“wumansha522”通过精心收集,向本站投稿了14篇数学教案设计:函数,下面是小编为大家整理后的数学教案设计:函数,仅供参考,欢迎大家阅读,一起分享。
- 目录
篇1:数学教案设计:函数
数学教案设计:函数
教材:映射
目的:要求学生了解映射和一一映射的概念,为今后在此基础上对函数概念的理解打下基础。
过程:
一、复习:以前遇到过的有关“对应”的例子
1、看电影时,电影票与座位之间存在者一一对应的关系。
2、对任意实数a,数轴上都有唯一的一点A与此相对应。
3、坐标平面内任意一点A 都有唯一的有序数对(x, y)和它对应。
4、任意一个三角形,都有唯一的确定的面积与此相对应。
二、提出课题:一种特殊的对应:映射
引导观察,分析以上三个实例。注意讲清以下几点:
1.先讲清对应法则:然后,根据法则,对于集合A中的'每一个元素,在集合B中都有一个(或几个)元素与此相对应。
2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④)
3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。
4.注意映射是有方向性的。
5.符号:f : A B 集合A到集合B的映射。
6.讲解:象与原象定义。
再举例:1?A={1,2,3,4} B={3,4,5,6,7,8,9} 法则:乘2加1 是映射
2?A=N+ B={0,1} 法则:B中的元素x 除以2得的余数 是映射
3?A=Z B=N* 法则:求绝对值 不是映射(A中没有象)
4?A={0,1,2,4} B={0,1,4,9,64} 法则:f :a b=(a?1)2 是映射
三、一一映射
观察上面的例图(2) 得出两个特点:
1、对于集合A中的不同元素,在集合B中有不同的象 (单射)
2、集合B中的每一个元素都是集合A中的每一个元素的象 (满射)
即集合B中的每一个元素都有原象。
结论:从而得出一一映射的定义。
例一:A={a,b,c,d} B={m,n,p,q}
它是一一映射
例三:看上面的图例(2)、(3)、(4)及例1?、2?、4? 辨析为什么不是一一映射。
篇2:初二数学:函数应用教案设计参考
教学目标
1、使学生能从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.
2、能利用函数图象解决简单的实际问题,提高学生的数学应用能力。
3、通过函数在实际中的应用,体会数学来源于生活,通过探索生活中某些变量的关系体会事物之间是互相依存的辨证观点。
教学重点 数形结合思想的应用
教学难点 函数与方程、不等式的综合运用
教学过程
一.提出问题,创设情境
王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).
1、图中有一个直角坐标系,它的横轴(x轴)和纵轴(y轴)各表示什么?
2、如图,线段上有一点P,则P的坐标是多少?表示的实际意义是什么?
答:1、横轴(x轴)表示两人爬山所用时间,纵轴(y轴)表示两人离开山脚的距离.2、P的坐标是(3,90).表示小强爬山3分后,离开山脚的距离90米.
我们能否从图象中看出其它信息呢?
二.导入新课
看上面问题的图,回答下列问题:
(1)小强让爷爷先上多少米?
(2)山顶离山脚的距离有多少米?谁先爬上山顶?
分析 (1)小强让爷爷先跑的路程,应该看表示爷爷的这条线段.由于从小强开始爬山时计时的,因此这时爷爷爬山所用时间是0,而x轴表示爬山所用时间,得x=0.可在线段上找到这一点A(如图).A点对应的函数值y=60.
(2) y轴表示离开山脚的距离,山顶离山脚的距离指的是离开山脚的最大距离,也就是函数值y取最大值.可分别在这两条线段上找到这两点B、C(如图),过B、C两点分别向x轴、y轴作垂线,可发现交y轴于同一点Q(因为两人爬的是同一座山), Q点的数值就是山顶离山脚的距离,分别交x轴于M、N,M、N点的数值分别是小强和爷爷爬上山顶所用的时间,比较两值的大小就可判断出谁先爬上山顶.
解:(1)小强让爷爷先上60米;
(2)山顶离山脚的距离有300米,小强先爬上山顶.
小结:在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标意义.如图中的点P(3,90),这一点表示小强爬山3分后,离开山脚的距离90米.再从图形中分析两变量的相互关系,寻找对应的`现实情境.如图中的两条线段都可以看出随着自变量x的逐渐增大,函数值y也随着逐渐增大,再联系现实情境爬山所用时间越长,离开山脚的距离越大,当x达到最大值时,也就是到达山顶.
三、例题与练习
例1、学校有一批复印任务,原来由甲复印社承接,按每100页40元计费。现乙复印社表示:若学校先按月付给一定数额的承包赞,则可按每100页15元收费。两复印社每月收费情况如图所示。
根据图象回答:
(1)乙复印社的每月承包费是多少?
(2)当每月复印多少页时.两复印社实际收费相同?
(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?
请同学们讨论、解答、并交流自己的解答;教师引导学生如何读懂图形语言.并把图形语言转化为数学语言或文字语言。
解:(1)乙复印社的每月承包费是200元;(2)当每月复印800页时,两复印社实际收费相同;(3)如果每月复印页数在1200页左右,那么应选择乙复印社。
例2、小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你由图具体说明小明散步的情况.
分析 从图中可发现函数图象分成四段,因此说明小明散步的情况应分成四个阶段.
线段OA:O点的坐标是(0,0),因此O点表示小明这时从家里出发,然后随着x值的增大,y值也逐渐增大(散步所用时间越长,离家的距离越大),最后到达A点,A点的坐标是(3,250),说明小明走了约3分钟到达离家250米处的一个阅报栏.
线段AB:观察这一段图象可发现x值在增大而y值保持不变(小明这段时间离家的距离没有改变),B点横坐标是8,说明小明在阅报栏前看了5分钟报.
线段BC:观察这一段图象可发现随着x值的增大,y值又逐渐增大,最后到达C点,C点的坐标是(10,450),说明小明看了5分钟报后,又向前走了2分钟,到达离家450米处.
线段CD:观察这一段图象可发现随着x值的增大,而y值逐渐减小(10分钟后散步所用时间越长,离家的距离越小),说明小明在返回,最后到达D点,D点的纵坐标是0,表示小明已到家.这一段图象说明从离家250米处返回到家小明走了6分钟.
解: 小明先走了约3分钟,到达离家250米处的一个阅报栏前看了5分钟报,又向前走了2分钟,到达离家450米处返回,走了6分钟到家.
四、小结
在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标的实际意义.然后观察图形,分析两变量的相互关系,给合题意寻找对应的现实情境.
五、作业
六、课后随笔
篇3:《比例函数》教案设计
《比例函数》教案设计范例
学习目标:
1、理解正比例函数的概念,在用描点法画正比例函数图象过程中发现正比例函数图象性质
2、能用正比例函数图象的性质简便地画出正比例函数图像
3、能够利用正比例函数解决简单的数学问题
学习重点:画正比例函数图像及总结正比例函数的性质
学习难点:正比例函数图像的性质
思维导航:正比例函数中对比例系数K是常数且K=0
结合图像归纳出正比例函数的增减性
学习过程:
(一) 、正比例函数的概念
1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式。这些函数解析式有哪些共同特征?
(1)圆的周长l随半径r的变化而变化。
(2)铁的密度为7.8g/cm,铁块的质量m(单位:g)随它的体积V(单位:cm)的变化而变化。
(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化。
(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:min)的变化而变化。
2.观察“思考”所得的四个函数;
(1)观察这些函数关系式,这些函数都是常数与自变量 的形式;
(2)一般地,形如 ( )函数,叫做正比例函数,其中k叫做 。
跟踪练习(一):
1、下列函数中,那些是正比例函数?______________
(1)y?33x42 (2)y?3x?1 (3)y?1 (4)y?8x (5)y= (6) y=x 3x
2.已知一个正比例函数的比例系数是-5,则它的解析式为____________
3.关于x的函数y?(m?1)x是正比例函数,则m__________
4.若y=5x
5. 若
3m-2是正比例函数,则m=___________. ny?(n?1)x是正比例函数,则n=
(二)正比例函数图像的画法与性质
知识链接:用描点法画函数图象的一般步骤:
①______________,②___________________③___________________
用描点法画出下列函数的图像
(1)y=2x
解:列表得:
观察所画图像,填写你发现的规律:
(1) 函数y?2x的图像是经过原点的 __________,
(2) 函数y?2x的图像经过第_______象限,从左到右_______,即y随x的增大而
________;
(3) 函数y?kx(k?0)的.图像经过第_______象限,从左到右_______,即y随x的增
大而________;
(2) y=-2x
解:列表得:
观察所画图像,填写你发现的规律:
(4) 函数y??2x的图像是经过原点的 __________.
(5) 函数y??2x的图像经过第_______象限,从左到右呈_______趋势,即y随x的增
大而________;
(6) 函数y?kx(k?0)的图像经过第_______象限,从左到右呈_______趋势,即y随
x的增大而________;
总结:正比例函数的性质
正比例函数y?kx(k≠0)是一条经过 .
当k >0时,直线经过 象限,从左到右呈 趋势,即y随x的增大而
当k〈0时,直线经过象限,从左到右呈即y随x的减小
而
跟踪练习(二):
x,1.已知正比例函数y?(3k?1)・若y随x的增大而增大,则k的取值范围是( ) A.k<0 b.k=“”>0 C.k?11 D. k? 33
2.已知正比例函数y?kx(k?0)的图像过第二、四象限,则( )
A、y随x的增大而增大 B、y随x的增大而减小
C、当x?0时,y随x的增大而增大;当x?0时,y随x的增大而减少;
D、不论x如何变化,y不变。
3.当x?0时,函数y?x的图像在第( )象限。
A、一、三 B、二、四 C、二 D、三
4.函数y??5x的图像在第_______象限,经过点(0,____)与点(1,____),y随x的增大而_________
(三)两点法画正比例函数的图像
1.因为 点确定一条直线,我们在画正比例函数图象时,只需确定两点即可,通常是( , )和( , )
2.试一试:用最简单的方法画出下列函数的图像
(1)、y=-3x (2) y=
1x 2
(四)达标测评 1.y=3x2, y=, y=3x+9, y=2x中,正比例函数是____________. x4
22.若x、y是变量,且函数y=(k+1)xk是正比例函数,则k=_________.
3.若函数y?(m?4)x是关于x的正比例函数,则m
4.函数y?kx的图像经过点P(-1,3)则k的值为( )
A、3 B、―3 C、11 D、? 33
5.正比例函数y=kx(k为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.
6.函数y=kx(k≠0)的图象过P(-3,3),则k=____,图象过_____象限。
7.设函数y?(2m?6)x|m|?2是正比例函数,且图像过一、三象限,则m的值为 。
8. 在函数y=2x的自变量中任意取两个点x1,x2,若x1<x2,则对应的函数值y1与y2的大小关系是y1___y2.
9.已知y与x成正比例,且x=2时y=-6,则y=9时x的值
10.已知点A(-2,3),B(5,m)在正比例函数的图象上,求m的值。
篇4:《正比例函数》教案设计
《正比例函数》教案设计
教学目标:
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于与正比例函数概念的理解.
教学难点:根据具体条件求与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的'能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式.
一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的.特别地,当b=0时, 就成为( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小r后,共漏出原油多少公升
篇5:函数教学教案设计
第六章 一次函数
1.函数
成都七中育才学校 鄢正清、魏进华
一、学生起点分析
在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。
二、教学任务分析
《函数》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》第一节的内容。
● 教材内容
本节内容安排了1个学时。
教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。
● 教材地位及作用
函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容。本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。
三、教学目标分析
教学目标:
● 知识与技能目标
1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;
2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;
3.了解函数的三种表示方法。
● 过程与方法目标
1.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;
2.经历从具体实例中抽象概括的过程,进一步发展学生的抽象思维能力,体会函数的模型
思想;
3.通过对函数概念的学习,培养学生的语言表达能力。
●情感与态度目标
1.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神 ●教学重点:
1.掌握函数的概念,以及函数的三种表示方法;
2.会判断两个变量之间是否是函数关系。
●教学难点:1.对函数概念的理解;
2.把实际问题抽象概括为函数问题。
四、教学准备
教具:教材,课件,电脑
学具:教材,笔,练习本
五、教学过程设计
本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业
第一环节:创设情境、导入新课
内容:
展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。
意图:
承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
效果:
生活实例,激发了学生的研究热情,起到很好的导入效果。
第二环节:展现背景,提供概念抽象的素材
内容:
问题1.你去过游乐园吗?你坐过摩天轮吗?你能
描述一下坐摩天轮的感觉吗?
当人坐在摩天轮上时,人的高度随时间在变
化,那么变化有规律吗?
摩天轮上一点的高度h与旋转时间t之间有
一定的关系,右图就反映了时间t(分)与摩天轮
上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?
2v问题2 .在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式s?
,300
其中v表示刹车前汽车的速度(单位:千米/时).
(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?
(2)给定一个v值,你都能求出相应的s值吗?
问题3.如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:
表格中有几个变量?按图中方式搭100个正方形,需要多少根火柴棒?若搭n个正方形,需要多少根火柴棒?
意图:
通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等).
效果:
通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点.
第三环节:概念的抽象
内容:
1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:
在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的值.
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.
2.点明函数概念中的两个关键词:两个变量,一个x值确定一个y值,它们是判断函数关系的关键。
3.再通过对上面3个情境的比较,引导学生思考三个情境呈现形式的不同(依次以图像、代数表达式、表格的形式反映两个变量之间的关系),得出函数常用的三种表示方法:
(1) 图象法 ; (2)列表法 ; (3)解析法。
意图:
通过比较异同点,揭示函数的本质概念和不同的表示方法。
效果:
教学过程中,由于有了七年级较好的铺垫,学生都能顺利地抽象出有关概念。
第四环节:概念辨析与巩固
内容:
1.介绍常量与变量的概念
常量:在某一变化过程中,始终保持不变的量;
变量:在某一变化过程中,可以取不同数值的量.
指出下列关系式中的变量与常量:
22(1)球的表面积S(cm)与球半径R(cm)的关系式是S=4?R
(2)以固定的速度V0(米/秒)向上抛一个球,小球的高度h(米)与小球运动的时间t
2 (秒)之间的关系式是h=V0t-4.9t.
2.概念应用举例
1. 小明骑车从家到学校速度是15千米/时,你能表示出他走过的路程s与时间t之间的变化关系吗?S是t的函数吗?路程s随时间t的变化的图像是什么?
略解:S=15t,是函数,图像略.
2. 如果A、B路程为200千米,一辆汽车从A地到B地行驶的速度v与行驶时间t是怎样的变化关系?V是t的函数吗?速度v随时间t的变化的图像是什么? 200v?略解:,是函数,图像略. t3. 若正方形的边长为x,则面积y与边长x之间的关系是什么?y是x的函数吗?面积y随边长x的变化的图像是什么?
2略解:s=x,是函数,图像通过课件展示给同学们
意图:
通过常量与变量的区别阐述,进一步理解函数的关键;通过三个例题,对函数概念进行更深入的探讨,再次揭示函数概念的本质特征.
效果:
通过对函数基本特征的反复比较与探究,学生能比较深刻地理解函数的概念;同时三个例题涉及了初中阶段将要学到一次函数、反比例函数和二次函数,也为学生将来学习这三种函数留下了一个初步的印象.
第五环节:课时小结
内容:请同学们针对本节的内容进行自我小结,学生之间相互补充后;最后教师总结。 意图:
引导学生自己总结本节课的知识要点和数学学习方法,使学生从感性上升到理性,形成系统的知识。
效果:
学生各抒己见,然后相互补充完善,最后师生共同完成了小结内容。当然,在学生发言时,教师要注意学生的语言表述的准确性。
最终总结了下面的内容:
1.初步掌握函数的概念,并能判断两个变量之间的关系是否是函数的关系。
理解函数的概念应抓住以下三点:
(1)函数的概念由三句话组成:“两个变量”,“x的每一个值”,“y有确定的值”;
(2)判断两个变量是否有函数关系不是看它们之间是否有关系是存在,更重要的是看对于x的每一个确定的值,y是否有唯一确定的值与之对应;
(3)函数不是数,它是指在某一变化的过程中两个变量之间的关系。
2.在一个函数关系式中,能识别自变量与因变量,并能由给定的自变量的值,相应的求出函数的值。
3.函数的三种表达式:
(1)图象法(用图像来表示函数的方法);
(2)列表法(把自变量x的一系列值和函数y的对应值列成一个表格来表示函数的反方法);
(3)解析法(用代数式来表示函数的方法,用来表示函数关系的式子叫做函数关系式,
函数关系式是等式,在书写时有顺序性,一般写成:“函数=函自变量的代数式”的形式)。
4.学会用辩证唯物主义的观点的看待一个问题。
5.本节课用到的基本思想是:通过观察、分析、对比、归纳等过程获取数学知识.
第六环节:布置作业
习题6.1
六、教学设计反思
(1)突出重点、突破难点的策略
函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段的一个重要的内容。函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。
(2)评价方式
根据新课标的评价理念,教师在课堂中应尊重学生的个体差异,满足多样化的学习需求,鼓励学生探索方式、表达方式和解题方法的多样化。在教学活动中教师要关注学生的参与程度和表现出来的思维水平,应关注的是学生对概念的理解水平和学生的语言表达的能力,应关注学生对概念理解的程度和是否能准确的判断所给的问题是否是函数关系,关注学生能否用辩证唯物主义的观点看待事物,教学中又通过学生“议一议”、“想一想”等活动情况和学生对反馈练习的完成情况,分析学生的认识状况和列出函数关系的能力水平。另外,对于学生的回答教师应给预恰当的评价和鼓励,帮助学生认识自我,建立自信,发挥评价的教育功能。
附:板书设计
篇6:函数教学教案设计
教学目标:
知识目标—— 通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型;用集合与对应的思想理解函数的概念;理解函数的三要素及函数符号的深刻含义. 能力目标—— 培养学生观察、类比、推理的能力;培养学生分析、判断、抽象、归纳概括的能力;强化“形”与“数”结合并相互转化的数学思想.
情感目标——探究过程中,强化学生参与意识,激发学生观察、分析、探求的兴趣和热情;体会由特殊到一般、从具体到抽象、运动变化、相互联系、相互制约、相互转化的辩证唯物主义观点;逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识;感受数学的抽象性和简洁美渗,透数学思想和文化.
教学重点: 理解函数的模型化思想,用集合与对应的语言来刻画函数. 教学难点:函数符号y=f(x)的理解,函数概念的`整体性认识. 教学方法: 问题式教学法、探究式教学法. 教学用具:多媒体 教学流程:
教学过程:
篇7:函数教学教案设计
本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本(A版)》的第一章1.2.1函 数的概念。函数是中学数学中最重要的基本概念之一,它贯穿在中学代数的始终,从初一字母表示数开始引进了变量,使数学从静止的数的计算变成量的变化,而且变量之间也是相互联系、相互依存、相互制约的,变量间的这种依存性就引出了函数。在初中已初步探讨了函数概念、函数关系的表示法以及函数图象的绘制。到了高一再次学习函数,是对函数概念的再认识,是利用集合与对应的思想来理解函数的定义,从而加深对函数概念的理解。函数与数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、互相转化。函数的学习也是今后继续研究数学的基础。在中学不仅学习函数的概念、性质、图象等知识,尤为重要的是函数的思想要更广泛地渗透到数学研究的全过程。
函数是中学数学的主体内容,起着承上启下的作用。函数又是初等数学和高等数学衔接的枢纽,特别在应用意识日益加深的今天,函数的实质是揭示了客观世界中量的相互依存又互有制约的关系。因此对函数概念的再认识,既有着不可替代的重要位置,又有着重要的现实意义。本节的内容较多,分二课时。本课时的内容为:函数的概念、函数的三要素、简单函数的定义域及值域的求法、区间表示等。(第二课时内容为:函数概念的复习、较复杂函数的定义域及值域的求法、分段函数、函数图象等)
【学情分析】
学生在学习本节内容之前,已经在初中学习过函数的概念,并且知道可以用函数描述变量之间的依赖关系。然而,函数概念本身的表述较为抽象,学生对于动态与静态的认识尚为薄弱,对函数概念的本质缺乏一定的认识,对进一步学习函数的图象与性质造成了一定的难度。初中是用运动变化的观点对函数进行定义,虽然这种定义较为直观,但并未完全揭示出函数概念的本质。例如,对于函数
?1,当x是有理数时
如果用运动变化的观点去看它,就不好解释,显得牵强。但f(x)??
?0,当x是无理数时
如果用集合与对应的观点来解释,就十分自然。因此,用集合与对应的思想来理解函数,对函数概念的再认识,就很有必要。由于数学符号的抽象性,学生因此会望而却步,从而影响了学生学习数学的积极性。高一学生虽然在初中已接触了函数的概念,但在重新学习它时还是存在一定的障碍,其中一个原因就是对新引进的函数符号“y=f(x)”不甚其解。教师应在教学中有意识地挖掘函数符号的审美因素,以美启真。在本节课的教学过程中,教师应该给学生提供实践动手的机会,为学生创设熟悉的问题情境,引导学生观察、计算、思考,从而理解问题的本质,归纳总结出结论。
【学法指导】
本节内容的学习要注意运动变化观和集合对应观两个观念下函数定义的对比研究;注意借助熟悉的一次函数、二次函数、反比例函数加深对函数这一抽象概念的理解;要重视符号f(x)的学习,借助具体函数来理解符号y=f(x)的含义,由具体到抽象,克服由抽象的数学符号带来的理解困难,从而提高理解和运用数学符号的能力。
【教学目标】
知识目标—— 通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数
学模型;用集合与对应的思想理解函数的概念;理解函数的三要素及函数符号的深刻含义;会求一些简单函数的定义域及值域。
能力目标—— 培养学生观察、类比、推理的能力;培养学生分析、判断、抽象、归纳
概括的逻辑思维能力;培养学生联系、对应、转化的辩证思想;强化“形”与“数”结合并相互转化的数学思想。
情感目标—— 渗透数学思想和文化,激发学生观察、分析、探求的兴趣和热情;强化
学生参与意识,培养学生严谨的学习态度,获得积极的情感体验;体会在探究过程中由特殊到一般、从具体到抽象、运动变化、相互联系、相互制约、相互转化的辩证唯物主义观点;感受数学的简洁美、对称美、数与形的和谐统一美;树立“数学源于实践,又服务于实践”的数学应用意识。
【教学重点】函数的概念及y=f(x)的理解与深化。
【教学难点】函数的概念及函数符号f(x)的理解。
【教学关键】在集合与对应的基础上理解函数的概念。
【教学方法】 以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的
启发式教学为主,变式教学为辅,及引导、探究、讲解、演练相结合。在教学过程中,多一点情境和归纳,多一点探索和发现,多一点思考和回顾。通过不同形式的自主学习、探究活动,丰富和改善教与学的方式,体验数学发现和创造的历程,发展创新意识和实践能力。
在课堂结构上,设计“创设情境——引入课题;引导探求——形成知识;变式训练——巩固知识;讨论研究——深化知识;总结反思——提高认识;任务后延——自主探究”这样几个主要环节,环环相扣,层层深入,以期达到教学目标。
设计思想
篇8:函数教学教案设计
第一章 第二节第一课时 函数的概念
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量
之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数
模型化的思想.
教学目的:使学生掌握函数的概念,并能应用函数的概念解决一些实际问题。
知识与技能:
(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素,会求一些简单函数的定义域和值域;
(3)掌握区间的概念,学会正确使用“区间”的符号表示函数的定义域与值域;
过程与方法:
(1)经历从实例中概括出“函数”定义的过程,培养抽象概括的能力;
(2)经历本节课的学习,学会运用函数解决问题;
情感态度与价值观:
理解函数的模型化思想。
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学方法:自学法和尝试指导法
教学过程:
(一)引入问题
问题1 初中我们学过哪些函数?(正比例函数、反比例函数、一次函数和二次函数) 问题2 初中所学函数的定义是什么?(设在某变化过程中有两个变量x和y,,如果给定了一个x的值,相应地确定唯一的一个y值,那么就称y是x的函数,其中x是自变量,y是因变量)。
(二)函数的感性认识
教材例子(1):炮弹飞行时间的变化范围是数集A?{x0?x?26},炮弹距地面的高度h的变化范围是数集B?{h0?h?845},对应关系h?130t?5t2 (*)。从问题的实际意义可知,对于数集A中的任意一个时间t,按照对应关系(*),在数集B中都有唯一确定的高度h和它对应。
例子(2)中数集A?{t?t?2001},B?{S0?S?26},并且对于数集A中的任意一个时间t,按图中曲线,在数集B中都有唯一确定的臭氧层空洞面积S和它对应。
例子(3)中数集A?{1991,1992,?,2001},B?{53.8,52.9,?,37.9(%)},且对于数集A中的每一个时间(年份),按表格,在数集B中都有唯一确定的恩格尔系数和它对应。
(三)归纳总结给函数“定性”
归纳以上三例,三个实数中变量之间的关系都可以描述为两个数集A、B间的一种对应关系:对数集A中的每一个x,按照某个对应关系,在数集B中都有唯一确定的y和它对应,记作f:A?B。
(四)理性认识函数的定义
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A?B为从集合A到集合B的一个函数,记作y?f(x),x?A,其中x叫做自变量,x的取值范围A叫做函数的定义
域,与x的值相对应的y的值叫做函数值,函数值的集合{f(x)x?A}叫做函数的值域。
定义域、值域、对应法则,称为函数的三个要素,缺一不可;
(1)对应法则f(x)是一个函数符号,表示为“y是x的函数”,绝对不能理解为“y等于f与x的乘积”,在不同的函数中,f的具体含义不一样;
y=f(x)不一定是解析式,在不少问题中,对应法则f可能不便使用或不能使用解析式,这时就必须采用其它方式,如数表和图象,在研究函数时,除用符号f(x)表示外,还常用g(x)、F(x)、G(x)等符号来表示;
自变量x在其定义域内任取一个确定的值a时,对应的函数值用符号f(a)来表示。如函数f(x)=x2+3x+1,当x=2时的函数值是:f(2)=22+3×2+1=11。
注意:f(a)是常量,f(x)是变量,f(a)是函数f(x)中当自变量x=a时的函数值。
(2)定义域是自变量x的取值范围;
注意:①定义域不同,而对应法则相同的函数,应看作两个不同函数;
如:y=x2(x?R)与y=x2(x>0); y=1与y=x0
②若未加以特别说明,函数的定义域就是指使这个式子有意义的所有实数x的集合;在实际中,还必须考虑x所代表的具体量的允许值范围;
如:一个矩形的宽为xm,长是宽的2倍,其面积为y=2x2,此函数的定义域为x>0,而不是x?R。
(3)值域是全体函数值所组成的集合,在大多数情况下,一旦定义域和对应法则确定,函数的值域也随之确定。
(五)区间的概念
说明:① 对于?a,b?,?a,b?,?a,b?,?a,b?都称数a和数b为区间的端点,其中a为左端点,b为右端点,称b-a为区间长度;
②
引入区间概念后,以实数为元素的集合就有三种表示方法:
不等式表示法:3 ③ 在数轴上,这些区间都可以用一条以a和b为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点; ④ 实数集R也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x?a, x>a, x?b, x 例题分析:(投影2) 例1.已知函数f(x)?1 x?2,(教材第17页例1) (1)求函数的定义域; (2)求f(?3),f的值; 32 (3)当a>0时,求f(a),f(a?1)的值。 分析:函数的定义域通常由问题的实际背景确定,如前述的三个实例。如果只给出解析式y?f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合。(解略) 例2.求下列函数的定义域。 (1)f(x)?1 (1?2x)(x?1); (2)f(x)?;(3) f(x)?x?1?1 2?x 分析:给定函数时,要指明函数的定义域,对于用解析式表示的函数,如果没有给出定义域,那么就认为函数的定义域是指使函数有意义的自变量取值的集合。 从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况: (1)如果f(x)是整式,那么函数的定义域是实数集R; (2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合; (3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合; (4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集); (5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合。 由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定。 例3.下列函数中,哪个与函数y=x是同一函数?(教材18页例2) (1) y=(x); (2) y=2 x2 x ; (3) y=x3; (4)y=x2. 分析:判断两个函数是否相同,要看定义域和对应法则是否完全相同。只有完全一致时,这两个函数才算相同。(解略) 课堂练习: 1 课本课后练习第2题 ○ 2 (课堂练习见学案)判断下列函数f(x)与g○(x)是否表示同一个函数,说明理由? (1)f ( x ) = x 2;f ( x ) = (x + 1) 2 2 (2)f ( x ) = | x | ;g ( x ) = x ③求下列函数的定义域 (1)f(x)?1 x?|x| (2)f(x)?1 1?1 x (3)f(x)? ?x?4x?5 (4)f(x)?24?xx?12 (5)f(x)?2x?6x?10 (6)f(x)??x?x?3?1 课时小结: 本节课我们学习了函数的定义(包括定义域、值域的概念)及求函数定义域的方法。函数定义中注意的问题及求定义域时的各种情形应该予以重视。 课后作业 1、书面作业:课本P24习题1.2A组题第1,2,3,4题;B组第1、2题。 2、预习作业: (1) 预习内容:课本P19—P22;课时学案 (2) 预习提纲: a.函数的表示方法分别有哪几种? c.回顾初中学过的做函数图象的方法步骤; 板书设计 函数的概念 一、函数的概念: 例题 思考与作业 二、函数三要素: 三、确定定义域两步骤: 四、函数相等: 教学反思 函数是高中数学中一个非常重要的内容之一,贯穿整个高中数学学习。其重要性体现在:1、函数源于在现实生活,具有广泛的应用。2、函数是沟通代数、几何、三角等内容的桥梁。3、函数部分内容蕴涵重要数学方法,分类讨论的思想 ,数形结合的思想,化归的思想等。这些思想方法是进一步学习数学和解决数学问题的基础。 然而函数这部分知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来不容易,由于函数这部份知识的主要思想特点体现于一个“变”字,接受起来就更难。研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的观点去看待相关问题,所以函数成了高一新生进入高中的一条拦路虎。突破了它后面的学习就容易了。 函数的概念表现出来的都是抽象的数学形式,在数学的教学中,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。所以函数概念的教学更忌照本宣科,我注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。 课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。 一、背景分析 1.学习任务分析 函数是中学数学一个重要的基本概念,其核心内涵为非空数集到非空数集的一个对应,函数思想是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.为此本节课设定的教学重点是“函数概念的形成”. 2.学情分析 从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过高一第一节“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证. 从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力. 教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点. 鉴于上述分析我制定了本节课的教学目标. 二、教学目标设计 目标 知识技能:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素; 函数概念的本质;抽象的函数符号f(x)的意义;f(a)(a为常数)与f(x)的区别与联系; 过程方法:学生经历函数概念的形成过程,函数的辨析过程,渗透归纳推理、发展学生的抽象思维能力; 情感态度:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上 学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美. 三、教法与学法选择 任何一堂课都是各种不同教学方法综合作用的结果,但我们认为本堂课有以下主要的教法和学法. 1.问题式教学法:本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这刚好也符合建构主义的教学理论. 2.探究式学法:新课程要求课堂教学的着力点是尊重学生的主体地位,发挥学生的主动精神,培养学生的创新能力,使学生真正成为学习的主体,结合本堂课的特点,我倡导的是探究式学法;让学生在探究问题 的过程中,通过老师的引导归纳概括出函数的概念,通过问题的解决,达到熟练理解函数概念的目的,从而让学生由“被动学会”变成“主动会学”. 四、教学过程设计 (一).结构分析 为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段: (二).教学过程 课题引入 4月13日7时39分,朝鲜发射了一颗卫星,全世界都时刻关注着朝鲜卫星离地面的距离随时间是如何变化的,数学上可以用___来描述这种运动变化中的数量关系. (函数) 1.回忆旧知,引出困惑 问题一:请举出初中学过的一些函数. y?2x,y?x2,y? 1 等. x 问题二:请同学们回忆初中函数的定义是什么? 在一个变化过程中,有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫自变量. [设计意图]:通过回忆初中的函数及函数的定义,为探究问题三作好铺垫. 问题三:y?0(x?R)是函数吗? 学生活动:先由学生思考回答,对产生的两种意见展开小组讨论,学生可能解决不了. 2.创设情境,形成概念 实例一:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h?130t?5t. 问题四:1.t的范围是什么?h的范围是什么? 2.t和h有什么关系?这个关系有什么特点? 2 实例二:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1.2?1中的曲线显示了南极上空臭氧层空洞的面积从1979~的变化情况. 实例三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表 1?1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显 著变化. 通过先对两个实例的学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成. 问题四:实例一、实例二、实例三的对应关系在呈现方式上有什么不同? 问题五:以上三个实例有什么相同的特征? 学生活动:让学生分组讨论交流,总结归纳出. 共同特点:①都有两个非空数集A、B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每 一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应. 通过学生的“观察分析比较归纳概括”培养学生抽象思维的能力,同时也培养了学生的创新意识. 问题六:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(先让学生说,老师再做补充) 函数概念: 设A、B是非空的数集,如果按某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中 都有唯一确定的数f(x)和它对应,那么就称f:A?B为集合A到集合B的一个函数,记作 y?f(x),x?A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)x?A}叫做函数的值域.显然,值域是集合B的子集. 问题七:请同学们根据现在函数的定义判断前面三个实例是否表示两个集合的函数关系? 问题八:y?0(x?R)是函数吗? 方法引导:如何判断给定的两个变量间是否具有函数关系? 可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词? 3.质疑解惑,辨析概念 问题九:请同学们勾画出概念中的关键词,并用简洁的语言说明. 通过交流得出以下几点: ① A、B都是非空的数集; ② 任意性与唯一性; ③ 确定的对应关系,对应关系f可以是解析式、图象、表格. 问题十:函数由几部分组成? 三要素:定义域、值域、对应法则,缺一不可. 问题十一:怎样理解符号f(x)? 在法则f下,x所对应的函数值,并结合生活实例说明. 4.讨论研究,深化理解 例1 下列说法中,不正确的是 (B) A、函数值域中的每一个数都有定义域中的一个数与之对应 B、函数的定义域和值域一定是无限集合 C、定义域和对应关系确定后,函数值域也就确定 D、若函数的定义域只有一个元素,则值域也只有一个元素 例2、对于函数y=f(x),以下说法正确的有( B ) ①y是x的函数 ②对于不同的x,y的值也不同 ③ f(a)表示当x=a时函数f(x)的值,是一个常量 ④ f(x)一定可以用一个具体的式子表示出来 A、1个 B、2个 C、3个 D、4个 5.即时训练,巩固新知 例3、给出四个命题: ①函数就是定义域到值域的对应关系 ②若函数的定义域只含有一个元素,则值域也只有一个元素 ③因f(x)=5(x∈R),这个函数值不随x的变化范围而变化,所以f(0)=5也成立 ④定义 域和对应关系确定后,函数值也就确定了 正确有( D ) A、1个 B、2个 C、3个 D、4个 学生活动:抽两位学生到讲台在黑板上分别完成(其他同学在下面完成),完成后,师生共同评价完善。 6.总结反思,提高认识 今天,我们在初中函数定义的基础上,运用集合与对应的语言重新刻画了函数,比较两个函数的定义,同学们有什么新的认识。 引导学生思考回答,老师作适当补充. 7.分层作业,自主探究 作业::一、举出生活中函数的例子(两个以上),并用集合与对应的语言来描述函数 二、A组学生做:P24 1、2、3、4; B组学生做:必做A组学生所做,选做P25 1题. 五.教学媒体选择 教学中使用多媒体来辅助教学,其目的是充分发挥快捷、生动、形象的特点,为学生提供直观感性的材料,有助于适当增加课堂容量,提高课堂效率;同时与黑板板书相结合. 附板书设计(提纲式) 六.教学评价设计 通过函数概念的形成过程,例题和习题的完成情况,在老师巡视和提问中及时发现问题,纠正学生出现的错误,促进学生知识的正迁移,提高学生的学习效率; 七 .课后反思 评价学生的听课效果,自己的教学效果,分析自己的不足之处,根据对学生的学习情绪、学习效果及时进行评价,结合评价结果的反馈,及时调整学习过程、教学方法,积极地制定策略予以改正,并且虚心向专家型教师请教学习,使自己的教学设计和授课水平得到进步。 第六册函数的教案设计 教学目的: 1.了解常量与变量的意义,能分清实例中的常量与变量; 2.了解自变量与函数的意义,能列举函数的实例,并能写出简单的函数关系式; 3.培养学生观察、分析、抽象、概括的能力; 4.对学生进行相互联系、绝对与相对、运动变化的辩证唯物主义观点的教育和爱国、爱党、爱人民的教育。 教学直点: 函数概念的形成过程。 教学难点: 理解函数概念。 教具: 多媒体。 教学过程: 一、创设情境 首先请同学们看一组境头:(微机播放今夏抗洪片段)唤起学生对今夏洪水的回忆,对学生渗透爱国、爱党、爱人民的教育。 二、形成概念 (一)变量与常量概念的形成过程 1.举例、归纳 引例1:沙市今夏7、8两个月的水位图(微机示图) 学生观察水位随时间变化的情况,(微机示意)引出“变量”。 引例2:汽车在公路上匀速行驶(微机示意) 学生观察汽车匀速行驶的过程,加深对变量的认 识,引出“常量”。 设问:一个量变化,具体地说是它的什么在变?什么不变呢?(微机显示:下方汽车匀速行驶,上方S的值随t的值变化而变化。) 引导学生观察发现:是量的数值变与不变。 归纳变量与常量的定义并板书。 2.剖析概念 常量与变量必须存在于一个变化过程中。判断一个量是常量还是变量,需着两个方面:①看它是否在一个变化的过程中,②看它在这个变化过程中的取植情况。 3.巩固概念 练习一: 1.向平静的湖面投一石子,便会形成以落水点为圆心的一系列同心圆(微机示意)。①在这个变化过程中,有哪些变量?②若面积用S,半径用R表示,则S和R的关系是什么?;π是常量还是变量?③若周长用C,半径用R表示,C与R的关系式是什么? 2.(见课本第92页练习1) 学生回答后指出:常量与变量不是绝对的,而是对于一个变化过程而言的。 (二)自变量与函数概念的形成过程 1.举例、归纳 (微机一屏显示两个引例)学生再次观察引例1、2两个变化过程,寻找共同之处:①一个变化过程,②两个变量,③一个量随另一个量的变化而变化。 若两个量满足上述三个条件,就说这两个量具有函数关系。(引出课题并板书) 设问:上述第三条是形象描述两个变量的关系,具体地说是什么意思? 以引例2说明:(微机示意) 设问:在S=30t中,当t=0.5时,S有没有值与它对应?有几个? 反复设问:t=l,1.5,2,3……时呢? 引导学生观察发现:对于变量t的每一个值,变量S都有唯一的值与它对应。所以两个变量的关系又可叙述为:对于一个变量的每一个值,另一个变量都有唯一的值与它对应。即一种对应关系。(微机出示) 在s=30t中,s与t具有这种对应关系,就说t是自变量,S是t的函数。引出“自变量”、“函数”。 归纳自变量与函数的定义并板书。 2.剖析概念 理解函数概念把握三点:①一个变化过程,②两个变量,③一种对应关系。判断两个量是否具有函数关系也以这三点为依据。 3.巩固概念 练习二: l)某地某天气温如图:(微机示图)气温与时间具有函数关系吗? 学生回答后指出这里函数关系是用图象给出的。 2)宜昌市某旅游公司近几年接待游客人数如表:(微机示表)游客人数与时间具有函数关系吗?学生回答后指出这里函数关系是用表格给出的。 3)在S=?d中,S与R具有函数关系吗?C=ZπR中,C与R呢?(微机显示变化过程)学生回答后指出这里函数关系是用数学式子结出的。 4)师生共同列举函数关系的例子。 三、例题示范 (微机出示例1,并演示篱笆围成矩形的过程。) 指导:1.篱笆的长等于矩形的周长;2.S与1的关系式,即用1的代数式表示S;3.表示矩形的面积,需先表示矩形一组邻边的长。 解题过程略。 变式练习: 用60m的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成,(微机示意) 1.写出矩形面积s(m?)与平行于墙的一边长l(m)的关系式; 2.写出矩形面积s(m?)与垂直于墙的一边长l(m)的关系式。并指出两式中的常量与变量,函数与自变量。 四、反馈练习(微机示题) 五、归纳小结 1.四个概念:常量与变量,函数与自变量。 2.两个注意:①判断常量与变量看两个方面。②理解函数概念把握三点。 六、布置作业 1.必做题:课本第95页,练习1、2. 2.思考题: ①在 y= 2x+l中,y是x的函数吗??=x中,y是X的函数吗? ②引例2的s=30t中,t可以取不同的数值,但t可以取任意数值吗? 教案设计说明 根据本节内容的特点――抽象、难懂的概念深。 我按以下思路设计本课:坚持以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认识规律。教学过程特突出以下构想: 一、真景再现,引人入胜 上课后,首先播放一组动人的.抗洪镜头,把学生分散的思维一下子聚拢过来,学生情绪、课堂气氛调控到最佳状态,为新课的开展创设良好的教学氛围。因为它真实、贴近学生的生活,所以唤起他们对今夏所遭受的那场特大洪水的回忆,教师有机地对学生渗透爱国、爱党、爱人民的教育。 二、过程凸现,紧扣重点 函数概念的形咸过程是本节的重点,所以本节突出概念形成过程的教学,把过程分为三个阶段:归纳、剖析与巩固。第一阶段里举学生熟悉的、形象生动的例子,引导学生观察、分析尔后归纳。第二阶段里帮助学生把握概念的本质特征,提出注意问题。第三阶段里引导学生运用概念并及时反馈。同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。引导学生从运动、变化的角度看问题时,向学生渗透辩证唯物主义观点的教育。 三、动态显现,化难为易 函数概念的抽象性是常规教学手段无法突出的,为了扫除学生思维上的障碍,本节充分发挥多媒体的声、像、动画特征,使抽象的问题形象化,静态方式的动态化,直观、深刻地揭示函数概念的本质,突破本节的难点。同时教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。 四、例子展现,多方渗透 为了使抽象的函数概念具体化,通俗易懂,本节列举了大量的生活中的例子和其他学科中的例子,培养学生的发散思维、加强学科间的渗透,知识问的联系,也增强学生学数学、的意识。 一、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x轴和y轴上的点,不属于任何象限。 二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 第一象限(+,+)第二象限(-,+)第三象限(-,-)第四象限(+,-) 2、坐标轴上的点的特征 在x轴上纵坐标为0,在y轴上横坐标为,原点坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上x与y相等 点P(x,y)在第二、四象限夹角平分线上x与y互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。 5、关于x轴、y轴或远点对称的点的坐标的特征 点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数 点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数 点P与点p’关于原点对称横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)到x轴的距离等于(2)到y轴的距离等于(3)到原点的距离等于 三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数的三种表示法(1)解析法(2)列表法(3)图像法 3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线 4、自变量取值范围 四、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。 特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。 2、一次函数的图像:是一条直线 3、正比例函数的性质,,一般地,正比例函数有下列性质: (1)当k>0时,图像经过第一、三象限,y随x的增大而增大; (2)当k<0时,图像经过第二、四象限,y随x的增大而减小。 4、一次函数的性质,,一般地,一次函数有下列性质: (1)当k>0时,y随x的增大而增大 (2)当k<0时,y随x的增大而减小 5、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。 6、设两条直线分别为,:: 若且。若 7、平移:上加下减,左加右减。 8、较点坐标求法:联立方程组 五、反比例函数 1、反比例函数的概念 一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成或xy=k的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。 2、反比例函数的图像是双曲线。 3、反比例函数的性质 (1)当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。 (2)当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x的增大而增大。 (3)图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 (4)图像既是轴对称图形又是中心对称图形 (5)图像上任意一点向坐标轴作垂线,与坐标轴所围成矩形面积等于|k| 4、反比例函数解析式的确定 只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。 六、二次函数 1、二次函数的概念:一般地,如果,那么y叫做x的二次函数。 2、二次函数的图像是一条抛物线。 3、二次函数的性质: (1)a>0抛物线开口向上,对称轴是x=,顶点坐标是(,);在对称轴的左侧,即当x<时,y随x的增大而减小;在对称轴的右侧,即当x>时,y随x的增大而增大;抛物线有最低点,当x=时,y有最小值, (2)a<0抛物线开口向下,对称轴是x=,顶点坐标是(,);在对称轴的左侧,即当x<时,y随x的增大而增大;在对称轴的右侧,即当x>时,y随x的增大而减小,; 抛物线有最高点,当x=时,y有最大值, 4、.二次函数的解析式有三种形式: (1)一般式: (2)顶点式: (3)两根式: 5、抛物线中的作用: 表示开口方向:>0时,抛物线开口向上,,,<0时,抛物线开口向下 与对称轴有关:对称轴为x=,a与b左同右异 表示抛物线与y轴的交点坐标:(0,) 6、二次函数与一元二次方程的关系 一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。 因此一元二次方程中的,在二次函数中表示图像与x轴是否有交点。 当>0时,图像与x轴有两个交点; 当=0时,图像与x轴有一个交点; 当<0时,图像与x轴没有交点。 7、求抛物线的顶点、对称轴的方法 (1)公式法:顶点是,对称轴是直线. (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线. 问题1:马上要学导数了,如果函数没学好,是不是就意味着导数学不会 老师:同学你好,很高兴可以为你解答。差不多是这样的,导数的基础就是函数,所以在学导数之前把函数的内容再翻看一遍,尤其的函数的图像和单调性。希望我的回答能给你一些帮助。 问题2:请问老师一下,每次做函数题,每次都会有粗心,像这次月考,本来都是会做的,就是因为一些小细节导致错了,应该注意怎么做啊,老师 老师:同学你好,很高兴可以为你解答。做题的时候多注意一些细节方法比如1函数的定义域时刻注意,必须在定义域范围内考虑2取值范围想好开闭3注意数形结合的思想4注意分类讨论5注意抽象函数具体化6注意特殊值验证。希望我的回答能给你一些帮助。 问题3:函数大题求方法 老师:那要看具体是什么样的题了,注意几个重要的思路,比如数形结合,分类讨论等等。 问题4:我从初中就讨厌函数 ,觉得函数好难,老师,有什么学函数的好办法吗 老师:同学你好,很高兴可以为你解答。很能理解,因为函数比较抽象,但是的确很重要,所以尽量克制学好它。要想学好函数,首先必须要会画基本初等函数的图像,然后从图像入手依次解决三要素的题型,图像的变换的题型,零点的题型,性质的题型,而每一部分分别练习基本函数,复合函数,分段函数,抽象函数。希望我的回答能给你一些帮助。 问题5:数学我只有50分,函数我只有20 老师:先从基础学起,公式看不懂的就先背过。会用就行。如果不太会用就去问老师。这时候千万不要胡子眉毛一把抓。会一点,就把它掌握彻底,再往下进行,前面会的知识也要定期练习。 问题6:高一现在,如何学好函数? 老师:同学你好,很高兴可以为你解答。要想学好函数,首先必须要会画基本初等函数的图像,然后从图像入手依次解决三要素的题型,图像的变换的题型,零点的题型,性质的题型,而每一部分分别练习基本函数,复合函数,分段函数,抽象函数。总之函数是基础,高一好好学!希望我的回答能给你一些帮助。 问题7:还有函数易错点一般会在哪里… 老师:同学你好,很高兴可以为你解答。1函数的定义域时刻注意,必须在定义域范围内考虑2取值范围想好开闭3注意数形结合的思想4注意分类讨论5注意抽象函数具体化6注意特殊值验证。希望我的回答能给你一些帮助。 问题8:老师 函数图像怎么判断?复合函数不容易看出来啊怎么办 函数题一般出现在哪里…好像大题目不考啊…函数题考纲方向…请老师明确一下…谢谢老师 老师:同学你好,很高兴可以为你解答。图像就掌握基本函数的图像,然后掌握一些变换,一般一个函数不是基本函数,都是基本函数的四则运算和复合,多观察,肯定能发现的,函数一般出现在小题的后几个,大题是不直接考,但是间接考察的地方有很多,像大题中三角函数本身就是函数,还有导数也用到了函数的基础。希望我的回答能给你一些帮助。 问题9:我现在高三,数学一直都在五六十分,有没有可能突破九十分?学函数最基础的是要学会什么? 老师:同学你好,很高兴可以为你解答。首先你要算一下90分以上,你需要拿下哪些题目,基础的题目或者是难题大题的第一小问,凑够了这些分数。然后利用作业去复习我要掌握的模块,自己还要每段时间做一道之前的题目,我每次都让学生一个星期两套卷子(当然,只做能力范围内的题目,其他该舍弃的舍弃)直到这些模块都掌握了,再开始下一个模块。建立自己的错题本,多做练习。相对来说,函数算是比较难懂的部分,但是也是基础,因为很多模块都用得到。所以最好不要放弃这里,函数从体型上分为函数的三要素,函数的性质,函数的图像,从内容上分为基本初等函数,复合函数,分段函数,抽象函数。要想学好函数,首先必须要会画基本初等函数的图像,然后从图像入手依次解决三要素的题型,图像的变换的题型,零点的题型,性质的题型,而每一部分分别练习基本函数,复合函数,分段函数,抽象函数。 问题10:函数典型题很费劲阿 老师:同学你好,很高兴可以为你解答。是很费劲,因为函数的题目几乎都在填空选择的后几个,所以比较难,要多下功夫!希望我的回答能给你一些帮助。 问题11:函数题的类型 老师:同学你好,很高兴可以为你解答。函数从体型上分为函数的三要素,函数的性质,函数的图像,从内容上分为基本初等函数,复合函数,分段函数,抽象函数。 问题12:数学函数应用题不会做 老师:同学你好,很高兴可以为你解答。函数应用题就是找关系,弄清要求什么, 谁是自变量,找到一个等式关系,再按照要求做就可以了。 问题13:老师我想问怎么学好数学,我的数学总是不及格,特别是函数,对数 老师:同学你好,很高兴可以为你解答。1 熟悉基本的解题步骤和解题方法。2 审题要认真仔细。3 认真做好归纳总结。4 熟悉习题中所涉及的内容。4 熟悉习题中所涉及的内容。6 先易后难,逐步增加习题的难度。 多练习,多总结,建立错题本。要想学好函数,首先必须要会画基本初等函数的图像,然后从图像入手依次解决三要素的题型,图像的变换的题型,零点的题型,性质的题型,而每一部分分别练习基本函数,复合函数,分段函数,抽象函数。对数的话注意对数的运算,多算就行,然后就是图像掌握了就可以啦!希望我的回答能给你一些帮助。 八年级数学函数学习方法如下 一、理解二次函数的内涵及本质. 二次函数y=ax2 +bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形. 二、熟悉几个特殊型二次函数的图象及性质. 1、通过描点,观察y=ax2、y=ax2+k、y=a(x+h)2图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式. 2、理解图象的平移口诀“加上减下,加左减右”. y=ax2→y=a(x+h)2+k “加上减下”是针对k而言的,“加左减右”是针对h而言的. 总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移. 3、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征; 4、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数a、b、c、△以及由系数组成的代数式的符号等问题. 三、要充分利用抛物线“顶点”的作用. 1、要能准确灵活地求出“顶点”.形如y=a(x+h)2+K→顶点(-h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点. 2、理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)=k;反之,若对称轴为x=m,y最值=n,则顶点为(m,n);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果. 3、利用顶点画草图.在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象. 四、理解掌握抛物线与坐标轴交点的求法. 一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与x轴无交点. 从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与x轴的交点个数.答案补充 学理科东西学会求本质 做类推 二次函数都是抛物线函数(它的函数轨迹就像平推出去一个球的运动轨迹,当然这个不重要) 因此 把握它的函数图像就能把握二次函数 在函数图像中 注意几点(标准式y=ax^2+bx+c,且a不等于0): 1、开口方向与二次项系数a有关 正 则开口向上 反之反是。 2、必有一个极值点,也是最值点。如果开口向上,很容易想象这个极值点应该是最小点 反之反是。且极值点的横坐标为-b/2a。极值点很容易出应用题。 3、不一定和x轴有交点。当根的判定式Δ=b^2-4ac<0时,没有交点,也就是ax^2+bx+c=0这个方程式“没有实数解”(不能说没有解!具体你上高中就知道了)如果 Δ=0 那么正好有一个交点,也就是我们说的x轴与函数图像向切。对应的方程有唯一实数解。Δ>0时,有两个交点,对应方程有2个实数解。 4、不等式。如果你把上面3点搞清楚了 参考函数图像 不等式你就一定会解了 初二数学函数学习口诀 正比例函数的鉴别 判断正比例函数,检验当分两步走。 一量表示另一量,是与否。 若有还要看取值,全体实数都要有。 正比例函数是否,辨别需分两步走。 一量表示另一量,有没有。 若有再去看取值,全体实数都需要。 区分正比例函数,衡量可分两步走。 正比例函数的图象与性质 正比函数图直线,经过和原点。 K正一三负二四,变化趋势记心间。 K正左低右边高,同大同小向爬山。 K负左高右边低,一大另小下山峦。 一次函数 一次函数图直线,经过点。 K正左低右边高,越走越高向爬山。 K负左高右边低,越来越低很明显。 K称斜率b截距,截距为零变正函。 反比例函数 反比函数双曲线,经过点。 K正一三负二四,两轴是它渐近线。 K正左高右边低,一三象限滑下山。 K负左低右边高,二四象限如爬山。 二次函数 二次方程零换y,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。 左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。 绝对值大开口小,开口向下A负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。篇9:函数教学教案设计
篇10:第六册函数的教案设计
篇11:初中数学函数怎么学
篇12:数学函数如何解析
篇13:八年级数学函数怎么学
篇14:数学函数怎么学好
数学函数学习方法
一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。
二、牢记几种基本初等函数及其相关性质、图象、变换。中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。
三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题。翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求童鞋们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。
四、多做题,多向老师请教,多总结吧。多做题不是指题海战术,而是根据自己的情况,做适当的题目;重点要落在多总结上,总结什么呢?总结题型,总结方法,总结错题,总结思路,总结知识等!
学好数学函数方法
(一)准确、深刻理解函数的有关概念
概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学代数的始终.数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数.近十年来,高考试题中始终贯穿着函数及其性质这条主线.
(二)揭示并认识函数与其他数学知识的内在联系
函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容.在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式.
所谓函数观点,实质是将问题放到动态背景上去加以考虑.高考试题涉及5个方面:(1)原始意义上的函数问题;(2)方程、不等式作为函数性质解决;(3)数列作为特殊的函数成为高考热点;(4)辅助函数法;(5)集合与映射,作为基本语言和工具出现在试题中.
(三)把握数形结合的特征和方法
函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换.
(四)认识函数思想的实质,强化应用意识
函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决.纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识.
★ 用数学教案设计
★ 初中数学教案设计
数学教案设计:函数(推荐14篇)




