“Formula”通过精心收集,向本站投稿了12篇函数奇偶性课件,下面是小编整理后的函数奇偶性课件,欢迎您阅读分享借鉴,希望对您有所帮助。
- 目录
篇1:函数奇偶性课件
函数奇偶性课件
函数的奇偶性是指在关于原点的对称点的函数值相等。函数奇偶性课件内容,一起来看看!
课标分析
函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.
教材分析
教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.
教学目标
1 通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.
教学重难点
1理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.
2 在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的.
学生分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,(k≠0),二次函数y=ax2,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.
教学过程
一、探究导入
1 观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.
对于函数f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.
2观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.
可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.
二、师生互动
由上面的分析讨论引导学生建立奇函数、偶函数的定义
1 奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.
2 提出问题,组织学生讨论
(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?
(f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
(3)奇、偶函数的'定义域有什么特征?
(奇、偶函数的定义域关于原点对称)
三、难点突破
例题讲解
1 判断下列函数的奇偶性.
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1〕.
2 已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3 已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).
又f(x)是偶函数,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函数.
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
巩固创新
1 已知:函数f(x)是奇函数,在〔a,b〕上是增函数(b>a>0),问f(x)在〔-b,-a〕上的单调性如何.
2 f(x)=-x|x|的大致图像可能是( )
3 函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数.
4 设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、课后拓展
1 有既是奇函数,又是偶函数的函数吗?若有,有多少个?
2 设f(x),g(x)分别是R上的奇函数,偶函数,试研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3已知a∈R,f(x)=a- ,试确定a的值,使f(x)是奇函数.
4 一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
教学后记
这篇案例设计由浅入深,由具体的函数图像及对应值表,抽象概括出了奇、偶函数的定义,符合职高学生的认知规律,有利于学生理解和掌握.应用深化的设计层层递进,深化了学生对奇、偶函数概念的理解和应用.拓展延伸为学生思维能力、创新能力的培养提供了平台。
篇2:高一函数的奇偶性课件
一、三维目标:
知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的'情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:
重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:
学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:
1.复习在初中学习的轴对称图形和中心对称图形的定义:
2.分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。
五、学习过程:
篇3:高一函数的奇偶性课件
(1)对于函数,其定义域关于原点对称:
如果______________________________________,那么函数为奇函数;
如果______________________________________,那么函数为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。
六、达标训练:
A1、判断下列函数的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+(4)f(x)=
A2、二次函数是偶函数,则b=___________.
B3、已知,其中为常数,若,则
_______.
B4、若函数是定义在R上的奇函数,则函数的图象关于
(A)轴对称(B)轴对称(C)原点对称(D)以上均不对
B5、如果定义在区间上的函数为奇函数,则=_____.
C6、若函数是定义在R上的奇函数,且当时,,那么当
时,=_______.
D7、设是上的奇函数,,当时,,则等于()
(A)0.5(B)(C)1.5(D)
D8、定义在上的奇函数,则常数____,_____.
七、学习小结:
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
八、课后反思:
篇4:函数的奇偶性数学课件
函数的奇偶性数学课件
一、教学目标
(一)通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象概括能力.
(二)理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.
(三)在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的.
二、任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax■,(a≠0),故可在此基础上,引入奇、偶函数的概念,便于学生理解.在引入概念时始终结合具体函数的图像,增强直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于有定义域奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念——非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想的效果.
三、教学设计
(一)问题情景
1.观察如下两图(图略),思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.
2.观察函数f(x)=x和f(x)=的.图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.
可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.
(二)建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义.
1.奇、偶函数的定义.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.
2.提出问题,组织学生讨论.
(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?
(f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
(3)奇、偶函数的定义域有什么特征?
(奇、偶函数的定义域关于原点对称)
(三)解释应用
[例题]
1.判断下列函数的奇偶性.
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].
2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),而f(x)是奇函数,∴f(-x)=-f(x),∴f(x)=x(1-x).
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)内是增函数,还是减函数,并证明你的结论.
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)内是增函数,证明如下:
∴f(x)在(0,+∞)上是增函数.
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
[练习]
1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.
4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
(四)拓展延伸
1.有既是奇函数,又是偶函数的函数吗?若有,有多少个?
2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.
4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
篇5:函数奇偶性判断
判断方法
1、先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性。
2、根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)
3、若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇。
4、若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶。
5、若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇。
篇6:函数奇偶性练习题
函数奇偶性练习题精选
函数奇偶性练习题精选
11.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为________.
答案 0
512.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(=________. 2
1答案 - 2
5551111解析 依题意,得f(=-f=-f(-2)=-f=-2×(1-)=-2222222
13.函数f(x)=x3+sinx+1的图像关于________点对称.
答案 (0,1)
解析 f(x)的图像是由y=x3+sinx的图像向上平移一个单位得到的.
14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为________. 答案 -4
15.定义在(-∞,+∞)上的函数y=f(x)在(-∞,2)上是增函数,且函数y=f(x+2)为偶函数,则f(-
11),f(4),f(5的大小关系是__________. 2
1答案 f(5) 解析 ∵y=f(x+2)为偶函数, ∴y=f(x)关于x=2对称. 又y=f(x)在(-∞,2)上为增函数, ∴y=f(x)在(2,+∞)上为减函数,而f(-1)=f(5), 1∴f(5<f(-1)<f(4). 2 16.(2015·湖北八校)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),求: (1)f(0)与f(2)的值; (2)f(3)的值; (3)f(2 013)+f(-2 014)的值. B.-1 11D.-4 答案 (1)f(0)=0,f(2)=0 (2)f(3)=-1 (3)1 解析 (2)f(3)=f(1+2)=-f(1)=-log2(1+1)=-1. (3)依题意得,x≥0时,f(x+4)=-f(x+2)=f(x),即x≥0时,f(x)是以4为周期的函数. 因此,f(2 013)+f(-2 014)=f(2 013)+f(2 014)=f(1)+f(2).而f(2)=-f(0)=-log2(0+1)=0,f(1)=log2(1+1)=1,故f(2 013)+f(-2 014)=1. 17.若f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值8,求F(x)在(-∞,0)上的`最小值. 答案 -4 解析 由题意知,当x>0时,F(x)≤8. ∵f(x),g(x)都是奇函数,且当x<0时,-x>0. ∴F(-x)=af(-x)+bg(-x)+2 =-af(x)-bg(x)+2 =-[af(x)+bg(x)+2]+4≤8. ∴af(x)+bg(x)+2≥-4. ∴F(x)=af(x)+bg(x)+2在(-∞,0)上有最小值- 4. 1.已知f(x)是在R上的奇函数,f(1)=2,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(3)=________;f(2 019)=________. 答案 0 0 解析 在f(x+6)=f(x)+f(3)中,令x=-3,得f(3)=f(-3)+f(3),即f(-3)=0. 又f(x)是R上的奇函数,故f(3)=0. 即f(x+6)=f(x),知f(x)是周期为6的周期函数,从而f(2 019)=f(6×336+3)=f(3)=0. 12.若f(x)是定义在(-1,1)上的奇函数,且x∈[0,1)时f(x)为增函数,则不等式f(x)+f(x<0的解集2 为________. 11答案 {x|<x<} 24 解析 ∵f(x)为奇函数,且在[0,1)上为增函数, ∴f(x)在(-1,0)上也是增函数. ∴f(x)在(-1,1)上为增函数. 1f(x)+f(x-<0? 2 11f(x)<-f(x)=f(-x)? 22 1-1<2-x<1, 高中数学课件奇偶性 高中数学课件奇偶性 教学目标: 1、在实践活动中认识奇数和偶数 ,了解奇偶性的规律。 2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。 3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。 教学重点: 探索并理解数的奇偶性 教学难点: 能应用数的奇偶性分析和解释生活中一些简单问题 教学过程: 一、游戏导入,感受奇偶性 1、游戏:换座位 首先将全班45个学生分成6组,人数分别为5、6、7、8、9、10。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。 (游戏后学生发现6人、8人、10人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位) 2、讨论:为什么会出现这种情况呢? 学生能很直观的找出原因,并说清这是由于6、8、10恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。 (此时学生议论纷纷,正是引出偶数、奇数的最佳时机) 3、小结:交换位置时两两交换,刚好都能换位置,像6、8、10……是2的倍数,这样的数就叫做偶数;而有人不能与别人换位置,像5、7、9……不时的倍数,这样的数就叫做奇数。 学生相互举例说说怎样的.数是奇数,怎样的数是偶数。 二、猜想验证, 认识奇偶性 1、设置悬念、激发思维 现在我们继续来考虑六组人数:5人、6人、7人、8人、9人、10人,那么猜猜那些组合起来能够刚好换完?那些不能? 2、学生猜想、操作验证 学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。 汇报成果: 奇数﹢奇数=偶数 奇数-奇数=偶数 奇数+奇数+……+奇数=奇数 奇数个 偶数+偶数=偶数 偶数-偶数=偶数 奇数+奇数+……+奇数=偶数 偶数个 奇数+偶数=奇数 奇数-偶数=奇数 偶数+偶数+……+偶数=偶数 你能举几个例子说明一下吗? (学生的举例可以引导从正反两个角度进行) 3、深化 请同学们闭上眼睛,想一想:2+4+6+8+……+98+100这么多偶数相加的和是偶数还是奇数?为什么? 三、实践操作、应用奇偶性 我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。 1、一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动100次?105次? 学生动手操作,发现规律:奇数次朝下,偶数次朝上。 2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下? 你手上只有一个杯子怎么办?(学生:小组合作) 学生开始动手操作。 反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。 引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。 学生动手操作,尝试发现 交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。 学生再次操作,感受过程,体验结论。 3、游戏。 规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加? 学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么? 生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。 是呀,这是老师在街上看到的一个骗局,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?学生自由说。 四、课堂小结,课后延伸。 1、说说我们这节课探索了什么?你发现了什么? 2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次? 请同学们课后去尝试探索这个命题,可以独立思考,也可以找人合作。 函数奇偶性知识点总结 函数奇偶性知识点总结 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。 可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的.位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数 1、定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2、奇偶函数图像的特征: 定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。 f(x)为奇函数《==》f(x)的图像关于原点对称 点(x,y)(—x,—y) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。 偶函数在某一区间上单调递增,则在它的对称区间上单调递减。 3、奇偶函数运算 (1)、两个偶函数相加所得的和为偶函数。 (2)、两个奇函数相加所得的和为奇函数。 (3)、一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。 (4)、两个偶函数相乘所得的积为偶函数。 (5)、两个奇函数相乘所得的积为偶函数。 (6)、一个偶函数与一个奇函数相乘所得的积为奇函数。 一、教材分析 (一)教材特点、教材的地位与作用 本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。 函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。 (二)重点、难点 1、本课时的教学重点是:函数的奇偶性及其几何意义。 2、本课时的教学难点是:判断函数的奇偶性的方法与格式。 (三)教学目标 1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法; 2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。 3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 二、教法、学法分析 1、教学方法:启发引导式 结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用“引导发现法”进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。 2、学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习。 三、教辅手段 以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学 四、教学过程 为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。 (一)设疑导入,观图激趣 让学生感受生活中的美:展示图片蝴蝶,雪花。 学生举例生活中的对称现象 折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。 问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点。 以y轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的.痕迹,然后将纸展开。观察坐标喜之中的图形: 问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点 (二)指导观察,形成概念 这节课我们首先从两类对称:轴对称和中心对称展开研究。 思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何 给出图象,然后问学生初中是怎样判断图象关于 轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律。 借助课件演示,学生会回答自变量互为相反数,函数值相等。接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。 思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征。 引导学生发现函数的定义域一定关于原点对称。根据以上特点,请学生用完整的语言叙述定义,同时给出板书: (1)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数。 提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢 。 学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义: (2)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数 强调注意点:“定义域关于原点对称”的条件必不可少。 接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤: (1)求出函数的定义域,并判断是否关于原点对称。 (2)验证f(-x)=f(x)或f(-x)=-f(x) 3)得出结论。 给出例题,加深理解: 例1,利用定义,判断下列函数的奇偶性: (1)f(x)= x2+1 (2)f(x)=x3-x (3)f(x)=x4-3x2-1 (4)f(x)=1/x3+1 提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢? 得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数。 接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x) 然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法: 函数f(x)是奇函数=图象关于原点对称 函数f(x)是偶函数=图象关于y轴对称 给出例2:书P63例3,再进行当堂巩固, 1。书P65ex2 2。说出下列函数的奇偶性: Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3 归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数 (三)学生探索,发展思维。 思考:1,函数y=2是什么函数 2,函数y=0有是什么函数 (四)布置作业: 课本P39习题1、3(A组) 第6题, B组第3 五、板书设计 判断函数奇偶性的方法 1.先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性 2.根据分解的.函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法) 3.若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇 4.若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶 5.若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇 浅谈函数奇偶性的判别 函数的`奇偶性是函数的重要性质之一,尽管这一部分不算难点,但要真正掌握也不太客易.本文概括了判别函数奇偶性的几种方法,以便于准确,快速的解决相关命题.篇7:高中数学课件奇偶性
篇8:函数奇偶性知识点总结
篇9:《函数的奇偶性》说课稿
篇10:怎么判断函数的奇偶性
篇11:浅谈函数奇偶性的判别
篇12:函数奇偶性教学反思
函数奇偶性教学反思
本节课的教学模式是采用循序渐进,由简单的问题引入,然后在教师的引导下,探索结论,最后,在教师的指导下,对所学的实际结论进行学生的实际应用。
一、这种教学模式的教学程序是:
(一)实际练习引入课题,并能去发现生活中的相关信息,引起学生的兴趣。
(二)看图,具体引入函数进行观察探索,包括图像观察,自变量的变化,函数值的变化规律。
(三)明确这是函数的一种性质,明确定义,并强调定义中的注意事项,怎样理解定义中的规定。
(四)教师具体以例题进行示范,学生们领会对函数奇偶性的`认识,并怎样进行判断
(五)同学们在领会的基础上,进行实际训练,达到对知识的理解和应用。
二、这种教学模式的优势是:循序渐进,学生能够实际参与,在教学中体现和谐,教师的导和学生的练保证教学的效果。
这种教学模式的缺点与解决方法是:
还缺乏对学生更高层次的参与的调动,尤其是职业中学中部分在初中已经放弃学习的同学的参与问题。对配套练习要进一步细化,要对每一个知识点都要精心设计相应知识点的训练,图像的认识上,要加大同学们对生活的感知和相关软件的使用,并能在电脑上实际体验函数图像的对称情况。
★ 函数课件
★ 函数指针
★ 二次函数教案
★ 二次函数练习题
★ 反比例函数测试题
★ 函数的意思
函数奇偶性课件(精选12篇)




