合加工技术驻留时间算法研究[D]: [博士学位论文]. 长春:中国科学院长春光学精密机械与物理研究所,2013.

[16] M. Johns, “The Giant Magellan Telescope (GMT),” in Extremely Large Telescopes: WhichWavelengths? T. E. Andersen, eds., Proc. SPIE 6986, 6986031–12 (2008).

[17] Gallagher. B. JSWT mirror manufacturing status. Talk for NASA Teehnology Days2006

[18] 王贵林. SiC 光学材料超精密研抛关键技术研究[D] :[博士学位论文]. 长沙: 国防科技大学, 2002.

[19] 冯之敬,吴鸿钟,赵广木,等. 自由曲面透镜型面误差的压力抛光修正[J].清华大学学报(自然科学版), 2000, 40(8): 69-72.

[20] 张学军,张云峰,余景池. FSGJ-1非球面自动加工及在线检测系统[J].光学 精密工程,1997,5(2):70-77.

参考文献二:

[1] Zhang Xuejun. Manufacturing and testing of two off-axis aspherical mirrors [J]. SPIE, 2001,4451:118-125.

[2] 郑立功,张学军,张峰. 矩形离轴非球面反射镜的数控加工[J].光学 精密工程,2004,12(1):113-117.

[3] 邓伟杰. CCOS 的控制模型及控制参量求解算法[D]:[博士学位论文]. 长春:中国科学院长春光学精密机械与物理研究所,2010.

[4] D.Ketelsen, W.Davison, S.Derine, W.Kittrell. A machine for complete fabrication of 8-mclass mirrors [J]. SPIE, 2199:651-657.

[5] P. Beraud, J. Espiard, R. Geyl. Optical figuring and testing of the VLT 8.2-m primary mirrors[J]. SPIE, 1995, 2536, 413-420.

[6] H.M.Martin, etc. Progress in the stressed-lap polishing of 1.8m f/1 mirror [J]. SPIE, 1990,1236:682-690.

[7] H. M. Martin, R. G. Allen. Manufacture of the second 8.4 m primary mirror for the LargeBinocular Telescope [J]. SPIE, 2006, 6273:62730C1-62730C10.

[8] Lubliner Jacob, Nelson Jerry. Stressed-lap Polishing of 3.6m f/1.5 and f/1.0 mirror [J]. SPIE,1991, 1531:260-269.

[9] Bryan K.Smith, J.H.Burge, H.M.Martin. Fabrication of large secondary mirrors forastronomical telescopes [J].SPIE, 1997, 3134.

[10] 谌桂平,杨力. 计算机数控应力盘面形研究[J]. 光电工程, 2000, 27(3):20-23

[11]T.Minami.TransparentandConductiveMulticomponentOxideFilmsPreparedbyMagnetronSputtering[J].JournalofVacuumScience&TechnologyA,1999,17(4):1765-1772

[12]H.Lehmann,R.Widmer.PreparationandPropertiesofReactivelyCo-SputteredTransparentConductingFilms[J].ThinSolidFilms,1975,27(2):359-368

[13]J.C.Fan,F.J.Bachner,G.H.Foley.EffectofO2PressureDuringDepositiononPropertiesofRf‐SputteredSn‐DopedIn2o3Films[J].AppliedPhysicsLetters,1977,31(11):773-775

[14]R.B.H.Tahar,T.Ban,Y.Ohya,etal.Humidity‐SensingCharacteristicsofDivalent‐Metal‐DopedIndiumOxideThinFilms[J].JournalOfTheAmericanCeramicSociety,1998,81(2):321-327

[15]Y.Sawada,C.Kobayashi,S.Seki,etal.Highly-ConductingIndiumTin-OxideTransparentFilmsFabricatedbySprayCvdUsingEthanolSolutionofIndium(Iii)ChlorideandTin(Ii)Chloride[J].ThinSolidFilms,2002,409(1):46-50

[16]S.Rozati,T.Ganj.TransparentConductiveSn-DopedIndiumOxideThinFilmsDepositedbySprayPyrolysisTechnique[J].RenewableEnergy,2004,29(10):1671-1676

[17]D.Kim,Y.Han,J.-S.Cho,etal.LowTemperatureDepositionofItoThinFilmsbyIonBeamSputtering[J].ThinSolidFilms,2000,377:81-86

[18]H.Haitjema,J.P.Elich.PhysicalPropertiesofPyrolyticallySprayedTin-DopedIndiumOxideCoatings[J].ThinSolidFilms,1991,205(1):93-100

[19]N.Balasubramanian,A.Subrahmanyam.EffectofSubstrateTemperatureontheElectricalandOpticalPropertiesofReactivelyEvaporatedIndiumTinOxideFilms[J].MaterialsScienceandEngineering:B,1988,1(3):279-281

[20]M.Bender,J.Trube,J.Stollenwerk.DepositionofTransparentandConductingIndium-Tin-OxideFilmsbytheRf-SuperimposedDcSputteringTechnology[J].ThinSolidFilms,1999,354(1):100-105

[21]S.Shin,J.Shin,K.Park,etal.LowResistivityIndiumTinOxideFilmsDepositedbyUnbalancedDcMagnetronSputtering[J].ThinSolidFilms,1999,341(1):225-229

[22]M.Higuchi,S.Uekusa,R.Nakano,etal.MicrograinStructureInfluenceonElectricalCharacteristicsofSputteredIndiumTinOxideFilms[J].JournalofAppliedPhysics,1993,74(11):6710-6713

[23]H.Hosono,H.Ohta,M.Orita,etal.FrontierofTransparentConductiveOxideThinFilms[J].Vacuum,2002,66(3):419-425

[24]W.-F.Wu,B.-S.Chiou.PropertiesofRadio-FrequencyMagnetronSputteredItoFilmswithoutin-SituSubstrateHeatingandPost-DepositionAnnealing[J].ThinSolidFilms,1994,247(2):201-207

[25]K.Sreenivas,T.S.Rao,A.Mansingh,etal.PreparationandCharacterizationofRfSputteredIndiumTinOxideFilms[J].JournalofAppliedPhysics,1985,57(2):384-392

篇4:物理学论文投稿

物理学论文投稿

摘 要:1 导入多元情境,刺激求知欲望 积极且多元的课堂情境是促使学生踊跃表现自我的基本因素,是实现研究性学习的必备条件之一.物理学科作为自然学科之一,其所涵括的内容小到生活细节,大到宇宙世界,如果学生对物理学科本身就缺乏学习的热情和求知的欲望,那么

关键词:物理教学论文发表,发表物理学论文,物理学论文投稿

1 导入多元情境,刺激求知欲望

积极且多元的课堂情境是促使学生踊跃表现自我的基本因素,是实现研究性学习的必备条件之一.物理学科作为自然学科之一,其所涵括的内容小到生活细节,大到宇宙世界,如果学生对物理学科本身就缺乏学习的热情和求知的欲望,那么教师将无法实现课堂教学的实效性.研究性学习作为一种全新的学习方式和学习理念,要求教师为学生创设出类似于科学研究的情境,刺激学生的求知欲望,如此才能进一步引导学生在这种多元化的学习情境中,综合应用已掌握的理论知识和思考方式,开启对神秘科学的探索旅程.

以人教新课标高中物理必修1《匀变速直线运动的速度与时间的关系》为例,教师在该课程中的教学任务既在于引导学生掌握相关概念、识别速度与时间的关系图象,也要树立学生用数学公式表达物理规律的意识.要顺利完成以上教学目标,教师首先要考虑的是如何激发学生的学习热情和求知欲望,这样才能促使学生全身心地投入到学习和吸收的过程当中去,而这在一定程度上取决于课堂情境是否活跃且多元化.首先,教师可利用现有丰富的信息技术来为学生呈现形象直观的学习画面,如先用多媒体设备展示小车在重物牵引下的运动图象通过改变相关变量中的单个变量来展示不同的运动状态,来引导学生对所观察到的图形进行思考和分析,可以小组为单位,或以同桌为搭档进行交流与探讨.根据学生的合作进程,教师要适时地进行指引和纠正.在综合观察和总结各小组的表现的基础上,教师可选取最优的合作小组,将讲台交给他们,鼓励他们以讲授者的身份为其余学生演示分析图象和推导过程,而教师可以与同学一起坐在座位上,以学生的身份对你台上的小组提出比较有针对性的问题.如此,既能缩短师生的心理距离,也可以让学生享受到轻松自由的多元化课堂环境,自然而然就会对课堂学习产生强烈的求知欲望.

2 归还主体地位,实现自主学习

研究性学习提倡以学生的发展为根本,其核心理念在于引导学生养成主动求知、不断探索的学习精神,诚如教育学家弗赖登塔尔所言,知识既不是教出来的,也不是学出来的,而是研究出来的.新课标改革的主阵地是课堂,而课堂真正的主体是学生,因此,要实现研究性学习,教师应当首先摒弃传统的“填鸭式”教学方式,从灌输型教学转向引导型教育,把课堂的主体地位归还给学生,只有给予学生充分的展现平台,赋予学生自由的交流平台,才能够促使学生进一步开发潜能、自主学习,表达新颖的观点,展示独特的个性,为贡献社会奠定坚实的基础.

以人教新课标高中物理必修2《生活中的圆周运动》为例,为了实现学生在课堂中主体地位的回归,教师首先要设计巧妙的引导,如“同学们是否注意过你们生活中出现的圆周运动呢?它就存在于你们所喜爱的某项运动项目里,或你们每天亲眼目睹的.某项活动中.有哪位同学愿意帮老师和其他同学一起回顾下我们生活中的物理现象呢?这既能展现同学们敏锐的观察能力,也能提升概括总结的综合语言能力的.”教师要根据学生现场的反应,结合平日对学生个性特征的观察和总结,适时鼓动学生勇于表现自我,并对学生的不同发言作出多元化评价.之后,再利用多媒体设备向学生展示生活中圆周运动的实例,“从大屏幕中我们可以看到,圆周运动在我们的生活中普遍存在,那么同学们知道向心力的概念吗?比如汽车在过拱形桥时,当它在桥弧顶时,对桥的压力与它的速度有什么关系呢?为了帮助同学们分析的便利性,老师今天特地准备了一些实物模型,同学们自行分成小组,分别上来领取实体模型,再进行小组分析和探讨.请大胆开发你们的观察力和想象力,肯定可以分析出圆周运动中向心力的来源以及圆周运动的规律.为了让实验更有竞争气氛,各小组的用时均会被计时,完成之后我们一起评比出最佳组合!”如此一来,教师在课堂中的角色由传统的灌输者转向引导者,学生也由被动吸收者变换成主动探究者,这种自主学习的研究性学习气氛对开发学生的潜能和培养创造力具有深远的意义.

3 落实创新理念,拓展思维空间

所谓研究性学习,指的是学生在教师准确的指引下,在探索研究的过程中主动获取知识、应用知识,并最后解决问题的学习活动.可见,它已完全摆脱传统教育以升学为目的的错误指向,而突出强调学生的主体地位和创新实践的能力.随着改革开放和世界经济的不断深入,信息技术保持着迅猛的发展趋势,创新能力也由此成为考量当代复合型人才的一项重要指标.正所谓“落后就要挨打”,我国科技实力在走向世界前沿的同时,对创新型人才的需求也日益强烈.物理作为一门以实验为基础的探索性学科,教师应当将创新教学的理念落到实处,努力拓展学生的思维空间,培养出能够适应时代发展和国家需求的创新型人才.

以人教新课标高中物理必修2《经典力学的局限性》为例,自然科学所蕴含的无穷奥秘意味着人类对它的探索也是无止尽的,随着科技水平的不断发展和进步,人类对科学的认识程度也在不断地更新和改进.研究性学习的动力来源于对问题的发现与提出,因此,教师要在物理教学的过程中落实创新的探索精神,首先要引导学生发现问题、提出问题,并自主解决问题.如“同学们认为速度有无极限的概念呢?微观例子的行为与宏观物体是否遵循同样的物理规律呢?时间与空间又是否是绝对地一成不变的呢?如果经典力学已经足够完善,那么爱因斯坦为什么还要提出相对论呢?如果经典力学存在局限性,那它又表现在哪些方面呢?

篇5:物理学的理论研究论文

物理学的理论研究论文

一、驳宇宙大爆炸假说

当人们用望远镜观测银河系以外的星系时,可以发现绝大多数星系光谱都存在红移或蓝移现象,并且越远的星系其光谱红移值越大。根据多普勒效应:星系光谱存在红移说明星系正离我们远去,星系光谱存在蓝移说明星系正向着我们运动。需要指出的是越远的星系红移值也越大,看起来所有的星系都好象以银河系为中心向外爆炸形成的一样,越远的星系离开我们的速度也越大。鉴于此有人提出宇宙大爆炸假说:认为宇宙是由150亿年前发生的一次大爆炸形成的,人类居住的银河系则是宇宙的中心。可是人们在观测银河系和河外星系时,却并没有发现银河系有什么特别之处。有人据此怀疑宇宙大爆炸假说;也有人从星系的演化推算出宇宙的年龄大于150亿年;还有人认为若宇宙大爆炸假说是正确的,那么宇宙辐射在各个方向上就会表现出各向异性;更有人担心宇宙的膨胀没有尽头,遂认为宇宙的膨胀和收缩是交替进行的……。但不管怎样,大部分人还是相信“眼见为实”,由星系光谱的红移现象承认了宇宙大爆炸假说。更有人把红移现象与宇宙背景辐射和宇宙元素丰度并作宇宙大爆炸假说的三大支柱。那么宇宙是否发生过爆炸并仍在向外扩张,年龄是否只有150亿年呢?非也!

1.星系光谱红移原因

20世纪初,当人们用望远镜观测银河系以外的星系时,发现绝大多数星系光谱都有红移现象,并且越远的星系其光谱红移值越大。有人认为星系光谱红移是因为星系正在离我们远去,从而得出这样的结论:所有的星系都是以我们银河系为中心向外爆炸后形成的,越远的星系离开我们的速度也越大;宇宙中所有的星系都在彼此分离,并且越远的星系相互分离的速度越大。值得一提的是,我们银河系正处在爆炸中心,足以值得我们自豪的是:银河系是宇宙中独一无二的星系—因为它是宇宙的中心。更让我们惊奇的是,银河系自身也在不断运动着,然而无论它运动到哪里,它始终是银河系的中心。我们解释不了银河系为什么是宇宙的中心,因为银河系也和其它星系一样,并沒有什么特别之处。有人以为,银河系处于宇宙的中心是一个巧合,虽然银河系从上个世纪至今一直在不断运动,但它走过的距离和整个宇宙空间的尺寸比起来是微不足道的,所以银河系目前仍然处在宇宙的中心,这种看法未免有些牵强。因为人们在观测近处的星系时,发现近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系正在以某一个中心为起点向外膨胀。因此“银河中心说”颇值得怀疑。还有的人虽然承认宇宙大爆炸假说,但不承认“银河中心说”,他们不认为银河系是宇宙的中心。这种观点同样也是站不住脚的。我们可以这样分析:如果宇宙大爆炸假说是正确的,那么宇宙中所有的星系必定在以某一个中心为起点向外膨胀,星系之间彼此互相分离。目前我们观测到近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系在以某一个中心为起点向外膨胀。倘若我们不是在宇宙的中心而是处于偏离宇宙中心的任一点处,因为在我们周围的星系都没有相互分离的趋势,也没有以某一个中心为起点向外膨胀,这样一来,倘若宇宙中任一点处的星系都没有相互分离的趋势,那么整个宇宙也不可能在膨胀,即宇宙大爆炸假说是错误的。

前事不忘,后事之师。人类文明发展到今天,“地心说”和“日心说”都被证明是为科学,难道我们还要重蹈覆辙提出“银河中心说”吗?愚以为,我们应当承认这样一个假设,那就是:银河系按目前的速度运动下去,100万年,100亿年以后,我们仍然会发现自己处在宇宙的“中心”,无论我们处在宇宙的任何地方,中心也好,边缘也好,我们都会发现宇宙中越远的星系光谱红移值也越大,就好象我们处在宇宙的“中心”一样。事实上,这个“中心”是光子在宇宙空间中的传播特性引起我们视觉上的错误,“眼见”未必“为实”,我们不能过分相信“眼见”的东西。

红移现象是否由观测者自身的运动引起的呢?不是的!如果红移现象是由观测者自身的运动引起的,那么我们将观测到与我们相向运动的星系光谱将发生蓝移而与我们相背运动的星系光谱将发生红移,然而事实并非如此。再者,虽然我们“坐地日行八万里”,但这个速度和光速比起来实在算不了什么,不至于影响观测结果。换句话说,我们在观测星系红移值时,观测者自身运动速度的影响可以忽略不计。红移现象说明光子与观察者之间的相对速度变小了。产生这种情况有两种可能:第一是星系正离我们远去,第二是光子在穿越宇宙空间时速度变小了。这两种情况都可能导致星系光谱红移。我们认为导致星系光谱红移的原因是后者。光子在穿越宇宙空间时会与各种粒子(比如引力子)相互作用从而使其速度逐渐减小。当然单个粒子与光子作用时间极短,引起光子速度的改变量也是极其微小的,以致于我们观测不到。随着光子穿越宇宙空间距离的增大,与光子作用的粒子数目也逐渐增多,光子速度的减小量也越明显。可以推测:光子在穿越一定的宇宙空间距离后速度将减小到零。由于光子速度为零故相对我们的能量也为零,这样的光子当然不会被我们观测到。可见用光学法观测宇宙空间尺度时有一个极限:150亿光年(也有人认为是200亿光年)。在这个尺度以外的星系发出的光子由于在没有到达地球时速度已经降低到零,所以这样的星系不可能被我们观测到,至少目前还没有办法观测到。也有人认为,红移现象是由光子频率减小引起的,即认同第一种可能:认为星系正离我们远去。这种观点听起来很有道理,却经不起分析。我们知道,星系离我们远去时会引起光子频率减小,但各种不同频率光子的频率减小量应该相同,反应在星系光谱上,各种不同频率光子的红移量应该相同。因此,不论星系离我们多远,星系光谱虽然发生红移但不应该变宽,但事实上远处星系光谱却被拉宽了(星系光谱不会变宽是指星系光谱中任意两条谱线的距离恒定,虽然它们都发生了红移,但它们移动的距离相等,因此各谱线之间的距离不变)。而且能量越小的光子红移值越大,能量越大的光子红移值越小。不同频率光子的频率减小量不同,说明红移现象不是由光子频率减小引起的。即第一种可能站不住脚。假设宇宙中所有的星系都是静止的,宇宙空间中的物质是均匀分布的,那么光子穿越宇宙空间时的速度衰减量仅与其通过的空间距离有关。光子穿越的宇宙空间越长,其速度衰减量也越大。这样星系光谱的红移值仅与其离我们的距离有关,离我们越远的星系红移值也越大,就好象越远的星系正在以越快的速度离开我们一样。这也正是哈勃定律所揭示的:星系远离银河系的速度ν与距离成正比,ν=H*D,其中H为哈勃常数。实际上宇宙中各星系都在不断运动着,宇宙空间中的物质也并非均匀分布的,造成星系光谱红移的原因也很多,所以光谱的实际红移值要考虑许多情况。

2.谱线红移与光子速度衰减

光子与宇宙空间中的粒子是如何作用的呢?可以设想,宇宙空间中存在许多比光子质量小得多的粒子(比如引力子)。由于光子在与粒子作用后仍然是光子,可以认为光子仅与粒子发生了弹性碰撞。既然是弹性碰撞,我们知道,二者质量越接近光子损失的能量越大。由于光子的质量远远大于引力子的质量,所以在不同频率(质量)的光子中,频率(质量)较小的光子损失的能量较大。于是经过同一段宇宙空间以后,在不同频率(质量)的光子中,频率(质量)较大的光子损失的能量较少,频率(质量)较小的光子损失的能量较大,例如红光损失的能量比紫光损失的能量多。由于不同频率(质量)的光子在宇宙空间运动时都损失了能量,这样整个星系的光谱将向红端移动,但由于红光损失的能量多向红端移动的距离大,而紫光损失的能量少向红端移动的距离小,于是整个光谱被“拉宽”了。如果不同频率(质量)光子的能量损失率相同,虽然它们都产生红移,但是它们红移的距离相等,这样星系光谱虽存在红移但不会被“拉宽”,星系光谱存在红移而且被“拉宽”说明两点:第一光子在穿越宇宙空间时速度会衰减,第二不同频率(质量)的光子速度衰减率不同。显然,由于不同频率(质量)光子的能量损失率不同,各种光子的速度衰减量差异将随着空间距离的增加而增大,这样星系光谱被“拉宽”的程度与其离我们的距离有关,离我们越远的星系其光谱被拉宽的程度也越大。另外,星系光谱被拉宽时还有一个特点,那就是能量大的光子被拉宽的程度小,能量小的光子被拉宽的程度大。也就是说,越靠近红端光谱被拉宽的程度越大,越靠近紫端光谱被拉宽的程度越小。考虑到星系引力场的影响,实际情况还要复杂一些。

上面我们谈到光子在宇宙空间运动时速度会逐渐减小,这和人们熟悉的“真空中光速不变”的看法相矛盾。实际上宇宙空间并非真空,即使宇宙空间是绝对真空它还存在引力场。换句话说,光子在真空中速度变不变的问题,实际上是光子受不受引力作用的问题。如果光子不受引力作用,那么真空中光速不变,但这样一来不论星体的引力再强,对光子都没有影响,从而宇宙中也不可能产生“黑洞”了,而现在的黑洞理论基础将不复存在;假如光子受引力作用,则就不应该有“真空中光速不变”的结论。有人对此这样解释:宇宙空间中各星体的引力分布在不同的方向上,它们的作用力相互抵消,因此光子在宇宙空间中的速度不变。这种解释也是站不住脚的。我们知道在太阳系内,引力的方向是指向太阳的;在银河系里引力的方向是指向银河系中心的,所以局部的宇宙空间引力总是有一定的方向的。我们认为光子作为一种物质实体,它的速度并非一成不变的。无论在真空中还是在介质中,它的运动速度都会越来越小。所以,光速不变只是一个神话,光年也不能作为距离单位,因为光子在前一年中走过的路程总比后一年中走过的路程长。

3.光子在引力场中的运动

星光在通过太阳附近时会受到太阳引力的作用而发生弯曲,说明光子也会受到引力的作用。其实光子也有质量,当然会受到引力作用了。通常我们认为:引力场中物质的加速度仅与引力场的强弱有关,而与物质的质量无关。如在地球表面不管是1吨的物体还是1千克的物体,其每秒获得的速度增量都是9.8米/秒。但引力场中光子的加速度与其质量有关:质量越小的光子加速度越大,质量越大的光子加速度越小。既然光子也受引力作用,那么很自然,光子在离开引力场时必然会被减速,在进入引力场时必然会被加速,在垂直于引力方向(或其它方向)运动时受引力影响其运动轨迹也会发生变化。既然光子在离开引力场时会被减速,而且质量越小的光子速度衰减量也越大,那么星体发出的不同频率的光子就有不同的速度。一般而言,星体引力越强,其发出的光速度也越小;当星体引力足够强时甚至可能使一部分光子摆脱不了星体引力的束缚,产生黑洞现象。对同一星体而言,在它发出的光中,质量大的光子速度大,到达地球的时间也越早;质量小的光子速度小,到达地球的时间也越晚。我们通常认为不同频率的光同时到达地球,这其实是错误的。关于这一点我们可以用实验来证实。当星体发生爆发或其它异常时,总是能量较大的X射线或γ射线先被我们观测到,其次才是可见光,然后才是红外线。虽然理论上如此,但在实际观测中总有这样或那样的因素及别的解释使大部分人不相信这一点。如果条件允许的话,我们可以用一个实验来证实我们的观点。在离我们很远的宇宙飞船上以两种不同能量的光子同时发出一种信号,这两种光子的能量差异越大它们到达地球的时间差异也越大。实际上考虑到不同能量的光子在同一介质中的传播速度不同,我们应该想到不同频率的光子在真空中的传播速度也不相同。由于光子在穿越宇宙空间时速度逐渐减小,并且质量小的光子速度衰减得快,可以想象,在经过一段相当长的距离以后,质量小的光子速度已经衰减到零而质量大的光子速度不为零,这样我们就只能观测到质量大的光子。若星体离我们更远一些,则我们只能观测到质量更大的光子……,随着空间距离的增大,最终我们将看不到远处星体发出的光,这个距离就是我们现在认为的宇宙极限--150亿光年。人们在观测宇宙时总有一个错误想法:由于真空中光速不变,所以不管离我们多远的星系,只要足够亮就可以被我们发现。事实上宇宙空间并非真空,光子在其中穿行时速度会逐渐减小,所以任何星系发出的光只能传播一定的距离,也正因为如此,不管我们在宇宙中任何地方,始终只能看到有限的宇宙空间。换句话说,目前我们能够观测到的宇宙空间的尺度实际上是光子在宇宙空间中传播的最远距离。

4.光子在宇宙空间中的运动

实际上光子在宇宙空间运动时并不总是做减速运动。在光子离开星体时它要挣脱引力的束缚而作减速运动,当它脱离星体的引力场在空间自由运动时,也作减速运动;如果它进入另一个星体的引力场向着该星体运动时,就会在该星体的引力作用下作加速运动。光子就这样减速--加速--减速--加速……不停地穿越宇宙空间,直到其速度为零。倘若星体离我们很近而引力又很小,从该星体发出的光速度衰减量不大,但进入银河系时光子的速度增加量有可能很大,当光子的速度增加量大于其速度衰减量,或者说大于刚离开星体表面时的速度,在我们看来该星体光谱就发生了蓝移。忽略距离因素,由于星体自身在不断运动,这样它相对银河系引力场的强弱也可能发生变化,所以其光谱也可能有规律的发生红移或蓝移。通常情况下,宇宙空间对光子的减速作用总大于加速作用,所以星系的光谱以红移的居多。

光子在引力场中速度变化的问题许多人恐怕不相信也不能理解。一些人认为光子没有静质量,况且光子是一种波,在引力场中的运动规律和宏观物质不同。其实持这种观点的人把光子神话了,弄的不可捉摸了。现在大多数人都接受了“黑洞”的概念,认为当一个星体的引力足够强时甚至连光子也逃脱不了,因而是漆黑的一团。这里实际上指出了光子也会受到引力作用。既然光子也受引力作用,那么它在引力场中的加速与减速自然就可以理解了。稍后我们将看到,引力作用是造成衍射现象的重要因素之一。

5.类星体

一个很明显的事实是:宇宙中离我们越远的星体能量越大,通常类星体离我们的距离都在10亿光年以上,并且远处星体发出的光中能量较大的光子占有很大的成分。有人把这作为支持宇宙大爆炸的依据,认为:若宇宙中物质是均匀分布的话,则在我们银河系或其周围就应该有象类星体这样的高能星体存在。为什么我们在近处发现不了类星体呢?一些人看见远处的星体发出的光中含有大量的X射线或γ射线成分,就推测此类星体存在着目前尚不为我们知道的能量源。这种观点未免有些片面。实际上宇宙中大部分恒星的能量都差不多,能量特别大的和能量特别小的只是极少数,恒星的能量呈中间多、两头少的分布态势。从远处的恒星发出的光,在经过漫长的宇宙空间以后,能量小的光子由于速度衰减率大而停了下来,不被我们观测到;只有X射线和γ射线才能到达地球。所以我们观测到该星体的光子中,X射线和γ射线占有很大的成分,以致于我们误认为这类星体只向外发出X射线和γ射线。实际上这类星体也向外发射可见光和红外线,但是可见光和红外线由于速度衰减到零故我们观测不到。这就导致我们观测到极远处的星体,其颜色通常是蓝色或紫色,事实上可能和该星体的真实颜色相差极大。这说明我们看到的星体的颜色未必就是星体的真实颜色,星体的颜色是由其自身能量状况和离我们的距离决定的,星体离我们的距离越大往往使其颜色中的蓝色和紫色成分增加。另外,我们认为类星体离我们非常远,是因为类星体的红移值很大。也就是说我们没有直接证据表明类星体真的离我们很远。考虑到光子在引力场中的运动,我们知道:当星体的引力足够大时,其发出的光子速度衰减量也较大,因而该星体的光谱也将发生较大的红移。这就是说,引力因素也可以使星系光谱产生红移。倘若星体引力足够大又离我们很近,由于星体红移值较大,往往导致我们认为该星体离我们很远。举例来说,假设有一个引力较大的星体处于银河系的中心,由于该星体引力很强,导致它发出的光子速度衰减量极大,我们在观测其光谱时就会观测到很大的红移值,根据该星体很大的红移值我们就会认为它离我们非常遥远,绝不会想到它就在银河系中心。

如何解释类星体离我们那么远而其发射的X射线和γ射线又是如此强烈呢?只有两种可能。第一,类星体的能量非常大,向外发出的X射线和γ射线非常强;第二,类星体离我们并没有原先认为的那么远,类星体光谱的红移是由类星体的引力造成而并非由距离因素造成的。我们认为两种因素都有。因为如果类星体离我们非常远,那么我们观测到其向外发出的X射线或γ射线就不可能很强;倘若类星体的能量不是很大,它的引力场也不可能很强,不足以使其光谱产生较大的红移。这说明:星系光谱发生红移可能是距离因素造成的,也可能是引力因素造成的,红移值大的星体未必就离我们远。那么,如何区别星体的引力红移和距离红移呢?对观测者而言,由距离因素造成红移的星体发出的光不可能很强,而由引力因素造成红移的星体发出的光往往很强,特别是X射线或γ射线的成分多。类星体的发射光谱和吸收光谱的宽度不同,通常吸收光谱的宽度比发射光谱窄,为什么呢?我们知道,吸收光谱是由于光子经过大气后产生的,这说明类星体周围也存在气体。光子从高温星体内部发出以后,总会有一部分光子没有被气体吸收而直接射向宇宙空间,这些光子形成发射光谱;还有一部分光子在与气体作用后,频率(质量)大的光子损失的能量大,频率(质量)小的光子损失的能量小;光子离开类星体在宇宙空间中运动时,则是频率(质量)大的光子损失的能量小而频率(质量)小的光子损失的能量大,总的看来各种不同频率的光子速度差异减小,所以其光谱红移值也较发射光谱小。实际上类星体的吸收光谱还可能有几种不同的宽度。

6.黑洞与星体引力

最初在人们考虑黑洞时,认为它的引力强到连光子也逃脱不了,因而是漆黑的一团,黑洞是宇宙中物质的坟墓。后来人们认为黑洞可以向外发出X射线和γ射线。同样是光子,能量大的可以逃脱,能量小的逃脱不了,说明(黑洞的)引力对光子的作用是不一样的。事实上我们知道当星体的引力逐渐增强时,总是质量较小的光子逃脱不了,质量较大的光子则可以摆脱星体的引力,并不是所有的光子全部被吸入星体中。所以从这个意义上来说,狭义上的黑洞仅指引力强到可见光不能脱离的星体,即在可见光波段观测不到的星体;广义上的黑洞指引力强到使一部分光子不能脱离的星体,即在某一能量较小的波段观测不到的星体,这里广义上的黑洞甚至可能非常亮,可以被我们肉眼看到,但在红外线波段或能量更小的波段却观测不到。从理论上讲,“黑洞”并不黑,至少它可以向外发射X射线和γ射线或能量更高的光子,完全不向外抛射粒子的黑洞是不存在的。那么宇宙中黑洞存在吗?当然存在了。当星体离我们足够远,以致于该星体发出的红外线速度衰减为零而不被我们观测到时,它就像一个“黑洞”;若星体离我们再远一些,可见光不再为我们观测到,只能观测到X射线和γ射线,这时它就是漆黑的一团,成为名副其实的黑洞;而宇宙中150亿光年以外的星体对我们来说是完全彻底的黑洞,因为我们完全观测不到它们。除了因空间距离造成“黑洞”现象以外,星体的引力也可以造成黑洞现象。黑洞现象并不是我们原先想象的那样:“当星体的引力足够大时,所有的光子都被吸入星体中,整个星体变成黑暗的一团”。当星体的引力逐渐增大时,它对光子的束缚作用也逐渐增强。星体的引力足够大时,红外线光子将摆脱不了星体引力的束缚,而可见光、紫外线则可以摆脱星体引力的束缚;星体的引力再增大时,可见光将摆脱不了星体引力的束缚,而紫外线则可以摆脱星体引力的束缚;若星体的引力再增大,可能只有γ射线放出。应该明确指出:黑洞现象是与星系光谱的红移紧密相连的。若某一星体的光谱不存在红移现象,则它一定不是黑洞;若某一星体的光谱存在红移现象,则它可能是黑洞也可能是距离因素造成的。

总的来说,我们对黑洞的认识经历了三个阶段:第一阶段认为黑洞的引力足够强,所有的光子都不能摆脱黑洞的引力,因而整个星体是黑暗的一团;第二阶段认为黑洞可以向外发出强烈的X射线或γ射线,人们认识到黑洞的引力对不同能量光子的作用不同;第三阶段也就是现在正在探索的阶段。应该明确指出:与黑洞现象紧密联系的因素有两个,引力因素和距离因素。以往我们在考虑黑洞现象时往往只考虑引力因素而忽略了距离因素,这就导致我们认为整个宇宙空间仅有150亿光年,对150亿光年以外的宇宙空间,认为看不见的就是不存在的。

7.恒态宇宙

也许有人会问,既然光子的速度能够降低到零,那么宇宙中会不会堆积越来越多的光子呢?不会的!光子作为物质的一种存在方式,它不是永恒的,在一定条件下光子可以转化为别的物质,也就是说光子是有一定寿命的。任何一个光子不可能永远存在下去,它必将转化为别的物质形式。宇宙中的物质无时无刻不在运动,所以宇宙中不会堆积越来越多的光子。虽然我们目前并不知道光子是如何转化为别的物质的,但我们依然相信整个宇宙是稳定的、恒态的,而局部宇宙则可能是不稳定的,处于演化过程中的。同样的道理,整个宇宙也不会被光子均匀照亮。由于光子在宇宙空间中运动时速度逐渐减小,所以任何星体发出的光只能传播到有限远处。也正因为如此,我们所观测到的宇宙始终是有限的。如果想观测更远的宇宙空间,一个方法是派出宇宙飞船,另一个办法是在宇宙空间中建立许多中转站,在光信号速度未衰减到零以前接受、放大、转播它。理论上讲,只要中转站的数量足够多,我们就可以看见任意远处的宇宙空间。

8.浩瀚宇宙

假设我们能够乘座一艘高速飞行的宇宙飞船遨游太空,在刚离开地球时,我们可以观测到150亿光年的宇宙,离我们越远的星体其红移值也越大,远处的星体放出强烈的X射线或γ射线。随着我们飞行距离的增大,我们会发现银河系的红移值越来越大,并且其颜色逐渐偏蓝,而原先我们观测到呈蓝色或紫色的星体颜色逐渐偏红,最终银河系将消失在我们的视野之外。当我们飞到离银河系150亿光年的地方,我们发现展现在我们面前的宇宙范围仍然有150亿光年;而原先我们认为正在以很大速度分离的星体或膨胀的宇宙空间并没有膨胀。无论我们飞到哪里,始终只能看见150亿光年的宇宙空间,也始终能够看见150亿光年的宇宙空间,宇宙是无限的;并且我们始终是宇宙的“中心”,因为所有的星体看起来所有的星体都好象以我们为中心向外爆炸形成的一样,越远的星系(红移值越大)离开我们的速度也越大。我们认为,宇宙是无始无终的,物质的存在是永恒的,对某一特定的物质形态有其产生和消亡的过程,但整个宇宙不存在产生和消亡的过程,它是自始至终存在并且不会消亡的。同时也应该看到,宇宙是无限的,不会仅仅只有150亿光年的空间。

从上个世纪以来,人们已经探索到了上百亿光年的宇宙空间,然而这只不过是苍海一粟。也许还要几十年甚至上百年人类才能认识到宇宙的无限性,但只要天下有志之士携手合作,这一天定会早日到来。

二、浅谈光的衍射

通常情况下光总是直线传播。但当光线经过足够窄的窄缝时将形成明暗相间的衍射条纹。由于光子不带电,在电磁场中不偏转,所以光子的衍射不是电磁力作用的结果,而是引力子与光子作用产生的。光子与引力子作用不是一个简单的碰撞过程,而是一个极为复杂的过程。在光子与引力子相遇的一瞬间它们形成一个混合体,这就打破了结合前光子内部各部分的平衡,混合体内部存在着排斥力和凝聚力两种作用。若排斥力占主导作用,则混合体将在极短的时间内“裂变”放出引力子;若凝聚力占主导作用,则混合体将形成一个新的光子。那么满足什么条件的混合体(光子)才是稳定的呢?经典电磁理论指出:所有光子的能量均为某个最小能量的整数倍。也即所有光子的质量均为某个最小质量的正整数倍,只有这样的光子才能稳定存在。当然这并不表明能量为某个最小能量的非整数倍的光子就不存在,只不过由于它们极不稳定,在形成后瞬间就“裂变”生成能够稳定存在的光子,目前我们还没有观测到或注意到这类光子罢了。从这里我们可以看出,与原子核一样,所有光子的质量均为某个最小质量的正整数倍,说明光子也有一定的内部结构,某些质量的光子由于极不稳定,在其形成后瞬间就“裂变”生成能够稳定存在的光子,这就造成稳定存在的光子质量的不连续。言归正传,由于引力子质量远远小于光子的质量,所以光子不可能吸收一个引力子形成新的光子(因为这样的光子是不稳定的)。但是若在同一时刻,光子与许多引力子相互作用,而这些引力子质量之和又大于最小光子的质量,光子就有可能吸收质量和等于最小光子质量的引力子数目而形成新的光子。举例来说,若最小光子的质量是引力子质量的10万倍,那么当同一瞬间有15万个引力子作用于光子时,光子只可能吸收10万个引力子,另外5万个引力子不被光子吸收,仅对光子产生微小的冲量。倘若在同一瞬间有9万个引力子作用于光子,那么这9万个引力子都不会被光子吸收,它们仅对光子产生微小的冲量。光子可能吸收的引力子数目只可能是10万的正整数倍。只有光子吸收引力子形成新的光子才能全部吸收引力子的冲量,否则的话,光子仅受到极小的冲量。

现有一个宽度为α的窄缝,绝大多数光子经过窄缝时虽然与许多引力子作用,但大多不会形成新的光子,这样大部分光子仅以极其微小的发散角投射到屏幕上,形成宽度略大于α的中央亮纹。由于衍射条纹是对称分布的,所以我们只讨论一半。拿中央亮纹以上的条纹来说,这些条纹是由缝中心到缝顶部经过的光子偏转形成的。从缝中心到缝顶部经过的光子,若吸收10万个引力子则形成稳定的新光子,而新光子由于全部吸收了引力子的冲量因而向上发生较大的偏移,从而在屏幕上形成宽度为0.5α的第一条亮纹。从缝中心到缝顶部经过的光子,若吸收20万个引力子则它向上的偏移量是第一条亮纹偏移量的两倍,形成第二条亮纹。同样形成第3条、第4条、第5条……第n条亮纹。中央亮纹以下的亮纹也是这样形成的,并且中央亮纹的宽度约为其它亮纹宽度的两倍。由于从缝中心到缝顶部引力逐渐增大,所以与光子作用的引力子数目也可能逐渐增多。假设在离开缝中心向上的极小位移处,在该处最多只可能有10万个引力子与光子发生作用,那么经过该处的光子最多只可能偏移到第一条亮纹处。换句话说它最多只可能对第一条亮纹的形成做贡献,对第2条、第3条、第4条……第n条亮纹都没有贡献。由此在向上某处经过的光子最多只可能吸收20万个引力子,但也可能吸收10万个引力子,故经过该处的光子对第1条、第2条亮纹的形成做出贡献而对第3条至第n条亮纹都没有贡献……;从缝顶部经过的光子可能吸收10万*1、10万*2、10万*3……10万*n个引力子,所以从该处经过的光子对第1条、第2条、第3条至第n条亮纹的形成都有贡献。这样形成的亮纹亮度依次为第一条>第二条>第三条>……>第n条。若缝变窄,则在离开缝中心向上的极小位移处,光子最多可能有20万个引力子,经过该处的光子对第1条、第2条亮纹的形成都有贡献,这样就减小了第1条、第2条亮纹亮度的差异。也就是说,缝越窄条纹亮度越向两边分散,缝越宽条纹亮度越向中央集中。当缝很宽时,条纹亮度几乎全部集中在中央区域,两边的光子数几乎为零。这就是我们看到的光的直线传播现象。由于光子并不是一种波,其偏离直线传播(衍射)现象是由引力子引起的,所以光的衍射现象与缝的宽度无关。物体在阳光下的阴影边缘常常较模糊,这说明光子在经过物体表面时受到引力作用而偏离了直线传播。理论上来说只要光子的运动方向和引力方向不在一条直线上,光子就会偏离原来的运动轨迹,并且引力场越强光子弯曲的程度也越大。星光在经过恒星以后通常会发生弯曲,有时我们甚至能够看到星体后面的其它星体发出的光。

三、论电子结构与原子光谱现象

1.电子发光

原子是如何发光的?要弄清这个问题首先必须明白光子是由原子的哪一部分发出的。我们知道,原子是由原子核和核外的电子组成的,原子核的结合能很大,不可能发出光子,所以光子只可能是电子发出的。在化学反应中伴随着电子的得失,常常有能量(光子)放出,光电效应、激光现象及其它一些实验也证明了光子是由电子发出的,所以可以肯定原子发光其实是电子发出光子。既然电子可以放出光子,那么光子必然是电子的组成部分,或者说电子有一定的内部结构,光子是其组成部分之一;由于光子不带电,说明电子内部电荷的分布是不均匀的,因为如果电子内部电荷是均匀分布的,则光子就应该带电。原子中原子核和电子之间的距离很小,它们之间的静电力很强,因为电子内部电荷分布不均匀,所以在原子核强大的静电力作用下电子内部电荷将重新分布,甚至可能发生裂变,这就为电子放出光子创造了条件。当电子裂变放出光子后,它的各个组成部分结合的更加紧密,在适当的时候可能吸收一个光子,这就为电子吸收光子储存能量创造了条件。而电子正是通过不停地吸收、放出光子来和外界交换能量的'。稍后我们将看到,原子正是通过电子不断吸收、放出光子来和外界完成能量交换的。一般来说,电子质量越大其内部各部分结合的越松散,在静电力作用下越容易发生裂变;电子质量越小其内部各部分结合的越紧密,在静电力作用下越不容易发生裂变。与原子核“幻数”相似,总有特定质量的电子的结合力相当大,比其它质量电子的结合力大许多,这些特定质量的电子往往对应于某些稳定的轨道。

有人认为物质发光是由于物质中的原子或分子受到扰动的结果,认为光子是由原子或分子发出的。其实这是一种错误的看法。我们知道,原子是由原子核和核外电子组成的,光子是一种物质实体,或者是由原子核发出的,或者是由电子发出的,除此以外再没有别的选择。说光子是由原子发出的,这是一种不确切的说法。

2.原子核和电子之间的磁力作用

两个相距一定距离的异种点电荷在静电力作用下必然会吸引在一起,因为静电力作用在两点电荷连线上。而原子核和电子不会吸引在一起。这就启示我们在原子核和电子中必然存在一种其它作用力。这个力就是原子核和电子之间的磁力。我们知道,在通以相同方向电流的两条平行导线间会产生磁力作用,在磁力作用下它们将彼此吸引,原子核和电子的相向运动正相当于通以相同方向电流的两条平行导线,在它们之间也将产生磁力作用。静电力的作用总是使电子获得指向原子核的向心速度,而原子核和电子之间的磁力则使电子获得切向速度,并且原子核和电子之间的相对速度越大,它们之间的磁力也越大。当原子核和电子之间彼此相对静止在一定远处时,在静电力和磁力的共同作用下,它们并不会吸引在一起。因为静电力使电子获得向心速度,磁力使电子获得切向速度,电子并不是沿着直线靠近原子核,而是沿着螺旋线靠近原子核。开始时螺旋线的半径为无穷大,电子作直线运动;一旦电子相对原子核的速度不为零,磁力开始起作用,电子的运动轨迹开始发生弯曲;当电子与原子核靠近到一定的距离时,电子和原子核之间的静电力恰好等于电子作圆周运动所需的向心力,此时电子处于平衡状态,螺旋线变成了圆。同样在电子离开原子核时也是沿着螺旋线运动的。在静电力作用下,电子总要尽量靠近原子核,在磁力作用下,电子有远离原子核的离心趋势,正是在这两种力作用下,电子处于稳定的平衡状态中。电子在原子核中处于稳定状态时,它的轨迹是圆。因为当电子的轨迹不是圆时,它总要受到磁力的作用,这个力使电子的切向速度增加、运动轨迹向圆靠近。而电子受磁力作用时它的运动轨迹就要发生变化,就不是稳定的,只有当电子的轨迹是圆时才不受磁力的作用,所以说电子在原子核中的稳定轨迹是圆。太阳系中的行星在太阳引力作用下,其运动轨迹可以是圆或椭圆,但在原子系统中,电子在原子核静电力作用下,其稳定轨迹只可能是圆而不可能是椭圆。

3.基态电子的稳定性

处于基态的电子为什么是稳定的?为什么不会被原子核吸收?人们通常认为:做加速运动的电荷会向外辐射能量.如果电子在原子核中做圆周运动,则它就有加速度,必然会不断地向外辐射电磁波,随着电子能量的减小它将沿着螺旋线落入原子核中,这样整个原子就是不稳定的,然而事实并非如此。于是人们推测电子在原子核中不可能做圆周运动。我们认为以上推断是错误的,电子的确在原子核中做圆周运动,其理由如下:第一,电子辐射电磁波并不是一个只出不进的过程。电子时刻不停地向外辐射能量,也在时刻不停地吸收光子,这是一个动态平衡过程。如果电子吸收的能量大于其辐射的能量则原子的温度升高,如果电子吸收的能量小于其辐射的能量则原子的温度降低,倘若没有外界能量输入,原子总会由于向外辐射能量而降低温度,只要物体的温度在绝对零度以上就会向外辐射电磁波。第二,电子在原子中的质量并非一成不变的。一般而言,电子离核越近质量越小,离核越远质量越大(这一点我们稍后证明)。第三,电子和原子核之间并非只有静电力作用,还存在磁力作用。正因为磁力作用的存在使电子在靠近原子核时切线速度不断增大,从而使其离心力逐渐增大,以致于可以与静电力抗衡维持电子在原子核中的稳定。

这里需要我们证明随着电子离核距离的减小,离心力的增加速度大于静电力的增加速度。设电子稳定时质量为M,速度为V,与原子核相距R,原子核电量为Q,此时静电力F正好等于电子作圆周运动的向心力,

离心力大于静电力,所以此时电子作离心运动,将回到距核R的轨道上。同样当电子受到远离原子核的扰动后,静电力F大于电子作圆周运动的向心力,电子将向原子核运动,最终要回到距核R的轨道上,这里不再证明。

另外我们认为,做加速运动的电荷会向外辐射电磁波这个提法不够确切,应该说做加速运动的自由电荷会向外辐射电磁波,而电子在原子核中做圆周运动时不会向外辐射电磁波。两者有什么区别呢?我们知道,在原子核和电子结合成原子的过程中要向外放出能量,即自由电子要在原子核静电力作用下裂变放出光子才能够成为原子中的电子,原子中的电子和自由电子是有区别的。自由电子的质量大于原子中的电子的质量,自由电子各部分结合得较为松散,受到外界扰动(有加速度)时会向外辐射电磁波;而原子中的电子质量小,各部分结合得较为紧密,受到外界扰动(有加速度)时未必会向外辐射电磁波,只有当外界扰动(加速度)足够大时才会裂变辐射电磁波,所以电子可以在原子中做圆周运动而并不向外辐射电磁波。

4.稳定轨道的形成

对于处于基态的电子来说,每秒会有许多光子与其作用。这些作用有指向原子核的,也有指向核外的。电子在吸收一个或几个光子以后质量增加,形成新的电子。我们先考虑指向核外的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R+Δr,我们知道,一定质量的电子总有与一条特定轨道与之对应,比如电子的质量为M时其轨道半径为R,那么当电子质量为M+Δm时就可能停留在半径为R+Δr的轨道。但这里我们少考虑了一个条件,那就是质量为M+Δm的电子的结合能。我们知道电子在每秒内会受到许多光子的扰动,假设质量为M+Δm的电子运行在半径为R+Δr的轨道上,若它受到一个指向原子核的扰动,离核距离变为R+Δr-r,此时原子核静电力对它的作用增强,若它的结合能小的话则电子立即裂变放出光子重新回到其原来的轨道R上;如果质量为M+Δm的电子内部的结合能非常小,以至于受到微小的扰动时立即裂变放出光子,那么它在半径为R+Δr的轨道上停留的时间也趋近于零,换句话说半径为R+Δr的轨道根本不存在;如果质量为M+Δm的电子内部的结合能非常大,以致于受到很大的扰动时它才裂变放出光子,那么电子就能够在半径为R+Δr的轨道上停留一段时间,这段时间就是原子的平均寿命。假设有一群电子处于同一激发态,由于每个电子受到的扰动情况不一样,有的电子受到的扰动大有的电子受到的扰动小,而只有电子受到足够大的扰动并运动到离核足够近的地方才会裂变放出光子,所以电子裂变回到基态的时间也不一样。处于同一激发态的原子的平均寿命和两个因素有关:一是电子的结合能,二是电子受到的扰动。电子内部的结合能与原子核“幻数”相似,只有特定质量的电子的结合能才是很大的,所以电子的轨道也是特定的、不连续的,其它质量的电子由于结合能很小,裂变时间极短,所以它们不可能稳定停留在原子中,也形成不了稳定轨道甚至根本就没有轨道。我们再来考虑指向原子核的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R-Δr,此时原子核对电子的静电力增强,电子立即裂变放出质量为Δm的光子,由前面的证明我们知道,此时电子的速度增大,离心力大于静电力,电子最终将停留在半径为R的稳定轨道上。也许有人会怀疑,这样看来电子可能存在的稳定轨道岂不是唯一的了?实际上由于电子在原子核外有几个不同的稳定质量,所以它也有几条稳定轨道,一定的质量总是与某一条特定轨道相对应。从这里我们可以看出,电子在原子核中的稳定轨道往往对应于电子结合能极大的质量,结合能小的质量由于在原子中不稳定因而不会形成稳定轨道。

5.电子结构与不同跃迁轨道

对于处于同一激发态的一群电子而言,设电子的质量为M+Δm,它们可能会有不同的跃迁轨道,放出的光子的能量(质量)也不同,但总是跃迁到离核近的电子放出的光子的能量(质量)大。电子从激发态回到基态的过程并不是先放出光子再回到基态,而是先回到比基态更近的地方放出光子然后才回到基态。当电子回到离核R-Δr处时,在静电力作用下电子裂变放出质量为Δm的光子,此时离心力大于静电力,电子将回到半径为R的稳定轨道上。那么电子为什么会有多条跃迁轨道呢?这说明处于同一激发态的电子内部结构(结合力)不同,有的结合力大,有的结合力小,结合力小的光子在离核较远的地方裂变,放出的光子能量也较小;结合力大的光子在离核较近的地方裂变,放出的光子能量也较大,电子的跃迁方式是由其内部结构决定的。同一质量的电子可能有多种裂变方式,再次向我们说明电子具有内部结构,在考虑原子光谱时一定要考虑电子的内部结构。处于激发态的电子在向基态跃迁时会发出光子;把原子的内层电子打掉以后外层电子会放出光子并向离核更近的轨道跃迁。这些现象启示我们:电子离核越近质量越小,电子离核越远质量越大。从这里也可以看出,电子质量越小其内部结合力越大。因为离核越近电子受到的静电力越大,而电子能够稳定存在说明其内部结合力越大。在同一个原子中,内层电子的质量小于外层电子的质量;同一个电子离核越近质量越小。

人们发射的人造卫星可以设定轨道,其轨道变化可以是连续的,但对原子核中的电子来说,其轨道变化则是不连续的。怎样理解这一点呢?让我们做一个假想实验。把两个带异种电荷的点电荷放置在一定远处,并且假定它们之间除了静电力以外不在受到其它力的作用,则最终它们将互相吸引在一起。无论怎样改变这两个电荷的质量、电量,结果都是相同的。这说明:用宏观电荷不可能模拟原子核和电子之间的作用力。说到这里,好事者马上就会解释,因为宏观电荷物质波的波长极短而电子物质波的波长较大,所以用宏观电荷不可能模拟原子核和电子之间的作用力。换一个角度来说,宏观物质和微观物质是有区别的,用宏观物质不能模拟微观物质。但区别究竟在哪里?一个是宏观物质而另一个是微观物质,这个解释近乎无聊了。还是让我们来仔细分析为什么用宏观电荷不可能模拟原子核和电子之间的作用力。我们知道,在静电力作用下,电子和原子核开始时相向运动,而后在磁力作用下沿着螺旋线相互靠近,正是由于原子核和电子之间的磁力使电子获得了绕原子核运动的切向加速度,并使整个原子处于稳定状态。那么,两个宏观点电荷之间的运动轨迹为什么是一条直线呢?这是因为宏观电荷的荷质比远远小于原子核和电子的荷质比,在静电力作用下宏观点电荷获得的最终速度也小得可怜,因此宏观点电荷之间因相对运动而产生的磁力也微乎其微,近似于零。所以宏观点电荷在静电力作用下表现为相向运动,其运动轨迹接近直线。从这里我们可以得出这样一个结论:虽然静电力作用在两个电荷的连心线上,但是仅在静电力作用下,电荷的运动轨迹不一定就是直线,两个电荷的荷质比越小,其运动轨迹越接近直线,反之则越接近曲线。那么,如果宏观点电荷的荷质比足够大甚至可以与原子核或电子相比时,是否可以用宏观点电荷模拟原子核和电子相之间的作用呢?也不能!如果宏观点电荷的荷质比足够大,甚至可以与原子核或电子相比,那么这样的两个异种电荷在静电力作用下会沿着螺旋线相互接近,最终会处于稳定状态,但由于宏观点电荷的质量不会发生变化,因此最多只能形成一条稳定轨道,而不可能象电子那样在原子核中有多条稳定轨道。

在多电子原子中,各电子间有什么主要区别呢?有人认为离核越近的电子能量越低,越不容易失去;离核越远电子能量越高越容易失去,但这还不是最主要的区别。多电子原子中各电子间最主要的区别在于它们的质量不同。离核越近的电子质量越小,离核越远的电子质量越大,同一个原子中没有两个质量相同的电子存在。在氢原子中也是电子离核越近质量越小,离核越远质量越大。

6.原子的吸收光谱和明线光谱

在原子的吸收光谱中,只有特定能量的光子才被电子吸收;在原子的明线光谱中,同样也只能发出特定能量的光子。于是人们认为电子只能吸收或发出特定能量的光子。我们知道,只要物体的温度在绝对零度以上,就会向外发射电磁波,物质的发射光谱是连续光谱。那么其它能量的光子是由哪一部分发出又是如何发出的呢?显然还是由电子发出的,因为原子核不可能发出光子。当我们用电子束轰击汞原子蒸汽时,可以发现当电子的能量为某些特定值时,汞原子强烈地吸收其能量;对于其它能量的电子汞原子只吸收其一部分能量。汞原子只吸收电子束的能量实际是汞原子中的电子吸收电子束的能量。可见,原子中的电子可以吸收各种能量(质量),但对特定的能量(质量)吸收能力十分强。在原子的吸收光谱中,电子可以吸收各种能量的光子,只不过大部分光子被电子吸收后与电子的结合能并不大,受到微小的扰动后立即放出光子,由于该过程极短,所以当连续光通过原子蒸汽时,大部分光子被吸收后又很快放出,看起来似乎没有与原子作用,只有极少数具有特定能量的光子与电子的结合力极大,这类光子被吸收后要保持一段时间才可能放出,故吸收光谱会出现几条暗线。至于原子的明线光谱,与其说是明线光谱还不如说原子的发射光谱中有几条线特别亮。这是因为处于激发态的电子比别的能量状态的电子稳定,停留的时间较长,所以在一群原子中处于激发态的电子数目总比别的状态的电子数目多,因而它们发出的光也更亮一些。事实上原子的发射光谱不仅仅是明线光谱,明线光谱只是原子发射光谱中极个别的具有代表性的光子,原子几乎可以发出小于一定能量的任何光子。电子在原子中时刻不停地吸收各种能量的光子,由于电子与绝大部分光子的结合力都不大,所以电子也在时刻不停地放出各种能量的光子,因此物质的发射光谱往往是连续光谱。

许多人都认为原子只能吸收特定能量的光子,原子也只能放出几种特定能量的光子,因为他们看到原子的吸收光谱中仅有几条特定频率的暗线,而子的发射光谱也仅仅是几条特定频率的明线而已。其实这种看法是错误的。我们不妨这样分析,若原子只能吸收特定能量的光子,则只有特定能量的几种光子对物体具有明显的热效应,并且每种物质的敏感光子不同。实际上并非如此。我们知道,红外线具有显著的热效应,对任何物质都是如此。此外,物质的发射光谱是连续光谱,这也说明原子或分子的吸收(或发射)出的光子是广谱性的。为了充分理解这个问题,需要作进一步的说明。现代物理学指出:氢原子吸收的光子能量只能是13.6/n*n电子伏(这里n取自然数),也就是13.6、3.4、1.5……电子伏,并且认为对于10电子伏、3电子伏这样的其它能量的光子不会被电子吸收。我们认为:电子吸收的光子能量是连续的,对于10电子伏、3电子伏这样的其它能量的光子同样会被电子吸收,只不过电子吸收这些光子后,电子和光子的结合能不够大形不成稳定的轨道,所以电子又很快放出该光子,由于作用时间极短,以致于我们误认为电子没有吸收光子。换一个角度来考虑,当大量的原子吸收了能量连续的光子时,由于大部分电子与光子的结合力都不大,所以这些电子在极短的时间内(设为t)就会裂变放出光子,而能量为13.6、3.4、1.5……电子伏的光子与电子的结合力很大,所以电子裂变放出光子的时间也很长,如果这个时间是100t,则电子放出相应的光子也比其它光子亮100倍;如果这个时间是1000t,则电子放出相应的光子也比其它光子亮1000倍……,这样,在原子的明线光谱中自然就形成几条特殊的亮线了。由此我们得出一个结论:在原子的发射光谱中,任意一条谱线的亮度与处于相应激发态的原子的平均寿命成正比,原子的平均寿命越长,谱线的亮度越大;原子的平均寿命越短,线的亮度越小。当然这有个前提,那就是被原子吸收的连续光谱中各种能量的光子是平均分布的。

7.热现象的本质

由于电子时刻不停地受到光子的扰动,不断地吸收各种能量的光子,也不停地放出各种能量的光子,所以电子在原子核中并不是处于稳定状态,它的运动轨迹也不是正圆。一般来说,温度越高,电子受到的扰动越大,其运动轨迹偏离圆形的趋势越明显;温度越低,电子受到的扰动越小,电子的运动轨迹越接近圆(只有在绝对零度时,电子的运动轨迹才可能是正圆)。从这个意义上来说,原子模型可以看作是卢瑟福的行星模型和电子云模型的结合:温度越高,原子模型越接近行星模型;温度越低,原子模型越接近电子云模型(但在某一瞬间,电子在原子核中有确切的位置)。温度的高低反映了电子偏离稳定轨道程度的大小,单个原子(分子)也有温度。电子偏离圆形轨道的程度越大,表明该原子的温度越高,电子裂变后放出的能量也越大。所以温度升高时物体发出的电磁辐射向短波方向移动。对于温度一定的物体来说,它内部包含了大量的原子,这些原子中的电子由于受到的扰动大小不同,它们裂变放出光子的质量也不同,但大致满足正态分布,即发出的光子中能量特别大的和能量特别小的都是极少数。由前面的论述我们知道,电子在原子核中的能量大小并非定值:电子离核越远电势能越大,离核越近电势能越小。与宏观电荷一样,电子的电势能是其与原子核距离的函数,电子和原子核间的作用力服从库仑定律。温度越高,电子离核越远,电势能也越大,因而也越容易失去;温度越低,电子离核越近,电势能也越小,也越不容易失去。

什么是热现象呢?这似乎是不是问题的问题。人们通常认为:热现象是大量分子无规则运动的反映,温度越高分子的平均速率越大,温度越低分子的平均速率越小。果真如此吗?我们知道,太阳时刻不停地向外抛射高能粒子,这些粒子的速度接近光速,宇宙中其它恒星也在不停地向外抛射高能粒子,所以在宇宙空间任何地方,都有许多高能粒子正在做杂乱无章的运动,这些粒子的速度通常都接近光速或亚光速。这样看来宇宙空间的温度应该很高(至少比恒星内部高),宇宙空间应该是很明亮的。但事实上,宇宙空间是漆黑的一团,温度只超过绝对零度一点。这说明粒子运动速度大未必温度就很高,物体的温度不是由组成它的原子(分子)的平均运动速度决定的。温度升高,原子(分子)的平均速度增大。但反过来,原子(分子)的平均速度增大并不意味着温度升高。我们知道,只要物体的温度在绝对零度以上就会向外辐射电磁波,而物质向外辐射电磁波的原因是电子受到扰动后在静电力作用下放出光子,并且光子受到的扰动越大放出的光子能量也越大,相应的物体的温度也越高。从这个意义上来说,原子是储存热量的最小单位,单个原子也有温度,因为它可以储存热能。但单个的带电粒子如质子、电子在不受外界任何扰动时,即便速度再大也不会向外界释放能量,因此它们都不能储存热能,因而也没有温度。应该看到,原子(分子)的高速运动所具有的能量仅仅是动能而不是热能,和宏观物体一样,速度大未必温度高。宏观物体的速度与其温度无关,原子(分子)也是如此。一个原子(分子)的速度比其它原子(分子)的速度大,只能说明它的动能大,储存的热能未必就多。热能仅储存于原子核和电子形成的原子体系中,两者中缺少任何一个都不能储存热能。在日常生活中我们用红外线(微波)加热而不用紫外线,紫外线的热效应远远小于红外线(微波)。这是因为红外线(微波)光子的质量小,和原子中电子的结合力大(包括内层电子),而紫外线和原子中电子的结合力小(它几乎不与内层电子作用),所以红外线往往容易被物体吸收,其热效应当然比紫外线强。

再进一步考虑,什么是热现象呢?热现象和温度之间有什么关系呢?我们认为:对一个物体而言,倘若它储存了热能它就有温度,并且它储存的热能越多它的温度就越高,反之则温度越低;倘若物体没有储存热能则它就没有温度或者说它的温度是绝对零度;倘若物体不能储存热能,则用温度来衡量该物体是没有意义的。我们知道,原子是储存热能的最基本单位,原子的热能实际上是储存在电子中的。单独的原子核、单独的电子都不能储存热能,所以单独的原子核、单独的电子都没有温度。同样的道理,光子也不能储存热能,它仅仅是热能的载体,因为单独的原子可以储存热能,所以单独的原子有温度,但由于单独的光子不能储存热能,所以单独的光子没有温度,不同能量的光子之间只有能量的差异而没有温度的差异,用温度来衡量光子是毫无意义的。倘若光子也有温度,则在太阳系中离太阳越近的空间温度就应该越高,离太阳越远的空间温度就应该越低,事实上完全不是这么回事。

8.电子的质量-结合能曲线表

氢原子和类氢原子电子都有相似的轨道,其光谱都可以用玻尔理论来描述,这说明电子质量“幻数”的确存在。那么,决定电子裂变的因素是否只有原子核呢?不是的!如果是的话,那么所有的元素都应该有相同或相似的光谱,然而事实并非如此。在多电子原子中,一个电子是否裂变取决于原子核和其它电子的共同作用。内层电子的存在,在一定程度上屏蔽了原子核对外层电子的作用,而外层电子的存在,也对内层电子的裂变有一定的影响。正因为如此,多电子原子光谱比氢原子和类氢原子光谱复杂的多。要想分析多电子原子光谱规律,首先必须弄清楚电子的质量--结合能曲线表。一般来说,电子质量越大结合能越小,电子质量越小结合能越大。但这条曲线并非平滑曲线,总有特定能量的电子的结合能非常大,比邻近质量的电子的结合能高出许多,我们把这些结合能非常大的点对应的质量程作电子质量“幻数”。电子质量“幻数”的存在,充分证明了电子内部电荷分布是不均匀的,电子有一定的内部结构。如果我们能够准确地绘出电子的质量--结合能曲线表,那么我们就在解决原子光谱问题上迈出了决定性的一步。同时,电子质量“幻数”的存在,也造成了元素周期律,在多电子原子中,电子总是按照一定的规律排布的,不同轨道上的电子的质量不同,内层电子的质量总是小于外层电子的质量,内层电子的结合能总是大于外层电子的结合能;处于基态时,各电子的质量总是对应于电子质量----结合能曲线上的极大点。我们坚信,如果人类绘出了电子质量----结合能曲线表,研究原子光谱问题就象小学生搭积木一样简单,对于元素周期律来说,根据电子质量----结合能曲线表,我们可以很容易地排出各电子的轨道。

篇6:物理学论文的参考文献

[1] Zhang Xuejun. Manufacturing and testing of two off-axis aspherical mirrors [J]. SPIE, 2001,4451:118-125.

[2] 郑立功,张学军,张峰. 矩形离轴非球面反射镜的数控加工[J].光学 精密工程,2004,12(1):113-117.

[3] 邓伟杰. CCOS 的控制模型及控制参量求解算法[D]:[博士学位论文]. 长春:中国科学院长春光学精密机械与物理研究所,2010.

[4] D.Ketelsen, W.Davison, S.Derine, W.Kittrell. A machine for complete fabrication of 8-mclass mirrors [J]. SPIE, 2199:651-657.

[5] P. Beraud, J. Espiard, R. Geyl. Optical figuring and testing of the VLT 8.2-m primary mirrors[J]. SPIE, 1995, 2536, 413-420.

[6] H.M.Martin, etc. Progress in the stressed-lap polishing of 1.8m f/1 mirror [J]. SPIE, 1990,1236:682-690.

[7] H. M. Martin, R. G. Allen. Manufacture of the second 8.4 m primary mirror for the LargeBinocular Telescope [J]. SPIE, 2006, 6273:62730C1-62730C10.

[8] Lubliner Jacob, Nelson Jerry. Stressed-lap Polishing of 3.6m f/1.5 and f/1.0 mirror [J]. SPIE,1991, 1531:260-269.

[9] Bryan K.Smith, J.H.Burge, H.M.Martin. Fabrication of large secondary mirrors forastronomical telescopes [J].SPIE, 1997, 3134.

[10] 谌桂平,杨力. 计算机数控应力盘面形研究[J]. 光电工程, 2000, 27(3):20-23

篇7:物理学论文的参考文献

[1] 杨力. 现代光学制造工程[M]. 北京: 科学出版社,2009.

[2] 郑玉权,等.星载高光谱成像光学系统的选择与设计[J].光学精密工程,2009,17( 11) :2629 -2637.

[3] G R Lemaitre. Astronomical optics and elasticity theory[M].New York: Springer, 2009.

[4] Seok-Hwan O. Immersion Lithography: Now and the Future[C]. The 3th InternationalSymposium on Immersion Lithography. Japan, 2006.

[5] 段萌. 非球面光学系统在空空导弹上的应用研究[J].航空兵器,2007, 4: 19-21.

[6] 潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社,2004.

[7] 王权陡. 计算机控制离轴非球面制造技术的研究[D]: [博士学位论文]. 长春:中国科学院长春光学精密机械与物理研究所, 2001.

[8] Robert A. Jones. Fabrication of a large, thin, off-axis aspheric mirror [J]. Optical engineering,1994, 33:4067-4075.

[9] Jerrold Zimmerman. Continuous process improvement: manufacturing optics in thetwenty-first century [J].SPIE, 1994.

[10] Ajay Sidpara. Magnetorheological finishing: a perfect solution to nanofinishing requirements[J]. Optical Engineering, 2014, 53(9): 092002.

[11] 辛企明.近代光学制造技术[M].北京:国防工业出版社,1997.

[12] W.J. Rupp. The development of optical surfaces during the grinding process [J]. AppliedOptics, 1965, 4(6):743-748.

[13] 刘振宇,罗霄,邓伟杰,等. 大口径非球面的组合加工[J]. 光学精密工程,2013,21(11):2791-2797.

[14] 罗霄.采用平转动应力盘技术加工超大口径非球面的研究[D]: [博士学位论文]. 长春:中国科学院长春光学精密机械与物理研究所, 2011.

[15] 刘振宇. 大口径非球面反射镜组合加工技术驻留时间算法研究[D]: [博士学位论文]. 长春:中国科学院长春光学精密机械与物理研究所,2013.

[16] M. Johns, “The Giant Magellan Telescope (GMT),” in Extremely Large Telescopes: WhichWavelengths? T. E. Andersen, eds., Proc. SPIE 6986, 6986031–12 (2008).

[17] Gallagher. B. JSWT mirror manufacturing status. Talk for NASA Teehnology Days2006

[18] 王贵林. SiC 光学材料超精密研抛关键技术研究[D] :[博士学位论文]. 长沙: 国防科技大学, 2002.

[19] 冯之敬,吴鸿钟,赵广木,等. 自由曲面透镜型面误差的压力抛光修正[J].清华大学学报(自然科学版), 2000, 40(8): 69-72.

[20] 张学军,张云峰,余景池. FSGJ-1非球面自动加工及在线检测系统[J].光学 精密工程,1997,5(2):70-77.

篇8:物理学形式美及教学研究论文

物理学形式美及教学研究论文

物质世界的客观存在是真与美的和谐统一,物理学家通常也是通过发现物质世界的美来证实事实、总结规律.然而,在实际的物理教学中,教师往往忽略了物理学科的形式美,只是一味的向学生灌输教材上的物理知识,从而导致学生因难以体会物理学中美的愉悦而将物理知识的学习当成是一项索然无味的学习任务.鉴此情况,本文以物理学中的形式美为切入点,并重点论述了如何将其渗透至实际的物理教学活动中,旨在为后续的高中物理教学工作提供参考依据.

一、结合历史,发掘人文美

近代物理发展至今,经过了一个漫长的发展过程,在这一过程中,无数热爱物理的科学家们穷尽自己一生的精力与才华不断地探知、论证全新的物理领域,而正是由于他们对于物理的执着追求,才真正造就了我们现在所清晰存在的世界.由此可见,物理学科浓重的人文精神不应被认知领域的物理定律而掩盖.在教师的教学过程中,有选择性地穿插一些物理学史,会让略显乏味的物理课堂鲜活起来,让学生能够充分领略物理学家们对于物质世界清晰认识的执着追求.教师在教授物理知识时,可以为学生讲述自由落体理论的发展过程,从而进一步帮助学生树立物理物理辨证观.例如,教师在教授“自由落体运动”一课时可以先为学生介绍自由落体运动定律的发展历史.落体理论最早是由古希腊物理学家亚里士多德提出,他认为物体从高空坠落的速度应与物体本省的重力势能成正比,而这一理论在当时也被冠以真理而沿用.直到16世纪,伽利略对这一观点提出了异议,并进而假定:如果将两个物体所受到的空气阻力忽略不计,那么这两个质量不同的物体将以同样的速度下落,并同时到达地面.为了论证这一观点,伽利略与众多拥护亚里士多德理论的学者共同来到比萨斜塔,将一个重100磅与一个重1磅的铁球同时从塔顶抛下,而试验的结果使得在场观看的.人们目瞪口呆,两个铁球出人意料地几乎是平行地一齐落到地上,这就是著名的“比萨斜塔试验”,也是推翻了沿用近两千年的落体运动重要事实依据.

二、认识规律,启蒙对称美

物理学科事实上就是一门解释物质存在、构成、运动及其转化规律的一门科学.对于接触物理较多的人群而言,他们对物理现象进行研究时,时常会沉浸在具有规律性变化特征的物理美学上.物理现象本身所具有的规律对称性而产生的艺术美通常被称为物理学的对称之美,而学生若想感受到这种美,就必须先对物理规律形成一个初步的认识.而在对科学规律的认识过程中,物质内部的对称性也能在一定程度上反映出物质的规律.所以,物理对称美的研究往往还能进一步推动物理科学的发展.在研究物理对称美这一科学发展史上,毕达哥拉斯是最早提出对称性这一物理审美标准,他认为,在所有的对称图形中,圆是最美的,圆点与圆周之间呈现出来的是绝对对称、绝对和谐的状态.而他这一理论也一直影响者后续物理科学的发展.因此,教师在学生的学习过程中,更应善于引导学生发现物理知识中所客观存在的对称美.例如,教师在教学“电荷的电场线分布”这一知识点时,教师就可以利用各种电荷的电场线之间的对称规律来为学生详细讲解点电荷、同种电荷以及异种电荷之间的电场线分布情况.如此一来,原本枯燥乏味的理论现象就会转化为学生感受物理对称美的真实体验.同时,磁体中磁感线的分布规律与平面镜的成像规律相似的物质空间对称性的特点也应该被教师深切融入至实际物理课程的内容讲解中,帮助学生将原本抽象的物理知识转化为形象的图像记忆.

三、概括经验,透视简洁美

从本质上说,物理的简洁美主要是来自于自然界的基本发展规律,而对于自然界本身所具有的规律特性又具有相对简洁的美感.物理学科的简单性也只要是以简洁美的主要形式体现,物理科学家们正是通过将复杂的事物进行一一分解,并根据以往对于自然界规律探索的经验而总结出崭新的物理理想模型,最后再借助这些构想出来的模型去形象的理解客观存在的物质世界.爱因斯坦认为,物理工作就是要先尽可能的从假说或设想出发,并将所有设想运用逻辑思维进行论证,最后再根据以存在的经验事实,概括总结出更为简洁的物质物理特性.例如,宇宙间所存在的作用力可以大致分为如下三种:强作用力、弱电作用力以及万有引力,牛顿运动定律将宏观低速条件下的各种机械运动规律归结为一个简单有序的集合;麦克斯韦方程组的提出则将复杂的电磁规律以简洁的形式加以概括;量子力学理论则更是将抽象、微观的例子运动以更加清晰、明了的形式出现在人们面前.在教师的实际教学过程中,对于物理科学的整体简洁美决不可一掠带过,这是由于物理的简洁美不仅是建立在众多物理科学的探究经验之上,更是因为当学生对物理的简洁美的理解能更为深刻时,学生对于物理理论概念与相关物理规律的掌握就会变得更加便捷.例如,“温度是决定一系统是否与其它系统处于热平衡的物理量”、“力是一物体对另一物体的作用,它使受力物体改变运动状态”,这些物理概念以准确、简洁、的语言表达了物理科学的本质.此外,物理规律的表达也是在科学、准确的基础上力求达到简洁的美化目的,如开普勒在哥白尼的天文体系的基础上以“恒量=R3/T2”这一简明形式总结出了众星绕日的运动规律,从而使得繁星浩瀚的太空图景清晰地呈现在人们眼前.

四、客观辨证,展现理性美

物理科学世界是千姿百态的,但作为物理科学论证的强大支撑,对物理科学的客观辨证看待与理性认识才是物理知识学习的根本所在.与其他学科相比,物理学科更重视以实验来论证并检验观点,同时,在进行论证实验时,物理所展现出来的理性美更是物理世界科学性与和谐性的真实体现.作为客观事物存在并反映出的物质世界科学,物理学理论更多的是强调各种事物中所客观存在的差异与矛盾统一,而要找出这种差异与矛盾,所依靠的恰恰是物理的理性之美.因此,在进行理论知识的教学基础上,组织学生投身于物理科学实验是高中阶段物理知识系统结构的重要组成部分.而只有学生在试验中达到对物理知识的理性认识,才进一步将物理学中的形式美渗透到物理教学过程中.例如,在教授学生“曲线运动”这一课程时,教师可以先让学生自己运用控制变量法:将大小不同的球从不同的高度向下抛,分别记录小球不同的水平平移距离,观察其试验结果的不同变化,并指导学生分析小球的下落时间与水平位移距离及下落高度之间的关系.在帮助学生确立了与试验结果有关的试验因素变化后,再指导学生将“S=vt,h=gt2/2”这两个公式应用于试验设计,当得出试验结果后,在运用反推法以试验结果论证相关的试验条件.这样一来,物理知识点的应用就会在学生的实验过程中直接被进一步强化,而物理科学的理性美也能展现得淋漓尽致.物理科学是一门集人文美、形式美与对称美于一体的课程,在物理课程的教学过程中,教师对于物理知识的讲解不能停留在表面的认知领域,而应该将其本身所具有的形式美渗透至学生的学习过程中,尽可能给学生带来美的感受,充分发挥物理科学的独特魅力.总而言之,在物理教学中以美启真,陶冶学生的思想情操,激发学生的创造性思维,达到提升其物理综合能力的目的.

参考文献:

[1]黄莉鸿.物理教学用物理学史展示物理学美的价值[J].资治文摘:管理版,2009(08).

[2]陆朝华,蓝海江.物理学之美探讨[J].才智,2010(22).

[3]潘岳,李林洋,卢晓波.谈物理学的统一美[J].知识经济,2011(13).

[4]祝风,李凌.物理学中的美和物理教学中的美育[J].松辽学刊:自然科学版,1994(02).

篇9:漫谈课堂泡沫论文

漫谈课堂泡沫论文

主持人语:观众朋友,大家好!现在是“课堂众生相”栏目,我是主持人霞子。

课改到了今天,我想:我们到底需要什么样的课堂?经济有泡沫之说,它造成了社会经济的虚假繁荣,但最后泡沫必定破灭,导致社会震荡,甚至经济崩溃。打个比方:当我们把啤酒倒进杯中,杯子最上层便会出现一截泡沫,甚至常常会溢出来,但过一阵子,泡沫便逐渐消失,我们才发现啤酒并没有充满整个杯子,原来只是泡沫造成的假象。这大概就是“泡沫经济”这个名词的由来吧!那我们的课堂是否也有像美丽的泡沫一样,学生学得不亦乐乎,教师教得乐乎不亦,咋一看课堂气氛很好,但短暂的“看上去很美”之后,学生却什么也没有留下的“课堂泡沫”呢?有!请看本台记者从现场发回的报道:

“作业超市”虚晃一枪

镜头一:时间:6月某天 地点:莲都某校三年级教室 课文《奇怪的大石头》

一位教师在《奇怪的大石头》一课即将结束时,展示了如下一个环节:课文已经上完了,课外我们该给自己留些什么作业呢?请看“作业超市”1.找一找:有多少在工作上做出一番成就的人,他们从小就善于发现问题,勇于探索,最后为他们的成功奠定了基础,回去找找这方面的材料。2.写一写:拟订一份我的奋斗计划,看自己需要怎么做,才能向这些伟大的人靠近。随即铃声响起,老师宣布下课……

主持人语:上面这一教学情景相信大家都很熟悉,学生自己选择要做的课外作业,我们现在称之为“作业超市”,也有人叫作业菜单,这是新课程改革以来涌现出来的一种新颖时尚的作业形式。教师按不同层次、不同个性、不同发展水平的学生设计作业,给学生留有选择适合自己的学习方式的空间,满足了不同学生的需要,体现了新课标的精神。正因如此,广大教师纷纷效仿,借他人之长为己所用,以至近来听到的课堂每每都以“作业超市”来结束,来展示自己开放而富有个性的课堂。一时间,“作业超市”成为一种时尚,成为体现新课程理念的一面重要旗帜。但是任何事物都有两面性,教师在想方设法变换作业形式的时候,是否考虑到学生必须掌握最起码的基础知识;教师在充分尊重学生选择权利的时候,是否考虑过形式的多样化以及内容的个性化,势必导致作业反馈的复杂化。事实上,现行课堂中的这种作业存在着很多的不足,主要表现为:作业设计红红火火、作业反馈冷冷清清;作业流于形式的太多,真正落实的太少。此种“作业超市”仅仅只是语文课堂上教师展示新课程理念的一个“精彩泡沫”而已。

专家在线:学习语文必须掌握必要的基础知识,这个基础就是每个学生都必须达到的最起码的要求,教师应在学生掌握此基础知识的基础上再为每个层次的学生设计适合自己的作业。犹如“主食”和“辅食”,“主食”每个学生都得吃,因为他是人们生存之根本。“辅食”每个学生自己选。如上面教师可设计一道必做题:背诵课文第二自然段并抄写新积累的词语8个。再加上选择题让学生自由选择。否则一味让学生自主选择,难免会造成“营养不良”,影响学生“体质”。其次,要想办法抓好落实,特别是学生自主选择的作业,不要把它当作一种摆设,流于形式。如上面的找一找的作业,可通过举办班级故事会的形式来检查;对于选择写一写学生,可以通过班级“学习园地”展示等方法检查落实他们的作业。

课堂表演画蛇添足

镜头二:时间:2011月某天 地点:莲都某校四年级教室 课文《跨越海峡的生命桥》

一位教师上《跨越海峡的生命桥》,课堂渐进尾声,教师深情叙述:两个年轻人终于在十年后相遇了,相遇后他们会说些什么呢?请同学们和身边的同学来演一演。学生准备。两分钟后,两个女同学上台表演。表演开始:一个女学生边窃笑边握住另一女生的手说“谢谢你救了我”,另一女生则红着脸摆摆手说“不用谢,这是我该做的”。台上学生表演得不是很好,招来台下一片笑声,表演也只能在学生的嘻笑中,在学生肤浅的理解中下场,这堂课就这样结束了。

主持人语:看了这个表演心里真不是滋味,好端端一篇感人至深的文章,给这样一表演,原汁原昧丧失殆尽,课文中负载着的深厚情感也随表演中的哄堂大笑而远去,原本凝重的感情基调不复存在,前面的情感积淀都白费了。像这样学生还没深刻体会两个年轻人间的那段情,甚至对这样的情感根本没有生活体验,又怎能表演呢?

无独有偶,突然想起了曾在网上看过的一则案例:一位教师在执教《铁棒磨成针》时,设计了这么一个课堂表演:下面我们模仿老奶奶来磨针,注意要磨得像,来,用铅笔做棒让我们一起在课桌上磨,于是学生们纷纷挥舞起小手在课桌上磨起来。学生在下面磨还不够,老师还要求同学到上面去磨。这样的课堂表演真是让人哭笑不得,像这样学生一读就懂、一看就明了的地方也用得着表演吗,教师让学生表演的目的何在,课堂中宝贵的时间在学生毫无意义的表演中流逝,而得到的又有什么呢?

课堂上,我们并不反对恰到好处的表演、讨论。也许有人追求“泡沫效应”,只是为了一时形式上的热闹,也许只为制造可怜的课堂“亮点”,以吸引评委眼球,赢得一些“美名”:师生互动、气氛活跃、形式新颖……其时也正是这些所谓的“美名”暴露了为师者内心的贫瘠,思想的苍白。教育的终极目标是一切为了孩子的成长,为孩子的终生发展奠基。课堂表演不是装饰,我们要力求每一次课堂表演能最大限度地为理解、体会字词句服务,为感悟人物形象服务,体现它的价值。决不能单纯地追求热闹,让课堂表演变了味,成了教师体现学生自主学习的摆设,成为课堂上一个美丽的转瞬即逝的“肥皂泡”。

专家在线:在语文教学中,让学生即兴表演,是促进其对课文进行全身心感受的有效手段。在初步理解课文的基础上表演,把抽象的语言文字转化为形象的表情身姿运动,提高的不仅仅是对课文的深入理解程度,而且是整体的语文素质。但要切记:表演不是走过场,更不是“作秀”,表演要有目的,要强调教学的`功效性,通过表演要达到什么目的,教者要进行设计、思考。首先要找准课堂表演的切入点,如《掌声》一课,小英第一次走上讲台是课文重点。读到这里可以请学生到讲台上演一演,看谁能更准确地表现小英当时的神态、动作,设身处地去感受小英的心理变化。随着表演在反复进行中的逐渐到位,学生无不认识到掌声的确改变了小英一生的命运,从而升华理解了掌声。其次教师要巧妙地运用表演这一方式,将学生已有的生活体验与对文本的解读有机地结合起来。再就是教师应善于挖掘教材的空白点,超越文本,利用表演引发学生的创新思维。如教学《一次比一次有进步》教师可让学生表演小燕子三次到菜园观察的样子,教师当燕子妈妈,问:孩子,你是怎么发现茄子和冬瓜的不同,而且做到一次比一次有进步?学生们边讨论边琢磨边用动作表演,通过这一系列动作的演示、巧妙的设问,学生很快就理解了只要仔细观察,就会有新的发现。课堂中教师只要善用、巧用表演,定会让课堂妙趣横生,也会让学生在学习过程中收获一份美妙的生命体验。

课堂拓展喧宾夺主

镜头三:时间:2006年2月某天 地点:莲都乡下某校二年级教室 课文《黄山奇石》

课堂中教师进行了三次拓展:第一次:揭题时教师拓展黄山的成因(3分钟);第二次:除了课文介绍的景点外黄山还有哪些景点呢?出示课前收集的图片,学生欣赏,猜测景点的名称(8分钟);第三次:课堂即将结束时出示自古以来文人墨客赞美黄山的诗词,学生背诵(8分钟)。

主持人语:这是篇美文,结构清楚,语言工整优美,是学生积累语言感受美的范本。教学的重中之重应是运用不同形式或手段让学生感受黄山的美,积累语言。而该教师设计时本着一篇带多篇增加课堂信息量的理念,在短短的四十分钟时间里,占用大量时间让学生浏览电脑屏幕中的由该文引出的相关信息。一堂课,本用来消化积累语言的时间被挤占了,该学的没学会,拓展的根本无法消化,脱离了学习的主题,在看似大容量的学习内容之下,其实是无效的。这何尝又不是课堂中一个美丽的“泡沫”呢?

专家在线:教师要处理好文本学习和拓展的关系,就必须紧扣学习主题,必须以充分利用文本为前提。拓展不是简单的一加一等于二的过程,在有限的课堂教学时间里,教师要选择好拓展的最佳时间。1、当文本背景距离学生现实生活较远,学生对当时的情况了解甚少,从而阻碍了他对文中人物的认同,难以在情感上达到共鸣时。如在进行古诗教学时可适当穿插当时的社会背景和诗人的处境。2、在平实简短的文本背后,蕴藏着大量的空白,填补这些空白,能使学生情感得到有效提升时,如教学《三顾茅庐》时既可穿插诸葛亮的《出师表》,让学生自己去读读,找找哪几句是在写刘备三顾茅庐的事。学生通过阅读,既对课文的内容有了更深的理解,感受诸葛亮对刘备的一片忠心,又从中受到了道德情感的教育,增加了语言的积累,出色的完成了学习目标。

多媒体课件泛滥成灾

镜头四:时间:12月某天 地点:莲都某校二年级教室 课文《我为你骄傲》

一位教师在识字巩固环节里制作了一个异常精美的课件:一个邮箱,旁边是一封封未曾寄出的信,信封上写着本课课文里刚学的生字新词。老师请小朋友读信封上的词,学生读哪个词,教师鼠标就点击哪个,接着信封就缓缓飞入信箱。然后学生再读、老师再点、信封再飞,如此循环往复,花了六七分钟的时间终于把九个信封统统送到了信箱里。课堂上学生情绪空前高涨,参与热情很高,教师更是面若桃花,春风得意……

主持人语:且不说这位教师课前花了多少时间和精力制作这精美的flash课件,单从课堂的教学效果来看,“形象逼真、栩栩如生”的课件使用的目的究竟何在?是为了让学生更好的掌握生字,非也!巩固生字的兴趣远远被课件的精彩所取代,更别说浪费了课堂宝贵的时间。著名语文教师于漪老师早已呼吁:课堂上过度使用多媒体已成为教学干扰因素。“观摩课”上,学生看看录像、听听音乐、谈谈感想,似乎“有声有色”,热热闹闹,却往往成了中看不中用的“作秀课”。教师放映的多媒体课件虽然给学生强烈的视听冲击,引起多感官的兴奋刺激,但其占用的课堂时间,远远超过学生了解课文或独自思考的时间,剥夺了学生思维的空间。某地有节推广的小学语文课,上“远上寒山石径斜,白云生处有人家。停车坐爱枫林晚,霜叶红于二月花”,整节课就是用多媒体上一幅国画。这首脍炙人口的诗,对发展、培养孩子的想象力是多好啊!白云生处有人家,房子画好了,地方固定了,不要再发挥想象了。再如《跨越海峡的生命桥》的背景图片就是一座黄浦江大桥,如此意蕴深厚的课文岂止是一座黄浦大桥可以诠释的呢?课堂上,所有教学手段都是应为教学目标的实现服务的,离开了为教学目标的实现而服务,就是多余的,这就是泡沫。

专家在线:多媒体是辅助教学的。当课非常缺知识时,用多媒体,这是营养,是养料,是雪中送炭;当不需要时出现就是赘疣,就是画蛇添足,不仅无法体现教师应有的教学基本功,而且严重忽略了学生学习心理的状态,扼杀了学生丰富的想像力。美国大众传播学家施拉姆讲得好:“如果两种媒体在实现某一教学目标时,功能是一样的,我一定选择价格较低的那种媒体。”在平常的教学实际中,从最经济、省时的角度来看,如果投影、录音、录像等教育媒体能起到同样的作用,何不化繁为简呢?或者当小黑板、挂图、板图等传统教学媒体也能起到相同作用的时候,又为什么弃而不用而偏要追求形式上的“现代”呢?只要媒体的选用能促使学生从抑制状态向兴奋状态、从平静状态向活跃状态转化,从兴奋状态向理性认识升华,能克服畏难心理,增强自信心,满足学习的欲望,那么这一堂课的教学就是对现代教育技术的最好运用,就是最有效的。

课堂朗读一枝“独秀”

镜头五:语文课堂“读霸天下”,可这样的读却只有量的递增、形的变化,没有质的提升。

镜头六:……

主持人小结:纵观课堂泡沫,轰轰烈烈、热闹繁华,细品个中滋味却不难发现,学生思维深处依然是死水一潭,常是买椟还珠,舍本求末。在这样的课堂上,展现的是学生肤浅表层的甚至是虚假的主体性,失却的却是教师价值引导,智慧启迪、思维点拨等神圣的职责。话说到此,我想大家已经知道“我们到底需要什么样的课堂?” ―― 那就是“ 实实在在、本本分分,一切为学生,为学生一切的课堂。 ”正如于漪老师语重心长地呼吁道的:教学是实实在在的事情,所有老师都要挤掉教学泡沫,否则就是浪费了学生青春。

让我们彻底摒弃“泡沫课堂”,还课堂一个澄明清净的天空吧!

参考文献:

《影响教师的100个经典教育案例》 胡明根主编 中国传媒大学出版社

《警惕“泡沫课堂”》 潘健 《语文报.教师版(小学)》 79期

《走进新课程》 朱慕菊主编 北京师范大学出版社

篇10:高中物理学史教学研究论文

高中物理学史教学研究论文

摘要:物理学史对培养学生的科学素养具有重要作用。物理学史的主要内容是物理知识在长期发展过程中对客观世界的概括和总结,将其引入高中物理教学中,可以让学生掌握物理知识的发展脉络,提高学生的科学素养。因此,高中物理教师应该把物理学史引入课堂之中。

关键词:高中物理;物理学史;科学素养

我国的教学体制不断改革,对高中物理提出了新的教学要求,一方面教师要教授给学生专业的物理知识,另一方面物理教师应该促进学生的全面发展。为了实现教学改革的目标,教师应该在教学的过程中渗透物理学史。在高中物理教学中引入物理学史可以激发学生物理学习兴趣,让学生对物理知识追根溯源,培养学生发现问题和分析问题的能力,为学生日后的学习奠定基础。

一、在高中物理教学中引入物理学史,激发学生的学习兴趣

兴趣是最好的老师,学生只有对物理课程产生兴趣,才能将注意力集中到课堂上,以顽强的毅力去克服学习生活中的`困难。教师将物理学史引入课堂的过程中,可以为学生呈现物理这一科学理体系论的建立过程,再现物理科学知识的发现过程,以及科学家们对人类社会发展所作出的贡献,激发学生学习物理的兴趣。比如,教师在讲万有引力定律的时候,可以介绍牛顿发现了万有引力的故事。1666年,23岁的牛顿还是剑桥大学的学生,牛顿的好奇心和探索欲非常强,他经常思考,为什么地球会绕着太阳转?为什么月球不会掉落在地球上?一次牛顿坐在果园中,突然听到苹果落地的声音,牛顿由苹果落地联想到了月球和地球的关系。在第二天,牛顿看见小外甥在玩小球,外甥慢慢摇摆小球,然后越来越快,最终小球被径直抛出。牛顿从这一现象中猛地意识到月球和小球的运动极为相像,月球对动力和重力的拉力同时作用于月球,使月球不会掉落到地球上,而正是因为重力的作用,苹果才会落地。牛顿之后展开了实验研究,最终证明重力是“万有”的,提出了万有引力定律。很多学生知道牛顿,知道万有引力,单纯直接学习这一知识学生会觉得枯燥乏味,教师通过在课堂上介绍物理学史,可以激发学生对物理学家的崇拜之情,然后让学生把崇拜之情转化成学习的动力。

二、在高中物理教学中引入物理学史,培养学生的求实精神

物理学的知识包括物理概念和物理规律等,其中最重要的知识就是物理概念。物理概念一般比较抽象,学生在理解时有一定难度,因此教师应该在物理概念讲解中引入物理学史,让学生正确全面地把握物理概念,培养学生的求实精神。在讲惯性的概念时,教师可以引入概念产生的历史。惯性的概念发展经历了较长时间的历史,从亚里士多德的“强迫运动定律”,到伽利略进行理想的斜面实验,然后再到笛卡尔的惯性原理,最终到牛顿的“第一运动定律”。不同的物理学家对这个概念进行优化和完善,终于确定了最后的概念内涵。教师在物理概念讲解时渗透物理学史,可以从纵向的角度让学生了解概念的形成过程,从而加深对概念的掌握。

三、在高中物理教学中引入物理学史,增强学生的创新能力

高中物理学科具有很强的客观性,要求学生不迷信权威,以发展变化的思想去审视一切科学假说和科学理论。但是在传统的物理课堂中,教师只注重知识的灌输性传授,没有对科学理论进行讲解,使学生发现问题、提出问题的能力逐渐被削弱,阻碍了学生创新能力的培养。对此,高中物理教师必须在教学过程中引入物理学史。比如,在讲爱因斯坦的相对论时,可以突出科学家的批判精神和创新能力。爱因斯坦在16岁时,就在书本上了解到光是以很快的速度前进的电磁波,于是他产生了一个疑问,如果一个人以光的速度向前运动,世界会发生怎样的变化?在这种思想的引导下,爱因斯坦学习了电磁学、力学的相关理论,并从哲学中吸收营养,对之前科学理论进行了大胆创新,提出了狭义相对论理念,最终得到了世界的广泛关注。从这个故事可以看出,培养问题意识和发展创新思维非常重要,学生从教师的讲授中可以认识到这二者的重要性,从而提高自身的素质水平。

四、在高中物理教学中引入物理学史,培养学生的辩证思维

物理学的发展历史表明,物理学和哲学有着重要的关系,因此教师应该将物理学史引入高中物理教学中,培养学生的辩证思维。比如,以上述爱因斯坦提出狭义相对论为例,教师可以把“新事物一定会战胜旧事物”的观念融合进去,让学生以发展的眼光看问题。再比如,在讲万有引力定律时,教师可以把“物质是普遍联系的”这一观念融合进去,让学生以联系的眼光看问题,在潜移默化中培养自己的辩证思维。随着教学体制的改革,高中物理教师不仅要教授给学生物理知识,更要培养学生的科学素养,物理学史对提高学生的科学素养具有重要作用,因此教师在课堂上应该引入物理学史。

参考文献:

[1]刘海东.诌议高中物理教学中如何引入物理学史培养学生的科学素养[J].中学课程辅导:教学研究,2014(23):34-35.

[2]徐志才.高中物理教学中如何引入物理学史培养学生的科学素养[J].考试周刊,2011(11):178-179.

[3]李粉香.浅谈在高中物理学史的教学中提高学生的科学素养[J].读与写:上,下旬,2013(10).

篇11:高中物理学习惯性简述论文

高中物理学习惯性简述论文

高一高二玩玩,到高三出把力就行了,甚至有些家长也是这么想的。有这种想法的学生往往听不进老师的谆谆教诲,到了高三“心有余而力不足”,最终抱憾终身。如何克服这种惯性呢?我认为首先就是在考取的兴奋劲过后及时冷静地思考:好悬啊!而事实上很多家长信奉“重赏之下必有勇夫”,在考前允诺了丰厚的“考取奖”———苹果手机、苹果电脑,考后及时兑现,孩子深陷其中,家长放任自流。更有甚者,在高中有学生违规使用手机被收后,有家长帮子女来及时索要,后脚还没出办公室就把手机给了学生。家长及学生本人在得意之余不能忘了考前的忐忑,不能让“提心吊胆”重演。其次要认识到高中学习的复杂性、艰巨性。尤其是理科,比如物理,很多学生在初中都是考九十分以上的(总分一百),到了高中很多学生只能考六七十分(总分一百二)。初中物理内容多以观察、实验为基础,很多是简单的物理现象和结论,对物理概念和规律的理解要求较低,研究对象单一、过程单一、状态单一。教材编写的要求主要是观察与思考、实验与思考,读一读、想一想、做一做,阅读材料也大多是科普类的。而高中物理需要结合实验观察、抽象思维、逻辑推理和数学方法,对物理问题进行建模,通过抽象概括、猜想假说、实验验证来揭示物理的本质和规律。高中物理研究的对象往往不止一个(整体法结合隔离法),过程不止一个(直线、曲线相结合,平抛、圆周相结合),状态在不断变化,学生接受理解起来比较困难。

高中物理对物理概念和规律的表达更加简洁、抽象,对物理问题的'分析推理更加严密,给学生的理解带来了较大困难。初中物理趣味性较强,高中物理比较枯燥无味。

初中物理与生活认识往往一致,而我们在生活中有一些习以为常的认识其实是片面的,错误的,如:重的物体下落得快,有力作用在物体上才能运动。我们不能简单地依靠生活经验和“小聪明”来学好高中物理,反而以生活经验为基础有时会造成学习上的障碍。另外,在小学、初中,老师一个题目会重复很多遍。我同事杨老师儿子又一次感冒了,请了三天假,三天后去上学他爸问他:“掉了几天课要不要请老师指点一下?”“不要!我们老师肯定还没讲新知识呢!他一节课要上一周,一个知识要讲十几遍,都一样的。”他儿子回答道。但是进入高中学习内容量变多,难度增大,老师不可能也不允许一个题目重复多遍,所以要求学生“一次性过关”,不能老惦记下一次,否则就会重演“明日复明日,明日何其多”的悲剧。

其次是知识上的惯性。很多学生及其家长动则提初中怎么怎么地,初中老师说过的,初中里学过的,殊不知初中的认识有其历史局限性。如在初中速度等于路程除以时间,到高中就应是速度等于位移除以时间;功的计算式初中是W=Fs,而高中W=Fscosα;初中电流方向是从正极到负极,高中还得加个限制———在电源外部;初中磁感线方向是从N极到S极,高中还得加个限制———在磁铁外部……,要注意到初高中的区别与变化,如果还用“老黄历”那就要抓瞎了。再次就是解题方法的惯性:试图用同一方法解决所有问题。其实我们每个人都有这种思想。我有两个邻居,一个是木匠,一个是漆匠。他们家里各有一张桌子,由于时间长了台面有些破损,到了过年,他们外出打工回来了各自对桌子进行了检修。木匠在原来的老桌子上面贴了一个面,漆匠在老桌子上先上了一层腻子,再上了一层漆,各自都焕然一新。但是如果桌子腿断了,那单凭漆匠就无能为力了;如果新桌面长时间不上漆时间久了就会变黑,只有及时上漆才能一直光洁如新,只有通力合作才能形成合力。我们物理学习中有五把钥匙:牛顿运动定律、动能定理、能量守恒(机械能守恒)、动量定理、动量守恒定律,由于课改后动量定理、动量守恒定律属于选修3-5中的内容,是选学的,所以就剩下了三把金钥匙。有同学善用牛顿运动定律,他处处就带着“牛顿运动定律”的眼镜。

理论上用牛顿运动定律结合数学知识和计算机所有宏观、低速的问题都能解决,但高中阶段限于数学水平面的限制,学生用牛顿运动定律只能定量解决匀变速直线运动的问题。

理论上使用动能定理没有限制条件,但是解决时间问题时仅用动能定理就无能为力了,还有在有些问题中用动能定理不见得比牛顿运动定律简单。用能量守恒同样在解决与能量有关的物理量时有一定优势,但并不是处处占先。“尺有所短、寸有所长”在物理学习中同样存在。学习是具有阶段性的,认识是不断发展的,天变道亦变。我们认识都是从直观的、感性的、具体的开始,初中物理也是如此,到了高中,我们需要学习探究抽象的、理性的知识,进入大学我们将研究更加复杂的问题,我们不可能一步登天,也不可能一成不变。我们需要“基础的惯性”,但同时又要突破这种惯性,只有认识到“惯性”是把“双刃剑”,才能不断去粗取精、去伪存真,不断地由相对真理走向绝对真理。

篇12:医学物理学实验教学改革论文

医学物理学实验教学改革论文精选

1对象与方法

1.1研究对象传统教学组:2006级临床医学专业206名学生;实验改革组:2007级临床医学专业308名学生。

1.2实验教学改革设计传统教学组实验课按照传统的教学模式进行,在实验课上由指导教师详细讲解相关理论知识和实验步骤,或按步骤带着学生进行实验。实验改革组采用改革方式进行教学实践,针对开设的实验,教研室制定了详细的“实验预习要求”,明确每一个实验预习应达到的目标,并做出必要的书面回答,规定只有认真预习的学生,才能进入实验室做实验;在上实验课时由指导教师检查或抽查提问,检查学生预习情况,并作为实验成绩的参考;结合对实验预习的.细化要求,指导教师在上实验课时尽量压缩理论讲解时间。

1.3观察项目及数据分析以“示波器的使用”实验作为检查指标,对两组学生实验课的课时分配、实验操作及成绩进行对比分析,对学生的实验操作合格率、实验成绩等数据用统计学方法进行处理,P<0.05时,差异被认为有统计意义。

2结果

2.1课时分配情况分析传统教学组教学中,教师讲解实验原理、仪器和步骤;实验改革组教学中,教师的理论讲解仅提示重点、难点和注意事项。两组授课时间分配见表1。表1医学物理学实验教学改革课时分配

2.2实验操作情况分析实验操作情况见表2。教学改革组学生一次合格率提高了21.1%,χ2=20.74,P<0.05;二次合格率和多次重做合格率均有下降,χ2值分别为33.38和4.37,P<0.05。说明实验改革对实验方法和技能掌握比传统教学更好,学生能顺利完成实验操作。

2.3实验成绩分析实验成绩见表2。实验改革组学生的合格率较传统教学组提高0.5%,χ2=0.07,P>0.05,无显著性差异;而优良率提高16.9%,χ2=20.74,P<0.05,两组存在显著性差异。说明虽然两种教学方法中绝大部分同学都能基本完成实验,达到合格水平,但是实验改革组学生能更熟练地掌握实验操作,更好地完成数据处理、分析、总结,达到优良水平。

3讨论

在医学物理学实验中,传统的教学方法是教师详细讲解或示教,学生按要求做实验。由于教师认表2两组学生实验操作合格率与实验成绩注:P<0.05;在实验成绩中,“合格”≥60分,“优良”≥85分。

为学生不能通过预习掌握实验原理、内容,并独立完成实验,因而耗费大量时间进行理论知识的讲解;另一方面,教师的这种做法也使学生越来越依赖教师,丧失了学习主动性。

在医学物理学实验教改实践中,采用了实验预习要求,学生在课前有针对性地进行预习,教师对学生预习情况通过提问等形式进行检查、记录,利用奖励机制给学生施加良好压力,激发学生的主观能动性[3]。学生在课前已基本掌握与实验相关的理论知识,教师可缩短讲授时间,给学生足够的时间熟悉仪器、操作仪器,在实验中培养并逐步提高观察和分析实验现象的能力以及理论联系实际的独立工作能力[4]。研究结果表明,实验改革组教师讲授时间缩短并未影响学生实验的完成情况,且有更多的学生一次就成功完成实验操作,比传统教学组一次合格率增加21.1%;实验改革组学生的实验成绩优良率大幅度提高,比传统教学组学生提高16.9%。因此,教师应通过积极的心理暗示,引导学生建立积极主动的学习心态,逐渐培养起自学能力和独立分析问题的能力[5,6]。学生从真正独立地完成每一个实验的过程中获得扎实的知识,实现物理学实验教学目的,通过对实验现象的观察、分析和对物理量的测量,学会运用理论指导实验,用理论分析和解决实验中存在的问题,加深对物理学理论的理解[7]。

另外,给予暗示者的权威性和受暗示者对给予暗示者的信任度,对暗示的结果有着非常重大的影响。教师在教学中需要不断进行探索,不断提高自身素质和教学业务水平,使学生能最大程度地感受到教师传递出的积极的心理暗示,使医学物理学实验教学改革措施能够发挥更好的效果。

【参考文献】

[1]张淑丽,夏力丁.医用物理学实验教程[M].北京:人民军医出版社,2004:1-3.

[2]曾小青,李晓春,李玲.改革医学物理学实验教学,培养创新人才[J].山西医科大学学报,2004(2):184-185.

[3]岳晓东.高考超常发挥和心理暗示[M].上海:上海人民出版社,2007:80-90.

[4]武立立,肖海扬.高校非物理专业基础物理实验教学初探[J].教书育人,2006(6):78-79.

[5]李祖明,李俊.教师需要积极的心理暗示[J].新教育,2006(4):61.

[6]段家忯,曹惠贤,王煜,等.美国高校物理实验教学和管理情况考察报告[J].大学物理,2004(3):42-45.

[7]李伯黍,燕国材.教育心理学[M].2版.上海:华东师范大学出版社,2001:229-235.

【关键词】教学学生医学物理学策略实验性

篇13:2021物理学专业论文题目参考

1、初中物理教学中分层教学的实践与探索

2、新课改背景下初中物理教学创新思路的实践探究

3、新课改下如何提高中学物理教学的有效性

4、浅析如何高效开展初中物理教学

5、浅析高中物理教学中有效提问的开展

6、试论多媒体在高中物理教学中的应用

7、浅谈多媒体在农村初中物理教学中的应用

8、再谈初中物理教学中探究性实验教学的应用

9、实验教学法在初中物理教学中的应用

10、高中物理教学中提高学生抽象思维能力的对策研究

11、高中物理教学中促进学生学习的途径研究

12、浅谈思维导图在初中物理教学中的应用

13、浅谈新课程改革背景下的高中物理教学

14、初中物理教学中合作探究教学法的应用

15、学案导学法在初中物理教学中的应用

16、高中物理教学中调动学生积极性的策略探析

17、探究式教学在初中物理教学中的应用

18、信息技术在物理教学中的运用

19、3+1+2高考模式下大学物理教学的改革与探索

20、GeoGebra软件在中学物理教学中的应用

21、大学物理教学中培养学生创新能力的探讨

22、基于原始物理问题的初中物理教学初探

23、物理教学中要注重典型例题的引申和拓展

24、在物理教学设计中引入任务分析程序的探讨

25、实验在物理教学中的有效性探讨

26、高考改革背景下的高中物理教学

27、新课改下初中物理教学中的合作探究模式探析

28、浅谈高中物理教学中学生自主学习意识的培养

29、高中物理教学中问题情境的创设

30、初中物理教学中学生有效性学习的探讨

31、虚拟仿真实验技术在大学物理教学中的应用

32、民族地区高中物理教学现状及应对策略

33、论如何利用导学案提高农村初中物理教学效率

34、微视频在初中物理教学中的运用

35、微课在中学物理教学中的应用

36、将问题情境创设于初中物理教学中

37、初中物理教学中合作学习方法的有效应用

38、以问题为导向的初中物理教学模式探究

39、谈在初中物理教学中培养学生的创新能力

40、以研究性教学为导向的“粒子物理”教学改革

41、初中物理教学中如何培养学生的创造性思维

42、以美育人 以文化人--中职物理教学中的美育价值

43、互联网时代微课在初中物理教学中的应用研究

44、浅析探究性学习模式在高中物理教学中的应用

45、分析探究性学习模式在高中物理教学中的具体应用

46、实验室在高中物理教学中的实践与思考

47、浅谈初中物理教学与信息技术的整合

48、浅谈“项目学习”法优化初中物理教学的策略

49、新课程改革下初中物理教学方式的转变探讨

50、在高中物理教学中落实情感态度与价值观的策略

篇14:2021物理学专业论文题目参考

1、MATLAB在大学物理实验仿真中的应用

2、基于Flash的大学物理电学仿真实验的设计与实现

3、量子点和一维量子线相耦合系统在Kondo区物理性质的研究

4、基于时域物理光学方法的半空间上方目标散射研究

5、有机光电材料的光物理特性研究

6、基于激光混沌的全光物理随机数发生器

7、基于超导电路系统的量子模拟和基础量子物理研究

8、金属亚波长结构阵列电磁场增强及光学异常透射的机理研究

9、微型热电系统的多物理场耦合模型与性能优化研究

10、外尔半金属的反常物理性质研究

11、中子光子输运物理过程蒙特卡罗处理方法研究

12、红外视景仿真关键技术研究

13、关于拓扑物理的量子模拟研究

14、高真实感红外场景实时仿真技术研究

15、氢化非晶硅薄膜结构及其物理效应

16、PIC数值方法以及激光-物质相互作用若干物理研究

17、目标电磁散射特性的快速计算方法研究

18、钙钛矿半导体中的瞬态物理过程研究

19、基于激光自混合效应的多物理参数同步测量方法研究

20、高性能多物理场数值算法研究及其应用

21、超薄Bi薄膜的电子态研究

22、铁电基复合薄膜的光伏效应及其调控研究

23、高增益短波长自由电子激光相关物理研究

24、基于条码质量的直接标刻激光参量与物理机制的研究

25、超标准模型和新物理现象的理论研究

26、PLD制备InGaZnO薄膜及其物理性质研究

27、高场磁体的多物理场耦合作用机理

28、电大目标的时域及频域散射场计算方法研究

29、超冷原子系统物理性质研究

30、表面增强拉曼散射结构化衬底制备及其高灵敏探测研究

31、含时薛定谔方程的高阶辛算法研究

32、激光器中的自调制及不稳定性研究

33、自由电子激光物理中统计物理分析方法的若干研究

34、金属-介质-金属结构中表面等离子特性研究及器件设计

35、新型宽带太赫兹源物理机制的研究

36、基于矢量声场的水下被动探测与定位技术研究

37、CPT原子钟物理系统的研究与探索

38、物理虚拟仿真实验系统的设计研究

39、科学推理能力和物理问题解决能力的对比研究

40、高温高压声场测试平台设计

41、硅基SiO_2薄膜材料的制备与物理特性研究

42、电大尺寸目标的电磁特性分析方法研究

43、基于驻相法积分和NURBS曲面建模的物理光学法研究

44、FLASH游戏型物理课件的设计与开发研究

45、普通物理实验课程教学改革的探索与实践

46、钙钛矿型氧化物透明导电薄膜的制备与物理性质研究

47、光学薄膜在激光作用过程中的热吸收与热应力的研究

48、强关联材料LaTiO_3和NdTiO_3物理性质及应用研究

49、基于FLASH技术的大学物理仿真实验的研究

50、半导体物理发展史探讨

篇15:2021物理学专业论文题目参考

1、物理学史与物理教学结合的理论与实践研究

2、二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究

3、二十世纪中国原子分子物理学的建立和发展

4、普通高中物理课程内容与大学物理课程内容的适切性研究

5、从现代物理学理论发展探讨孙思邈修道养生观

6、地震岩石物理学及其应用研究

7、碎屑岩地震岩石物理学特征研究

8、信息技术支持下的物理学与教的研究

9、物理学中对称现象的语境分析及其意义

10、本质直观视域下的量子引力学困境

11、复杂金融系统的相互作用结构与大波动动力学研究

12、大小细胞视觉通路在早期开角型青光眼和双眼竞争中作用的功能磁共振成像及视觉心理物理学研究

13、经济物理学中的金融数据分析:统计与建模

14、农村高中物理学困生的差异教学研究

15、基于PD控制的拟态物理学优化算法的研究

16、多目标拟态物理学优化算法解集分布性研究

17、利用物理学史教育资源优化中学物理教学的研究

18、中学生与物理学家共同体概念形成过程的对比研究

19、物理学专业师范生PCK研究

20、物理学史融入高中物理教学的实践研究

21、莱布尼茨物理学哲学思想研究

22、运用高中物理教材栏目开展物理学史教育的实践

23、新课程下高一物理学困生转化策略

24、运用高中物理“学案教学”提高学生问题意识的实践

25、基于书目记录的《中图法》物理学类目调整方法

26、物理学专业师范生教学技能训练现状调查与对策研究

27、高中物理学困生成因及转化策略研究

28、从物理学家的研究方法看物理学的进展

29、高中物理学困生学习动机的实证调查与影响因素分析

30、食管癌调强放疗物理学参数对放射性肺炎的评估价值

31、近代物理学史在高中物理教学中的应用

32、提升物理学困生自主学习能力的教学策略研究

33、物理学史在高中物理教学中的应用研究

34、关于培养学生物理学科素养的教学实践研究

35、高一物理学困生学习效率低下成因及转化策略

36、校本课程《生活中的物理学原理DIY》的开发与实践

37、高中物理教学中物理学史教育现状调查与研究

38、高中物理学困生学业情绪现状及影响因素的调查研究

39、利用物理学史促进高中生理解科学本质的实践研究

40、物理学史融入中学课堂教学的实践研究

41、高中物理学史校本课程文本资源的开发与应用

42、物理学史与中学物理教学结合的理论与实践研究

43、中学物理教学中渗透物理学史教育的研究

44、通过物理学史培养高中学生科学精神的实践研究

45、中学物理教学中渗透近代物理学思想的研究

46、高中物理教学中物理学史教育的理论及实践研究

47、近代物理学在中国的本土化探索

48、中学物理教学中引入物理学史的作用研究

49、物理学方法教育的研究和教学实践

50、生物物理学的物理支撑与发展历程

篇16:国内外经济物理学研究论文

国内外经济物理学研究论文

一、国内外相关研究综述

综观当今国内外研究,这一领域的研究的前沿问题有:1、各个国家和地区家庭和个人经济收入的数据分布模型的模拟,这一领域的研究专家有X.Gabaix,P.Gopikrishnan,V.Plerou,H.E.Stanley、M.Levy,S.Solomon、W.Souma、S.Sinha、N.Ding,Y.G.Wang,Chin.等,他们的研究成果主要发表在Nature、PhysicaA、Fractals、Phys.Lett.等期刊。2、经济与金融系统中“普适行为”的研究。主要研究专家有F.Clementi,T.DiMatteo,M.Gallegati、H.Aoyama,W.Souma,Y.Nagahara,M.P.Okazaki,H.Takayasu,N.Takayasu等,他们的研究成果可见于PhysicaA与Fractals等期刊。3、BPS模型的研究与推广。这是由物理学家PerBak,MayaPaczuski和经济学家MartinShubik根据统计力学原理共同提出的,是描述金融市场价格的一个理想化模型。Y.Fujiwara,W.Souma,H.Aoyama,T.Kaizoji,M.Aoki以及C.Quintano,A.D’Agostino等人对此也有研究,研究成果见于PhysicaA与IncomeWealth期刊。4、“少数者博弈论”模型的研究、推广和应用。这一领域的研究专家有A.Dragulescu,V.M.Yakovenko,A.Harrison,A.ChristianSilva等人,他们的研究成果主要发表在PhysicaA、Europhys.Lett.和EconomiePolitique等期刊。5、股票证券交易数据的处理研究以及金融市场定量模型的建立。P.Gopikrishnan,M.Meyer,LAN.Amaral,H.E.Stanley,WK.Bertram,,D.Makowiec,P.Gnacinski,等是这一领域的研究专家,其成果主要发表在Eur.Phys.J.B、PhysicaA、ActaPhys.等期刊。6、价格波动的长期记忆性即波动聚集效应的研究。主要研究者是我国学者王有贵、郭良鹏,其研究成果发表在《物理》上。

二、我国经济物理学研究存在的问题

纵观国内外研究,我国在经济物理学的研究由于起步较晚,存在一些问题,如:

1、对国外的前沿研究以跟踪为主,缺乏对我国的系统研究;

2、队伍比较分散,缺少明确的整体研究对象;

3、探索性研究较多,与我国经济领域的实际问题结合较少,从而也就缺少明确的解决实际问题的成果。物理学是一门发展非常成熟的学科,应用物理学特别是统计物理学中定量研究的概念和方法论研究经济问题时,必然会出现物理学表达式中变量和参数对于经济系统的适用性和变化性问题,因此经济物理学采用与经济学不同的方法对经济领域的'各种经济数列(economictimeseries)进行分析和定量表征时,就会出现参数不完全对应的问题。在经济领域中,最原始数据是以价格(price)、收入(incomes)、收益(returns)、投资(investments)、多变性(volatility)等参数表征的,这些参数是随不同时间间隔变化的参数,它们实际上反映了经济系统内部的结构、机制在一定的外部环境下产生的规律,因此,要想逐步揭示出这些内在规律以及规律之间的内在联系,必须找到适当的方法对原始的经济参数进行多方面的动力学过程分析,用合适的经济物理学特征变量和参数进行对应性地定量表征,这样,才可以有效地将物理学的模型或方程运用到经济系统的动力学研究当中。

三、基于经济物理学对中国的经济学参数的研究探讨

当前,中国正经历着一场划时代的社会变迁,这个巨大变化具体反映在以下几个方面:第一,总体上经济高速度发展;第二,制度方面,中国正经历着从计划经济向市场经济的转型;第三,社会主义的许多特征,比如城市居民由国家和单位安排住房和工作等,在今天的中国已经发生了根本性的变化;第四,人口数量以及人口年龄和行业的分布变化是研究中国社会和经济的一个重要因素。上述这些变化都在影响着当今中国人的生活和工作,同时也影响着中国社会的不平等性,现阶段中国收入不平等是一个不容否认的事实,有人指出,这正是我国经济快速发展的必然结果。这种不平等是怎么演变过来的?在这种演变过程中哪一些经济物理学参数变化最为敏感?这种不平等内部参数具有怎样的结构特征?未来不平等程度及结构又将如何演变?这些问题不仅是学术研究的焦点,也关系到我国经济能否健康科学可持续发展的大事,还关系到社会安定团结的大事,自然成为了全社会普遍关注的重大问题。鉴于此,基于经济物理学对社会不公平性的经济学参数的研究十分必要。

物理学论文参考文献

机械能守恒定律说课稿

验证机械能守恒定律说课稿

物理学个人简历

生活机械物理学原理分析论文

物理学正论 [上]

物理学科组工作计划

漫谈勤奋作文

漫谈开学作文

漫谈儿童素质教育

漫谈机械能守恒定律物理学论文(锦集16篇)

欢迎下载DOC格式的漫谈机械能守恒定律物理学论文,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档