“weifeng”通过精心收集,向本站投稿了12篇中考数学复习教案第一章实数,下面是小编帮大家整理后的中考数学复习教案第一章实数,希望对大家有所帮助。
- 目录
篇1:中考数学复习教案第一章实数
中考数学复习教案第一章实数
第一章实数与中考中考要求及命题趋势
1.正确理解实数的有关概念;
2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;
3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。
4.掌握实数的四则运算、乘方、开方运算以及混合运算
5.会用多种方法进行实数的大小比较。
中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。
应试对策
牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。
第一讲实数的有关概念
【回顾与思考】
知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值
大纲要求:
1.使学生复习巩固有理数、实数的有关概念.
2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3.会求一个数的相反数和绝对值,会比较实数的`大小
4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:
1.有理数、无理数、实数、非负数概念;
2.相反数、倒数、数的绝对值概念;
3.在已知中,以非负数a2、|a|、(a≥0)之和为零作为条件,解决有关问题。
实数的有关概念
(1)实数的组成
(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数,
(3)相反数
实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零).
从数轴上看,互为相反数的两个数所对应的点关于原点对称.
(4)绝对值
从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离
(5)倒数
实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.
【例题经典】
理解实数的有关概念
例1①a的相反数是-,则a的倒数是_.
②实数a、b在数轴上对应点的位置如图所示:
则化简│b-a│+=_.
③(泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约_.
【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.
例2.(-2)3与-23.
(A)相等(B)互为相反数(C)互为倒数(D)它们的和为16
分析:考查相反数的概念,明确相反数的意义。答案:A
例3.-的绝对值是;-3的倒数是;的平方根是.
分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。
答案:,-2/7,±2/3
例4.下列各组数中,互为相反数的是()D A.-3与B.|-3|与一C.|-3|与D.-3与
分析:本题考查相反数和绝对值及根式的概念
掌握实数的分类
例1下列实数、sin60°、、()0、3.14159、-、(-)-2、中无理数有()个
A.1 B.2 C.3 D.4
【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.
MSN(中国大学网)
篇2:数学实数教案
教学目标(知识、能力、教育)
1.理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2.复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3.会用电子计算器进行四则运算。
教学重点实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。
教学过程
一:【前预习】
(一):【知识梳理】
1. 有理数加、减、乘、除、幂及其混合运算的运算法则
(1)有理数加法法则:
①同号两数相加,取________的符号,并把__________
②绝对值不相等的异号两数相加,取________________的符号,并用
____________________。互为相反数的两个数相加得____。
③一个数同0相加,__________________。
(2)有理数减法法则:减去一个数,等于加上____________。
(3)有理数法则:
①两数相乘,同号_____,异号_____,并把_________。任何数同0相乘,
都得________。
②几个不等于0的数相乘,积的符号由____________决定。当______________,
积为负,当_____________,积为正。
③几个数相乘,有一个因数为0,积就为__________.
(4)有理数除法法则:
①除以一个数,等于_______________________.__________不能作除数。
②两数相除,同号_____,异号_____,并把_________。 0除以任何一个
____________________的数,都得0
(5)幂的运算法则:正数的任何次幂都是___________; 负数的__________是负数,
负数的__________是正数
(6)有理数混合运算法则:
先算________ ,再算__________,最后算___________。
如果有括号,就_______________________________。
2.实数的运算顺序:在同一个算式里,先 、,然后 ,最后 .有括号时,先算 里面,再算括号外。同级运算从左到右,按顺序进行。
3.运算律
(1)加法交换律:_____________。 (2)加法结合律:____________。
(3)交换律:_____________。 (4)乘法结合律:_ ___________。
(5)乘法分配律:_________________________。
4.实数的大小比较
(1)差值比较法:
>0 > , =0 , <0 <
(2) 商值比较法:
若 为两正数,则 > > ; < <
(3)绝对值比较法:
若 为两负数,则 > < < >
(4)两数平方法:如
5.三个重要的非负数:
(二):【前练习】
1. 下列说法中,正确的是( )
A.m与—m互为相反数 B. 互为倒数
C.1998.8用科学计数法表示为1.9988×102
D.0.4949用四舍五入法保留两个有效数字的近似值为0.50
2. 在函数 中,自变量x的取值范围是( )
A.x>1 B.x<1 C.x≤1 D.x≥1
3. 按?顺序-12÷4=,结果是 。
4. 的平方根是______
5.计算
(1) 32÷( -3)2+- ×(- 6)+ ;(2)
二:【经典考题剖析】
1.已知x、y是实数,
2.请在下列6个实数中,计算有理数的和与无理数的积的差:
3.比较大小:
4.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么37的个位数字是 ;320的个位数字是 ;
5.计算:
(1) ;(2)
三:【后训练】
1.某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,
三个住宅区在同一条直线上,位置如图所示,该公司的接送车打算在此间设一个停靠站,为使所有员工步行到停靠站的路程之和最小,
那么停靠站的位置应设在( )
A.A区; B.B区; C.C区; D.A、B两区之间
2.根据国家税务总局发布的信息,20xx年全国税收收入完成25718亿元,比上年增长
25.7%,占20xx年国内生产总值(GDP)的19%。根据以上信息,下列说法:①20xx年全国税收收入约为25718×(1-25.7%)亿元;②20xx年全国税收收入约为 亿元;③若按相同的增长率计算,预计20xx年全国税收收入约为25718×(1+25.7%)亿元;④20xx年国内生产总值(GDP)约为 亿元。其中正确的有( )
A.①④;B.①③④;C.②③;D.②③④
3.当 < < 时, 的大小顺序是( )
A. < < ;B. < < ;C. < < ;D. < <
4.设是大于1的实数,若 在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上自左至右的顺序是( )
A.C 、B 、A;B.B 、C 、A ;C.A、B、C ;D.C、A、B
5.现规定一种新的运算“※”:a※b=ab,如3※2=32=9, 则 ※ ( )
A. ;B.8;C. ;D.
6.火车票上的车次号有两种 意义。一是数字越小表示车速越快:1~98次为特快列车;101~198次为直快列 车;301~398次为普快列车;401~498次为普客列车。二是单、双数表示不同的行驶方向,比如单数表示从北京开出,则双数表示开往北京。根据以上规定,杭州开往北京的某一趟直快列车的车次号可能是( )
A.20;B.119;C.120;D.319
7.计算:
(1)( - )2; ⑵( + )( - );⑶
(4) ;(5)
8. 已知: ,求
9. 观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,……这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出
10.小王上周五买进某公司股票1000股,每股25元,在接下的一周交易日内,小王记下该股票每日收盘价相比前一天的涨跌情况:(单位:元)
星期一二三四五
每股涨跌+2-0.5+1.5-1.8+0.8
根据表格回答问题
(1)星期二收盘时,该股票每股多少元?
(2)本周内该股票收盘时的最高价、最低价分别是多少?
(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费。若小王在本周五以收盘价将传全部股票卖出,他的 收益 情况如何?
四:【后小结】
篇3:数学实数教案
【知识与技能】
1.了解无理数和实数的概念,会将实数按一定的标准进行分类.
2.知道实数与数轴上的点一一对应.
【过程与方法】
1.了解无理数和实数的概念,适时拓展数的观念.
2.通过学习“实数与数轴上的点的一一对应关系”,渗透“数形结合”思想.
【情感态度】
从分类、集合的思想中领悟数学的内涵,激发兴趣.
【教学重点】
正确理解实数的概念.
【教学难点】
对“实数与数轴上的点一一对应关系”的理解.
一、情境导入,初步认识
问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.
引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?
【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.
二、思考探究,获取新知
例1
(1)试着写出几个无理数.
(2)判断下列各数中,哪些是有理数?哪些是无理数?
《实数》课时练习含答案
1.(20xx?安徽模拟)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3}、{﹣2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.下列集合为好的集合的是( )
A. {1,2} B. {1,4,7} C. {1,7,8} D. {﹣2,6}
答案:B
知识点:实数.
解析:根据题意,利用集合中的数,进一步计算8﹣a的值即可.
解:A、{1,2}不是好的集合,因为8﹣1=7,不是集合中的数,故错误;
B、{1,4,7}是好的集合,这是因为8﹣7=1,8﹣4=4,8﹣1=7,1、4、7都是{1、4、7}中的数,正确;
C、{1,7,8}不是好的集合,因为8﹣8=0,不是集合中的数,故错误;
D、{﹣2,6}不是好的集合,因为8﹣(﹣2)=10,不是集合中的数,故错误;
故选:B.
本题考查了有理数的加减的应用,要读懂题意,根据有理数的减法按照题中给出的判断条件进行求解即可.
《6.3实数》专项测试题
1、下列说法正确的是( )
A.单独的一个数或一个字母也是代数式
B.任何有理数的绝对值都是正数
C.如果两个数的绝对值相等,那么这两个数相等
D.数轴上的任意一个点都可以表示一个有理数
【答案】A
【解析】解:数轴上的点可表示为有理数和无理数。
两个数的绝对值相等,这两个数相等或者互为相反数。
绝对值是。
2、下列说法正确是( )
A不存在最小的实数B有理数是有限小数
C无限小数都是无理数D带根号的数都是无理数
篇4:数学实数教案
学习目标:
1、能借助数轴理解相反数和绝对值得意义,会求一个数的相反数与绝对值。
2、理解实数的意义,能用数轴上的点表示数。
3、了解平方根算数平方根、立方根的概念。
重点:实数的分类。
难点:绝对值的意义和运用。
过程:
一、复习回顾实数的分类,方式:师生共同回顾后,师展示
二、自学:
(一)知识类:
1、相反数。a的相反数是,相反数等子本身的数量,若a、b互为相反数,则。
2、倒数。a(a≠0)的倒数是。用负指数表示为没有倒数。倒数等子本身的数是a、b互为倒数,则
3、绝对值。绝对值等于本身的数是,即
lal=
4、数轴。数轴的三要素为一一对应。
5、实数大小的比较。
(1)在数轴上表示两个数的点,左边的点表示的数表示的数。
(2)正数大于零;两个正数绝对值大的较。两个负数绝对值小的较
(3)设a.b是任意两实数。
若a-b>0,则b;若a-b=0,则b;若a-b<0,则b。
6、非负数的表现形式有
7、常见的几个实数:最小的自然数是,最大
的负整数是,绝对值最小的整数是
(二)运用类:
1、某水井水位最低时低于水平面5米,记做-5米,最高时低于水平面1米,则水井位h米中h的取值范围是
2、若x的相反数是3,lyl=5,则-l-2l的倒数是
篇5:数学实数教案
学习目标:
1.了解算术平方根的概念,会用根号表示数的算术平方根;
2. 会用平方运算求某些非负数的算术平方根;
3.能运用算术平方根解决一些简单的实际问题.
学习重点:
会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题.
学习难点:
区别平方根与算术平方根
掌握本章基本概念与运算,能用本章知识解决实际问题.
【知识与技能】
【过程与方法】
通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中.
【情感态度】
领悟分类讨论思想,学会类比学习的方法.
【教学重点】
本章知识梳理及掌握基本知识点.
【教学难点】
应用本章知识解决实际与综合问题.
一、知识框图,整体把握
【教学说明】
1.通过构建框图,帮助学生回忆本节所有基本概念和基本方法.
2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等.
二、释疑解惑,加深理解
1.利用平方根的概念解题
在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数.
例1已知某数的平方根是a+3及2a-12,求这个数.
分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0.解:根据题意可得,a+3+2a-12=0.
解得a=3.
∴a+3=6,2a-12=-6.
∴这个数是36.
【教学说明】
负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例.
2.比较实数的大小
除常用的法则比较实数大小外,有时要根据题目特点选择特别方法.
篇6:人教版数学实数复习教案有哪些
教学难点:绝对值。
教学过程:
一、复习:
篇7:人教版数学实数复习教案有哪些
教学分析:
教材分析:本节是在有理数的基础上学习实数的知识,很多内容可以类比有理数
的有关内容得出,本节把点的坐标扩展到实数范围,并建立点与实数的一一对应关系,为以后的学习函数、函数的图像、函数与方程和不等式的关系等知识打下基础。
学情分析:七年级下学期学生处于一个转型期,这阶段的学生对学习有着浓厚的
探索欲望,但在学习积极性受打击或学习兴趣不高的情况下,也容易产生厌学。因此,教师的教学过程,以提高学习的学习兴趣,增强学生的学习积极性为根本,让学生能主动投入到对知识的探索中去,培养良好的学习习惯。
教学目标:
知识与技能:了解无理数和实数的概念,知道实数和数轴上的点一一对应,能
估算无理数的大小;
能力目标:了解实数的运算法则及运算律,会进行实数的运算,会用计算器进
行实数的运算
情感价值与态度观:通过启发性、探索性的合作模式,激发学生的学习主动性,
培养对知识的探索精神。
学习重点:实数的意义和实数的分类;实数的运算法则及运算律
学习难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算
㈠创设情景,导入新课
1、探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3479115 3 , 581199
我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即
34791150,???0.6 ,?5.875 ,?0.81 ,?1.2 ,?0.5 3?3. 581199归纳 任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数
观察 通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数,??3.14159265也是无理数
结论 有理数和无理数统称为实数
㈡合作交流,解读探究
1、试一试 把实数按定义分类
??整数?有理数??有限小数或无限循环小数? 实数? ?分数???无理数?无限不循环小数
像有理数一样,无理数也有正负之分。
是正无理数,
是负无理数。由于非0有理数和无理数都有正负之分,所以实数也可以按正负分类:
正有理数正实数???正无理数?? 实数?0
?负有理数?负实数????负无理数?
练习1 试一试把下列各数分别填入相应的集合内:
2,1,47,,?5
22,20,34,0,?9,?38
有理数集合 无理数集合
2.、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?
探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?
3、以单位长度为边长画一个正方形,以原点为圆心,正方形对角线为半径画弧,与正半轴的交点表示什么?
总结 1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数
当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数
1、与有理数一样,对于数轴上的任意两个点,右边的点所
表示的实数总比左边的点表示的实数大
讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义
同样适合于实数吗?
总结 数a的相反数是?a,这里a表示任意一个实数。一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0
㈢应用迁移,巩固提高
例1把下列各数填入相应的集合内:
9,5,64,?,0.6666??,?,0,9,3,0.134
(1)有理数集合:
(2)无理数集合:
(3)整数集合:
(4)负数集合:
(5)分数集合:
(6)实数集合:
㈣总结反思,拓展升华
1、本节课你学了什么知识?
无理数的概念,实数的定义,实数的分类
实数与数轴上的点一一对应2、你有什么体会?
㈤课堂跟踪反馈
1、下列各数中,是无理数的是( )
A. ?1.732 B. 1.414
C. D. 3.14
2、已知四个命题,正确的有( )
⑴有理数与无理数之和是无理数 ⑵有理数与无理数之积是无理数
⑶无理数与无理数之积是无理数 ⑷无理数与无理数之积是无理数
A. 1个 B. 2个 C. 3个 D.4个
3、若实数a满足a??1,则( ) a
A. a?0 B. a?0 C. a?0 D. a?0
4、下列说法正确的有( )
⑴不存在绝对值最小的无理数
⑵不存在绝对值最小的实数
⑶不存在与本身的算术平方根相等的数
⑷比正实数小的数都是负实数
⑸非负实数中最小的数是0
A. 2个 B. 3个 C. 4个 D.5个
2的相反数是2 ,绝对值是
⑷若x?,则x?
x?7已知实数a、b、c在数轴上的位置如图所示:
2?2化简 2c?a?c?b?a?b?a?c?b
答案:5 2, 2 ,, 1 , 7. a?b?4c
教学评价:
波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”“学东西的最好途径是亲自去发现它”“学生在学习中寻求欢乐”.在本节课的教学设计中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生学习数学的积极性和学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,说说自己的发现并与同学交流结论,在交流中尝试得出结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.进一步地提出问题:任何一个有限小数或无限循环小数都能化成分数吗?引入了无理数和实数的概念后要求学生对所学过的数按照一定的标准进行分类.分类思想是解决数学问题的常用的思想,在教学过程中,教师应该创造条件,让学生体会分类标准与分类结果之间的关系.本课提出的问题“你能尝试着找出三个无理数来吗?”具有较大的开放性,给学生提供了思维空间,能促使学生积极主动地参与到数学学习过程中,亲自体验知识的形成过程.
教学反思:
本节课在开方的基础上引进无理数的概念,并将数从有利数额范围扩充到实数的范围。由于实数涉及的理论较深,数的概念又比较抽象,这些概念看着简单,但学生要真正掌握还是有点困难。
篇8:中考数学复习教案第二讲实数的运算
中考数学复习教案第二讲实数的运算
第二讲实数的运算【回顾与思考】
知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能键及应用。
大纲要求:
1.了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2.了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3.了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。
4了解电子计算器使用基本过程。会用电子计算器进行四则运算。
考查重点:
1.考查近似数、有效数字、科学计算法;
2.考查实数的运算;
3.计算器的使用。
实数的运算
(1)加法
同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
任何数与零相加等于原数。
(2)减法a-b=a+(-b)
(3)乘法
两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即
(4)除法
(5)乘方
(6)开方如果x2=a且x≥0,那么=x;如果x3=a,那么
在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.
3.实数的运算律
(1)加法交换律a+b=b+a
(2)加法结合律(a+b)+c=a+(b+c)
(3)乘法交换律ab=ba.
(4)乘法结合律(ab)c=a(bc)
(5)分配律a(b+c)=ab+ac
其中a、b、c表示任意实数.运用运算律有时可使运算简便.
【例题经典】
例1、(宝应)若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为
A.4D 22=-18 B.22-4=18 C.22D(D 4)=26 D.D 4D 22=-26
点评:本题涉及对正负数的理解、简单的有理数运算,试题以应用的方式呈现,同时也强调“列式”,即过程。选(A)
例2.我国宇航员杨利伟乘“神州五号”绕地球飞行了14周,飞行轨道近似看作圆,其半径约为6.71×103千米,总航程约为(π取3.14,保留3个有效数字)
A.5.90×105千米B.5.90×106千米
C.5.89×105千米D.5.89×106千米
分析:本题考查科学记数法答案:A
例3.化简的结果是().
(A)-2(B)+2(C)3(-2)(D)3(+2)
分析:考查实数的运算。答案:B
例4.实数a、b、c在数轴上的'对应点的位置如图所示,下列式子中正确的有().
①b+c 0②a+b a+c③bc ac④ab ac
(A)1个(B)2个(C)3个(D)4个
分析:考查实数的运算,在数轴上比较实数的大小。答案:C
例5(成都市)计算:-+(-2)2×(-1)0-│-│.
【点评】按照运算顺序进行乘方与开方运算。
例5.校学生会生活委员发现同学们在食堂吃午餐时浪费现象十分严重,于是决定写一张标语贴在食堂门口,告诫大家不要浪费粮食.请你帮他把标语中的有关数据填上.(已知1克大米约52粒)
如果每人每天浪费1粒大米,全国13亿人口,每天就要大约浪费吨大米
分析:本题考查实数的运算。答案:25
例7.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台阶数为一级、二级、三级…逐步增加时,楼梯的上法数依次为:1,2,3,5,8,13,21,...…(这就是著名的斐波那契数列).请你仔细观察这列数中的规律后回答:上10级台阶共有种上法.
分析:归纳探索规律:后一位数是它前两位数之和
答案:89
例8.观察下列等式(式子中的“!”是一种数学运算符号)
1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,
计算:=.
分析:阅读各算式,探究规律,发现100!=100*99*98!答案:9900 MSN(中国大学网)
篇9:实数中考数学实数知识点
中考数学实数必备知识点
实数与数轴
1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。
实数大小的比较
1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
实数的运算
1、加法:
(1)同号两数相加,取原来的符号,并把它们的绝对值相加;
(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:
(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:
(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。
篇10:中考数学实数知识点
中考数学实数知识点
1.有理数:整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
2.无理数:无限不循环小数叫做无理数。一个数是无理数应当满足三个条件:(1)是小数;(2)是无限小数;(3)是不循环小数。
3.实数的运算:
(1)要掌握加、减、乘、除、乘方、开方的运算法则
(2)能灵活应用五个运算定律(加法交换律,加法结合律; 乘法交换律,乘法结合律,乘法对加法的分配律)
(3)清楚实数混合运算的顺序:依然是从高级运算到低级运算,同级运算从左到右的顺序进行,有括号的先算括号里面的。
常见考法
实数的分类及无理数在段考,以及中考中均有出现,主要考查的是无理数的判别、实数的简单运算等。单独考查时,题型以选择、填空为主。
误区提醒
实数大小的比较
1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
相信上面对数学中实数大小的比较知识点的讲解学习之后,同学们对上面的知识已经能很好的掌握了吧,希望同学们都能考试成功。
实数中的.几个概念
1、相反数:
只有符号不同的两个数叫做互为相反数。
(1)实数a的相反数是 -a;
(2)a和b互为相反数 a+b=0
2、倒数:
(1)实数a(a≠0)的倒数是 ;
(2)a和b 互为倒数 ;
(3)注意0没有倒数
3、绝对值:
(1)一个数a 的绝对值有以下三种情况:
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根
(1)平方根,算术平方根:设a≥0,称 叫a的平方根, 叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根: 叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
数学中距离的定义
距离一般指两点之间的线段。在数学中,距离是一种标量,不具有方向,不会是负数。同时,距离也是泛函分析中最基本的概念之一。从直观上看,如果将数列看成实数轴上的一列点,任意两点间的距离等于两点差的绝对值。
中括号在数学中的含义
在四则运算中,表示计算顺序,在小括号之后、大括号之前;表示两个整数的最小公倍数;表示取未知数的整数部分;在函数中,表示函数的闭区间;在线性代数中,表示矩阵;正则表达式中表示字符集合。
1、130÷[(3+7)×5],先算小括号里的(3+7),再算中括号里的[10×5],最后算括号外的130÷50。
2、[15,21]=105,表示两个整数15和21的最小公倍数是105.
3、[x]表示不超过x的最大整数。此性质还可用于判断一个数a是不是偶数,若[x/2]=x/2,是偶数,反之是奇数。
4、y=4x[1,10]表示函数的定义域是1到10中所有的实数,包括1和10本身。
篇11:中考数学实数复习资料
考点一、实数的概念及分类
1、实数的分类
正有理数
零 有限小数和无限循环小数
实数 负有理数
正无理数
无限不循环小数
负无理数
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如7,32 等;
(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如
(3)有特定结构的数,如0.1010010001 等;
(4)某些三角函数,如sin60 等
考点二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相
反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果
a 与b 互为相反数,则有a+b=0,a=―b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本
身,也可看成它的相反数,若|a|=a,则 a≥0;若|a|=-a,则 a≤0。正数大于零,负
数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1 和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根
1、平方根
如果一个数的平方等于a,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做
2、算术平方根
正数a 的正的平方根叫做a 的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( ) a2π3+8 等; oa” 。
; 注 意 a 的 双 重 非 负 性 : -a ( a<0 )
3、立方根
如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
[中考数学实数复习资料]
篇12:数学实数复习教学设计
数学实数复习教学设计
一、知识疏理,形成体系。(课前要求学生对本章知识进行总结)
师:本章的主要内容是开方运算。下面,我们以组为单位小结一下本章的知识点。
生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系。
开方包括开平方与开立方。通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根。依据这一思路,我们画出的知识结构图是:
师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?
生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要。因此我们是这样总结的`:
师:同样是开方运算,算术平方根,平方根,立方根有哪些区别和联系呢?
生:比较算术平方根,平方根,立方根的概念和性质,我们总结出了如下表的区别与联系。
师:同学们总结的非常好!不仅全面而且重点突出。下面我们针对刚才总结的内容做几道练习。
二、强化基础,巩固拓展。(也可以由学生提出典型薄弱题型进行讲解)
1.求下列各数的平方根:
(1) ;(2) ;(3) .
师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根。
生:
(1)是求 的平方根;
(2)是求16的平方根;
(3)是求 的平方根。
由学生独立完成。
2.x取何值时,下列各式有意义。
(1) ; (2) ;
(3)
师: 在什么情况下有意义?
生:对于 ,必须满足a≥0,它才有意义,所以被开方数必须是非负数。
(1)4+x≥0;
(2)4+x ≥0;
(3)2x-1取任意实数。
师:如何求出x的范围呢?
生:我们讨论后,得出如下结论:
(1)x≥4;
(2)不论x取什么实数,x ≥0,4+x ≥0,即x的取值范围是:x为全体实数。
(3)2x-1取任意实数,即x的取值范围是全体实数。
3.已知:|x-2|+ =0,求:x+y的值。
师:认真审题,考虑一下所给的这些数有什么特点。
生:|x-2|和 都是非负数。
师:两个非负数的和可能是0吗?
生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0.
由学生独立完成。
师:哪些数为非负数呢?
生:实数a的绝对值,表示为|a|,|a|是非负数;实数a的平方,表示为a2,a2是非负数;非负实数a的算术平方根表示为 , 是非负数。
师:非负数有什么特点?
生:(1)几个非负数的和仍为非负数;
(2)若几个非负数的和为0,则每一个非负数都必须为0.
4.掌握规律
那么:0.17201的平方根是多少呢?师:同学们仔细观察这道题,你发现了什么规律?如果是立方根呢?
由学生自己观察归纳。
三、查缺补漏,归纳提升。
1.通过今天的探究学习,你们有哪些收获?
2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零。此性质在解题时经常会被用到。
3.对于本章的内容你还有那些疑问?
★ 实数教案
★ 中考复习策略
★ 中考复习计划书
中考数学复习教案第一章实数(精选12篇)




