【导语】“骄傲的西瓜”通过精心收集,向本站投稿了18篇比例的应用(人教版六年级教案设计),下面是小编为大家整理后的比例的应用(人教版六年级教案设计),供大家参考借鉴,希望可以帮助到有需要的朋友。
- 目录
- 第1篇:比例的应用(人教版六年级教案设计)第2篇:按比例分配应用题(人教版六年级教案设计)第3篇:用比例解应用题复习(人教版六年级教案设计)第4篇:用比例知识解答应用题(人教版六年级教案设计)第5篇:解比例(六年级)(人教版六年级教案设计)第6篇:比和比例2(人教版六年级教案设计)第7篇:按比例分配(人教版六年级教案设计)第8篇:按比例分配2(人教版六年级教案设计)第9篇:百分数的应用--纳税(人教版六年级教案设计)第10篇:百分数的应用--利息(人教版六年级教案设计)第11篇:比例的意义和基本性质(一)(人教版六年级教案设计)第12篇:比例尺(六年级)(人教版六年级教案设计)第13篇:简单应用题(人教版六年级教案设计)第14篇:复合应用题(人教版六年级教案设计)第15篇:分数应用题(人教版六年级教案设计)第16篇:比例的意义和基本性质教学设计与评析(人教版六年级教案设计)第17篇:如何解比例分配应用题六年级教案设计第18篇:正比例和反比例的比较(人教版六年级教案设计)
篇1:比例的应用(人教版六年级教案设计)
教学目标
1.使学生能正确判断应用题中涉及的量成什么比例关系.
2.使学生能利用正、反比例的意义正确解答应用题.
3.培养学生的判断推理能力和分析能力.
教学重点
使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.
教学难点
利用正反比例的意义正确列出等式.
教学过程
一、复习准备.(课件演示:比例的应用)
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.
2.路程一定,速度和时间.
3.单价一定,总价和数量.
4.每小时耕地的公顷数一定,耕地的总公顷数和时间.
5.全校学生做操,每行站的人数和站的行数.
(二)引入新课
我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.
教师板书:比例的应用
二、新授教学.
(一)教学例1(课件演示:比例的应用)
例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
1.学生利用以前的方法独立解答.
140÷2×5
=70×5
=350(千米)
2.利用比例的知识解答.
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长 千米.
=
2 =140×5
=350
答:两地之间的公路长350千米.
3.怎样检验这道题做得是否正确?
4.变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(二)教学例2(课件演示:比例的应用)
例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?
1.学生利用以前的方法独立解答.
70×5÷4
=350÷4
=87.5(千米)
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的路程是一定的,_________和_________成_________比例.
所以两次行驶的_________和_________的_________是相等的.
3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?
4 =70×5
=87.5
答:每小时需要行驶87.5千米.
4.变式练习
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?
三、课堂小结.
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.
四、课堂练习.(课件演示:比例的应用)
(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
(二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?
(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.
1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?
2.王师傅4小时生产了200个零件,照这样计算,_______?
五、课后作业.
1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?
2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本
篇2:按比例分配应用题(人教版六年级教案设计)
教学目标
1.使学生理解按比例分配问题的意义。
2.使学生掌握按比例分配应用题的结构及解答方法。
3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。
教学重点和难点
1.理解按比例分配问题的意义。
2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。
教学过程设计
(一)复习准备
1.复习比的有关知识,为学习新知识做准备。
已知六年级1班男生人数和女生人数的比是3∶4。
男生人数与全班人数的比是( )∶( )。
女生人数与全班人数的比是( )∶( )。
2.创设情境,提出课题。
(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)
提问:妈妈是怎样分的?(平均分)
(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)
提问:这样分还是平均分吗?
日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。
(二)学习新课
1.讲解例2。
例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?
(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?
(2)分析思考:看到“播种大豆和玉米面积的比是3∶2”这句话你想到了哪些倍数关系?小组讨论。
④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的
各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。
(3)解答例2。
①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?
②说说你是怎样做的?
方法a:3+2=5
播种大豆的面积 100÷5×3=60(公顷)
播种玉米的面积 100÷5×2=40(公顷)
方法b:总面积平均分成的份数为
3+2=5
③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)
说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就
(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)
2.练习:第62页中的“做一做”(1)。
六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?
(1)弄懂题意。
(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)
(3)独立完成。组员之间互相检验。
3.学习例3。
例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)
(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?
(3)请你在练习本上独立完成。
①三个班的总人数:
47+45+48=140(人)
②一班应栽的棵数:
③二班应栽的棵数:
④三班应栽的棵数:
答:一班、二班、三班分别栽树94棵、90棵、96棵。
(4)同组同学互相检验。
4.练习:第62页中的“做一做”(2)。
一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?
(1)在练习本上独立完成。
(2)同组同学互相检验。
(三)课堂总结
今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)
回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。
(四)巩固反馈
1.填空练习:
①把35千克苹果平均分成7份,每份( )千克,2份( )千克,5份是( )千克。
2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?
3.第62页的“做一做”(3)。
一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?
与练习题2有什么区别?
如果求它的最短边、最长边怎么求?
4.判断练习:(正确举√,错误举×)
一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?
(五)布置作业
第63页第1,2,3,4题。
课堂教学设计说明
本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。
本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。
篇3:用比例解应用题复习(人教版六年级教案设计)
教学目标
1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。
2.复习用正比例方法解答应用题。
3.复习用反比例方法解答应用题。
教学重点和难点
判断两种相关联的量成什么比例;确定解答应用题的方法。
教学过程设计
(一)复习数量关系
判断两种相关联的量成不成比例,确定解答应用题的方法。
1.被除数一定,除数和商。
2.一条路,已修的和未修的。
3.梯形的上、下底长度一定,梯形的面积和它的高度。
4.每块砖的面积一定,砖的块数和铺地面积。
5.挖一条水渠,参加的人数和所需要的时间。
6.从甲地到乙地所需的时间和所行走的速度。
7.单位面积一定,播种面积和总产量。
8.时间一定,速度和距离。
9.订阅《北京儿童》的份数和所需钱数。
(二)复习应用题
1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?
第一步,先找对应关系:
8天--56台
31天--?台
第二步,判断成什么比例?(每天生产的台数一定,成正比例。)
请你在对应关系的旁边写上“正”字,决定用正比例方法做。
解 设到月底可生产x台。
x=217
答:照这样速度月底可生产217台。
2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?
第一步,先找对应关系:
20页--600本
24页--?本
第二步,判断成什么比例?(纸张总页数一定,成反比例。)
请你在对应关系的旁边写上“反”字,决定用反比例方法做。
解 钉成24页一本的练习本,可钉x本。
24x=20×600
x=500
答:如果钉成24页一本的练习本可钉500本。
学生独立地用老师教的分析应用题的思路和方法在本上做两道题。
(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?
(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?
(三)练习解答两步的比例应用题
1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?
黑板上的对应关系变成:
解 设x天读完。
(6+4)x=6×30
10x=6×30
x=18
答:18天可以读完。
2.在第1题的基础上,改变问题。
李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?
对应关系:
解 设如果每天多读4页,x天读完。
(6+4)x=6×30
10x=6×30
x=18
30-18=12(天)
答:提前12天读完。
(指导学生分析、比较。)
以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)
练习(学生独立分析,做题。)
1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?
解 设甲城到乙城有x千米。
3x=105×(3+1.2)
x=147
答:甲城到乙城有147km。
2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?
解 设剩下的x天可以收割完。
90x=5×54
x=3
答:剩下的3天可以收割完。
(再用间接设的方法做两道题。)
1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?
16×42=24x
42-x
2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?
12x=48×15
x-48
(四)总结
这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。
课堂教学设计说明
解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。
第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。
第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。
第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。
板书设计
篇4:用比例知识解答应用题(人教版六年级教案设计)
教学目的
1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.
教学重点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学难点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学过程
一、复习准备.
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.
(2)总价一定,每件物品的价格和所买的数量.
(3)小朋友的年龄与身高.
(4)正方体每一个面的面积和正方体的表面积.
(5)被减数一定,减数和差.
谈话引入:我们今天运用正反比例的知识来解决实际问题.
(板书:用比例知识解应用题)
二、探讨新知.
(一)教学例5(用比例解答下题)
修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?
1.学生读题,独立解答.
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.
(二)反馈.
1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.
1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?
2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?
3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?
4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的 .第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?
四、课堂总结.
通过这堂课的学习,你有什么收获?
五、课后作业.
1.生产小组加工一批零件,原计划用14天,平均每天加工1500个零件.实际每天加工2100个零件.实际用了多少天就完成了任务?
2.一个编织组,原来30人10天生产1500只花篮,现在增加到80人,按原来的工效,生产6000只花篮需要多少天?
六、板书设计
篇5:解比例(六年级)(人教版六年级教案设计)
教学目标
1.使学生理解解比例的意义.
2.使学生掌握解比例的方法,会解比例.
教学重点
使学生掌握解比例的方法,学会解比例.
教学难点
引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已
学过的含有未知数的等式.
教学过程
一、复习准备
(一)解下列简易方程,并口述过程.
2 =8×9
(二)什么叫做比例?什么叫做比例的基本性质?
(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?
6∶10和9∶15 20∶5和4∶1 5∶1和6∶2
(四)根据比例的基本性质,将下列各比例改写成其他等式.
3∶8=15∶40
二、新授教学
(一)揭示解比例的意义.
1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.
2.学生交流
根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.
3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.
(二)教学例2.
例2.解比例 3∶8=15∶
1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.
2.组织学生交流并明确.
(1)根据比例的基本性质,可以把比例改写为:3 =8×15.
(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.
(3)规范并板书解比例的过程.
解:3 =8×15
=40
(三)教学例3
例3.解比例
1.组织学生独立解答.
2.学生汇报
3.练习:解下面的比例.
= ∶ = ∶
三、全课小结
这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.
四、巩固练习
(一)解下面的比例.
1. 2. 3.
(二)根据下面的条件列出比例,并且解比例.
1.5和8的比等于40与 的比.
2. 和 的比等于 和 的比.
3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8.
五、布置作业
(一)解比例.
= = ∶ =3∶12
(二)商店有一种衣服,售价是24元,比原来定价便宜25%.现在售价比原来定价便宜多少元?
(三)一个梯形的面积是12平方厘米,它的上底是3厘米,下底是5厘米,高是多少厘米?(列方程解答)
六、板书设计
教案点评
该教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。
篇6:比和比例2(人教版六年级教案设计)
教学目标
1.理解比和比例的意义及性质.
2.理解比例尺的含义.
教学重点
整理比和比例、求比值及比例尺.
教学难点
正、反比例概念和判断及应用.
教学步骤
一、基本训练.
43-27
5.65+0.5 4.8÷0.4 1.25÷ 100×1%
0.25×40 2-
二、归纳整理.
(一)比和比例的意义及性质.
1.回忆所学知识,填写表格【演示课件“比和比例”】
2.分组讨论:
比和分数、除法有什么联系?
比的基本性质有什么作用?比例的基本性质呢?
3.总结几种比的化简方法.【继续演示课件“比和比例”】
比 前项 ∶(比号) 后项 比值
除法
分数
(1)整数比化简,比的前项和后项同时除以它们的最大公约数.
(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.
(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.
(4)用求比值的方法化简,求出比值后再写成比的形式.
解比例:12 :x=8 :2
4.巩固练习.
(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?
(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?
(3)解比例: ∶ =8∶2
(二)求比值和化简比.【继续演示课件“比和比例”】
1.求比值:4∶
化简比:4∶
2.比较求比值和化简比的区别.
一般方法 结果
求比值 根据比值的意义,用前项除以后项 是一个商,可以是整数、小数或分数
化简比 根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外) 是一个比,它的前项和后项都是整数
3.巩固练习.
(1)求比值.
45∶72 ∶3
(2)化简比.
∶ 0.7∶0.25
(三)比例尺.【继续演示课件“比和比例”】
1.出示中国地图.
教师提问:
(1)这幅地图的比例尺是多少?(比例尺是 )
(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)
(3)比例尺除了写成 ,以外,还可以怎样表示?
2.巩固练习.
在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?
在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?
(四)正比例和反比例.【继续演示课件“比和比例”】
1.回忆正、反比例意义.
2.巩固练习.
(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.
①收入一定,支出和结余
②出米率一定,稻谷的重量和大米的重量.
③圆柱的侧面积一定,它的底面周长和高.
(2)木料总量、每件家具的用料和制成家具的件数这三种量
当( )一定时,( )和( )成正比例;
当( )一定时,( )和( )成正比例;
当( )一定时,( )和( )成反比例.
(3)如果 =8 , 和 成( )比例.
如果 = , 和 成( )比例.
(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?
三、全课小结.
这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的
篇7:按比例分配(人教版六年级教案设计)
解:设氧为x千克。
x=(5.4-x)×8
x=43.2-8x
9x=43.2
x=4.8
5.4-x
=5.4-4.8
=0.6
以上方法4,5,6要写全过程。
(四)布置作业
(略)
课堂教学设计说明
1.通过复习,使学生认识到比与分数是有联系的。
2.讲授新课时,先讲了一个最一般的按比例分配题,练习1~3题以后出现另一种形式的按比例分配题,这里老师采用讲练结合的方法。最后让学生用多种方法解答一道题,从而让学生认识到整数、分数、比和比例这些知识的内在联系,使学生明确,当题中给出比的条件时,可以直接用比例的知识解题,也可以根据整数、分数、比和比例之间的联系,把比所表示的两个数量之间的关系用分数、整数之间的关系来表示,并解答题。但是由于分析的思路不同,解答的方法也不同。不管学生采用哪种方法解答,老师都要加以肯定,并鼓励学生采用多种方法解答。
板书设计
篇8:按比例分配2(人教版六年级教案设计)
教学目标
1.使学生理解按比例分配的意义.
2.掌握按比例分配应用题的特征及解题方法.
3.培养学生应用所学知识解决实际问题的能力.
教学重点
掌握按比例分配应用题的特征及解题方法.
教学难点
按比例分配应用题的实际应用.
教学过程
一、复习引入
(一)填空
已知六年级1班男生人数和女生人数的比是3∶2.
1.男生人数是女生人数的( )
2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).
3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).
4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).
5.女生人数占全班人数的( ),女生人数和全班人数的比是( ).
6.全班人数是女生人数的( ),全班人数和女生人数的比是( ).
(二)口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
1.学生口答:100÷2=50(平方米)
2.教师提问
这是一道分配问题,分谁?(100平方米)怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?
这样分还是平均分吗?
3.谈话引入
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)
二、讲授新课
(一)把复习题2增加条件“如果按3∶2分配,两个班的保洁区各是多少平方米?”
(二)教师提问
1.分谁?(100平方米)
2.怎么分?(按3∶2分)
3.求的是什么?(两个班的保洁区各是多少平方米?)
(三)思考:由“如果按3∶2分配”这句话你可以联想到什么?
1.六年级的保洁区面积是二年级的 倍
2.二年级的保洁区面积是六年级的
3.六年级的保洁区面积占总面积的
4.二年级的保洁区面积占总面积的
… …
(四)尝试解答:用你学过的知识解答例题,并说一说怎么想的?
方法一:
3+2=5 100÷5=20(平方米) 20×3=60(平方米) 20×2=40(平方米)
方法二:
3+2=5 100× =60(平方米)100× =40(平方米)
方法三:
100÷(1+ )=60(平方米) 60× =40(平方米)或100-60=40(平方米)
方法四:
100÷(1+ )=40(平方米) 40× =60(平方米)或100-40=60(平方米)
(五)比较思路:这几种方法中,你认为哪种方法好?为什么?
(第二种,思路简捷,计算简便)
1.说说第二种方法的思路?
(1)求出总份数
(2)各部分数量占总量的几分之几?
(3)按照求一个数的几分之几是多少的方法解答.
(六)这道题做得对不对呢?我们怎么检验?
1.两个班级的面积相加,是否等于原来的总面积.
2.把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3∶2.
(七)练习
一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3∶2.两种作物各播种多少公顷?
(八)教学例3
学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵?
篇9:百分数的应用--纳税(人教版六年级教案设计)
教学目标
1、通过学习使学生理解税收时的专有名词,会计算纳税额.
2、通过学习,使学生建立正确的纳税观,懂得纳税的重要性.
教学重点
通过学习使学生理解税收时的专有名词,会计算纳税额.
教学难点
通过学习使学生理解税收时的专有名词,会计算纳税额.
教学过程
一、谈话导入
你们在日常生活中听说过有关纳税的知识吗?今天,我们就来研究有关纳税的问题.
板书:纳税
二、新授教学
(一)建立纳税概念,了解纳税有关的知识.
1.教师提问:你知道哪些有关纳税知识?(学生说自己的感性认识)
2.教师归纳后板书.
板书:应纳税额、税率
3.小组讨论
(1)什么人需要纳税?
(2)为什么要纳税?
(3)你认为你身边的那些事物是国家用税收款做的.
4.教师总结
(1)纳税就是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家.
(2)税收是国家财政收入的主要来源之一.国家用税款发展经济、科技、教育、文化和国防事业.
5.你们现在对纳税有什么认识?
小结:看来,无论是集体还是个人,都应该依法纳税,这是利国利民的好事.
(二)教学例6
例6.一家大型饭店七月份的营业额是3000万元.如果按营业额的5%缴纳营业税,这家饭店七月份应缴纳营业额税款多少万元?
1.读题,理解题意.
2.学生试做.
3.学生汇报.
求这家饭店七月份应缴纳营业额税款多少万元,就是求3000万元的5%是多少.
教师板书: 3000×5%=150(万元)
答:这家饭店七月份应缴纳营业额税款150万元.
三、巩固练习
1.一家运输公司10月份的营业额是260000元,如果按营业额的3% 缴纳营业税,10月份应缴纳营业税多少万元?
2.一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税.如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?
3.一个卷烟厂上月香烟的销售额为1500万元.如果按销售额45%缴纳消费税,上月应缴纳消费税款多少万元?
四、课堂总结
通过今天的学习,你有什么收获?
五、课后作业
1.某保险公司今年7月份的营业额为5600万元.如果按营业额的5%缴纳营业税,7月份应缴纳营业税款多少万元?
2.小红的爸爸上月的应纳税所得额是420元,如果按5%的税率缴纳个人所得税,应缴纳个人所得税多少元?
六、板书设计
篇10:百分数的应用--利息(人教版六年级教案设计)
教学目标
1.使学生了解本金、利息、利率、利息税的含义.
2.理解算理,使学生学会计算定期存款的利息.
3.初步掌握去银行存钱的本领.
教学重点
1.储蓄知识相关概念的建立.
2.一年以上定期存款利息的计算.
教学难点
“年利率”概念的理解.
教学过程
一、谈话导入
教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?
教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.
二、新授教学
(一)建立相关储蓄知识概念.
1.建立本金、利息、利率、利息税的概念.
(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.
(2)教师板书:
存入银行的钱叫做本金.
取款时银行多支付的钱叫做利息.
利息与本金的比值叫做利率.
2.出示一年期存单.
(1)仔细观察,从这张存单上你可以知道些什么?
(2)我想知道到期后银行应付我多少利息?应如何计算?
3.出示二年期存单.
(1)这张存单和第一张有什么不同之处?
(2)你有什么疑问?(利率为什么不一样?)
教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.
4.出示国家最新公布的定期存款年利率表.
(1)你发现表头写的是什么?
怎么理解什么是年利率呢?
你能结合表里的数据给同学们解释一下吗?
(2)小组汇报.
(3)那什么是年利率呢?
(二)相关计算
张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?
1.帮助张华填写存单.
2.到期后,取钱时能都拿到吗?为什么?
教师介绍:自11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)
3.算一算应缴多少税?
4.实际,到期后可以取回多少钱?
(三)总结
请你说一说如何计算“利息”?
三、课堂练习
1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息
捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?
2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:
(1)800×11.7%
(2)800×11.7%×2
(3)800×(1+11.7%)
(4)800+800×11.7%×2×(1-20%)
3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?
四、巩固提高
(一)填写一张存款单.
1.预测你今年将得到多少压岁钱?你将如何处理?
2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?
(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?
五、课堂总结
通过今天的学习,你有什么收获?
六、布置作业
1.小华1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给“希望工程”多少元钱?
2.六年级一班1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?
3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?
篇11:比例的意义和基本性质(一)(人教版六年级教案设计)
教学目标
1.使学生理解并掌握比例的意义和基本性质.
2.认识比例的各部分的名称.
教学重点
比例的意义和基本性质.
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学过程
一、复习准备.
(一)教师提问复习.
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值.
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接.
教师板书:4.5∶2.7=10∶6
二、新授教学.
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:
时间(时) 2 5
路程(千米) 80 200
1.教师提问:从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例.
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来.
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例.
(2)一个比例,等号左边的比和等号右边的比一定是( )的.
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)
2.练习:指出下面比例的外项和内项.
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明.
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积.
5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整.
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
7.练习
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.
6∶3和8∶5 0.2∶2.5和4∶50
三、课堂小结.
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.
四、巩固练习.
(一)说一说比和比例有什么区别.
(二)填空.
在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).
根据比例的基本性质可以写成( )×( )=( )×( ).
(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.
1.6∶9和9∶12 2.1.4∶2和7∶10
3.0.5∶0.2和 4. 和7.5∶1
(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)
篇12:比例尺(六年级)(人教版六年级教案设计)
教学目标
1.使学生理解比例尺的意义并能正确地求出平面图的比例尺.
2.使学生能够应用比例知识,根据比例尺求图上距离或实际距离.
教学重点
理解比例尺的意义,能根据比例尺正确求出图上距离或实际距离.
教学难点
设未知数时长度单位的使用.
教学步骤
一、复习准备
(一)填空.
1千米=( )米 1分米=( )厘米
1米=( )分米 1厘米=( )毫米
30米=( )厘米 300厘米=( )分米
15千米=( )厘米 40毫米=( )厘米
(二)解比例.
二、新授教学
谈话导入:(出示准备好的地图、平面图)同学们请看,这些分别是祖国地图、本省地图和学校的平面图.在绘制这些地图和平面图的时候,都需要把实际的距离按一定的比例缩小,再画在图纸上.有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上.不管是哪种情况,都需要确定图上距离和实际距离的比.今天我们就来学习这方面的知识--比例尺.
板书课题:比例尺
(一)教学例4(课件演示:比例尺)
例4.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.
1.读题回答:这道题告诉了我们什么?要求什么?
教师板书:图上距离∶实际距离
2.思考.
(1)要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?应该怎么办?
(2)是把厘米化成米,还是把米化成厘米?为什么?应该怎样化?
教师板书:10米=1000厘米
3.求出图上距离和实际距离的比.
教师板书:10∶1000=1∶100或 =
答:图上距离和实际距离的比是1∶100.
4.揭示比例尺的意义.
教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字--比例尺.(教师在“图上距离∶实际距离”的后面板书:=比例尺)有时图上距离和实际距离的比也可以写成分数形式.
板书:
图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比.
教师强调:
(1)比例尺与一般的尺不同,它是一个比,不应带有计量单位.
(2)求比例尺时,前、后项的长度单位一定要化成同级单位.
(3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”.
5.练习
北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺.
(二)教学例5(课件演示:比例尺)
例5.在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?
教师提问:题目中告诉了我们什么已知条件?要求什么?
根据比例尺的意义,已知比例尺和图上距离,能不能用解比例的方法求出实际距离呢?怎样求?
(因为 ,已知图上距离为15厘米,比例尺为 ,要求的实际距离不知道,可用 表示,所以可列比例式 )
1.讨论:这个比例式中的 指的是实际距离.题中要求的是南京到北京的实际距离为多少千米,根据本题的已知条件,所设未知数 应用什么单位? 为什么?
2.订正并追问
(1)为什么要设南京到北京的实际区高为 厘米?
(2)这个比例式表示的实际意义是什么?
(3)解这个比例式的依据是什么?
(4)在求出 =90000000后,为什么还要化成900千米?
3.反馈练习.
先说出下图中的比例尺是多少;再用直尺量出图中河西村与汽车站间的距离是多少厘米,并计算出实际的距离大约是多少千米.
篇13:简单应用题(人教版六年级教案设计)
教学目的
1.使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法.
2.通过教学,进一步提高学生分析和解答应用题的能力.
3.探索知识间的内在联系,激发学生的学习兴趣.
教学重点
掌握简单应用题的结构,正确解答简单应用题.
教学难点
掌握简单应用题的数量关系.
教学过程
一、基本训练.
1.口算.
2.2+3.57 × ×1.2
1.4- +0.5 11.3-8.6
( + )×12 (0.18+ )÷9 7.75- -
2.下面各题只列式不计算.
(1)六年级学生为灾区捐款,六年级1班捐款105元,六年级2班捐款98元.两个班一共捐款多少元?
(2)学校图书馆买来150本故事书,借给五年级1班48本,还剩多少本?
(3)农具厂每天能够生产56件农具,7天能够生产多少件农具?
(4)水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?
(5)成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?
(6)五年级有学生136人,其中 是女生,女生有多少人?
二、归纳整理.
揭示课题:今天我们就来复习这样的简单应用题.(板书:简单应用题的整理和复习)
(一)教学例1:某工厂有男工人364人,女工91人.这个厂的男工和女工一共有多少人?
教师提问:这道题有哪几个已知条件?
问题是什么?
问题与已知条件有什么关系?
你为什么要这样回答?
教师总结:
这道题中,需要求的结果与两个已知条件直接相关.只要把两个已知数合并起来,就可以直接计算出结果.这是一道简单应用题.
(二)变式练习.
1.改变问题:根据例1中的两个已知条件,你还能够提出其他问题,编成简单应用题吗?
①男工比女工多多少人?
②男工人数是女工人数的几倍?
③女工人数是男工人数的几分之几?
2.改变条件:根据上面编出的应用题和列出的算式,你能够分别调换每一道题中的已知条件和问题,各编成两道不同的简单应用题吗?
①某工厂男工和女工一共有455人,男工有364人,女工有多少人?
②某工厂男工和女工一共有455人,女工有91人,男工有多少人?
③某工厂有女工91人,男工比女工多273人,男工有多少人?
④某工厂女工比男工少273人,女工有91人,男工有多少人?
⑤某工厂有女工91人,男工人数是女工人数的4倍,男工有多少人?
⑥某工厂有男工364人,女工人数是男工人数的 ,女工有多少人?
⑦某工厂男工人数是女工人数的4倍,男工有364人,女工有多少人?
⑧某工厂有女工91人,女工人数是男工人数的 ,男工有多少人?
教师提问:通过我们的编题,你发现了简单应用题的什么特点?你的收获是什么?
教师总结:从以上的编题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的.也就是说,都是可以由已知条件经过一步计算直接求出答案.
(三)复习已经学过的一些常见的数量关系.
通过例1我们已经研究了一些简单应用题的数量关系,下面我们再来复习一些常见的数量关系.(出示下表)
数量关系 数量关系式
收入、支出、结余 收入-支出=结余
单价、数量、总价
单产量、数量、总产量
速度、路程、时间
工作效率、时间、工作总量
本金、时间、利率、利息
1.请你们以小组为单位,先举例说明数量关系的意义,在填出每组数量中最基本的数量关系式.
2.根据这些数量关系式你能够各编出三道不同的应用题吗?
篇14:复合应用题(人教版六年级教案设计)
教学目的
1.通过解答一组相关的应用题,使学生进一步理解复合应用题是怎样在简单应用题的基础上发展起来的.
2.使学生进一步掌握分析应用题的方法,进一步提高学生分析和解答应用题的能力.
3.培养学生认真负责的态度和良好的学习习惯.
教学重点
能够掌握复合应用题的结构,正确解答复合应用题.
教学难点
使学生掌握复合应用题的关系.
教学过程
一、基本训练.
1.口算.
2.5×4 127+28 0.37+1.6 88÷16
3.37+6.63 8.4÷0.7 0.125×8 1.02-0.43
1.25+ 1÷ ×16
2.要求下面的问题需要知道哪两个条件?
(1)实际每天比原计划多种多少棵?
(2)桃树的棵数是梨树棵数的多少倍?
(3)五年级平均每人捐款多少元?
(4)这堆煤实际烧了多少天?
(5)剩下的书还需要多少小时能够装订完?
(6)小明几分钟可以从家走到学校?
教师总结:
应用已经学过的数量关系,根据题目中的问题考虑需要哪两个直接条件,是我们分析和解答简单应用题的关键.
二、归纳整理.
揭示课题:这节课,我们复习复合应用题(板书课题).
(一)教学例2:
a.学生夏令营组织行军训练,原计划每小时走3.75千米;实际每小时走4.5千米.实际比原计划每小时多走多少千米?
b.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际每小时走了4.5千米.实际比原计划平均每小时多走多少千米?
c.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际2.5小时走完原定路程.实际比原计划平均每小时多走多少千米?
1.指名读题,学生独立解答.(学生板演)
2.小组讨论:这三道题都有什么联系?这三道题有什么区别?
联系:这三道题说的是同一件事,要求的问题也相同,都是求“实际比原计划平均每小时多走多少千米?”要求最后问题都需要先知道原计划每小时走的千米数和实际每小时走的千米数.
区别:
a、实际每小时走的和原计划每小时走的千米数都是已知的,只需要一步计算;
b、实际每小时走的千米数是已知的.原计划每小时走的千米数是未知的,需要两步计算;
c、实际每小时走的千米数和原计划每小时走的千米数都是未知的,需要三步计算.
3.教师质疑:对于不能一步直接求出结果的应用题,我们应该怎样进行分析呢?请你们以小组为单位试着分析b、c量道例题.
4.教师总结:从上面这组题我们可以看出,复合应用题都是由几个简单一步应用题组合而成的.在分析数量关系时我们可以从所求问题出发逐步找出所需要的已知条件,直到所需条件都是题目中的已知的为止.
5.检验应用题的方法.
我们想知道此题目做的对不对,你有什么好办法吗?
(1)按照题意进行计算;
(2)把所求得的问题作已知条件,按照题意倒着算,看最后结果是否符合题意.
三、巩固反馈.
1.解答并且比较下面两道应用题,说说它们之间有什么区别?
(1)时新手表厂原计划25天生产手表1000只,实际每天生产50只.实际比原计划提前几天完成任务?
(2)时新手表厂原计划25天生产手表1000只,实际比计划提前5天完成任务.实际每天生产手表多少只?
2.判断:下面列式哪一种是正确的?
(1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?
A:2100-240×5÷3 B:(2100-240)÷3
C:(2100-240×5)÷3
(2)一个装订小组要装订2640本书,3小时装订了240本,照这样计算,剩下的书还需要几小时才能够装完?
A:(2640-240)÷240
篇15:分数应用题(人教版六年级教案设计)
教学目标
1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.
2.培养学生分析、解答两步计算的分数应用题的能力和知识迁移的能力.
3.培养学生的推理能力.
教学重点
培养学生分析、解答两步计算的分数应用题的能力
教学难点
使学生正确地解答两步计算的分数一般应用题.
教学过程
一、复习引新
(一)全体学生列式解答,再说一说列式的依据.
两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?
13÷2-5
=6.5-5
=1.5(千米)
根据:路程÷相遇时间-甲速度=乙速度
(二)教师提问:谁来说一说相遇问题的三量关系?
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
(三)引新
刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)
二、讲授新课
(一)教学例1
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇.甲每小时行5千米,乙每小时行多少千米?
1.读题,分析数量关系.
2.学生尝试解答.
方法一:解:设乙每小时行 千米.
方法二: (千米)
3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?
相同:解题思路和解题方法相同;
不同:数据不同,由整数变成分数.
4.练习
甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?
(二)教学例2
例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?
1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.
由此得出:一批水果的重量 第一次+第二次
2.列式解答
方法一:解:设这批水果有 千克
方法二:
3.以组为单位说一说解题的思路和依据.
4.练习
六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 .六年级有学生多少人?
三、巩固练习
(一)写出下列各题的等量关系式并列出算式
1.甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?
2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 .这部书稿有多少页?
(二)选择适当的方法计算下面各题
1.一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?
2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?
四、课堂小结
今天我们学习的分数应用题和以前所学的知识有什么联系?有什么区别?
五、课后作业
1.商店运来苹果4吨,比运来的橘子的2倍少 吨.运来橘子多少吨?
2.一套西装160元,其中裤子的价格是上衣的 .上衣和裤子的价格各是多少元?
六、板书设计
分数应用题
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过
小时相遇.甲每小时行5千米,乙每小时行多少千米? 例2.一个水果店运一批水果,第一次运了50千克,第二次运了
70千克,两次正好运了这批水果 的 ,这批水果有多少千克?
解:设乙每小时行 千米
答:,乙每小时行 千米.
解:设这批水果有 千克
答
篇16:比例的意义和基本性质教学设计与评析(人教版六年级教案设计)
教学内容:
九年义务教育六年制小学数学第十二册第9~10页,第11页做一做第1题,练习四第1、2、3题。
教学目的:
1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。
2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。
教学重点:
理解比例的意义和基本性质。
教学难点:
应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
教学关键:
观察众多的实例,概括出比例意义的过程;找出在比例里两个内项的积与两个外项的积相等的规律。
教具:CAI课件(载有:祖国各地风景图片及祖国地图、生物细胞等画面,学生活动内容、练习题等)。
学具:每小组两张“合作学习内容指导”。
教学过程:
一、谈话导入,创设情境
(一)教师出示CAI课件,结合画面谈话引入。
师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆960万平方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
教师板书课题:比例的意义和基本性质。
(二)让学生完成教材第9页复习题,根据学生回答教师板书:10:6=4.5:2.7。
[评:借助现代电教媒体,用形象、直观的例子,来激发学生的求知欲望,让学生在跃跃欲试的情绪下进入新课的学习。同时也培养了学生爱祖国、爱科学的情感。]
二、自主探究,学习新知
(一)教学比例的意义
1.合作互动,探求共性。
先让学生在小组活动中完成“活动内容1”。
活动内容1:
项目第一次第二次 时间(时)25 路程(千米)80200①根据表中给出的数量写有意义的比。
②观察写出的比,哪些比能用等号连接,为什么?
③根据比与分数的关系,这样的式子还可以怎样写?
然后让学生汇报活动情况。结合学生回答,教师任意板书几个比例式。(如80:2=200:5, = ,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。
2.抽象概括,及时巩固。
(l)教师指导学生观察以上比例式,概括出共性。
(2)让学生用自己的语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。
(3)完成第10页“做一做”,并说明理由。
(4)让学生自己举出两个比例,并说明理由。
[评:教师拓展了教材例1内容,让学生在众多的比当中找出相等的比,从而认识比例的共性,再由学生抽象概括出比例的意义,并及时进行巩固训练。既体现了任何科学知识都是通过研究大量的实例的基础上得出的,又充分发挥了学生的主体作用,培养了学生的语言表达能力。]
(二)教学比例的基本性质。
1.认识比例各部分名称。
(l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。
(2)让学生观察自己刚才举的比例,找出它的内项、外项。
(3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:
2.引导学生发现比例的基本性质。
(1)让学生小组活动完成以下活动内容2:
活动内容2:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②如果把比例写成分数形式,是否也有如上面发现的规律?
③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
④通过以上研究,你发现了什么?
(2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。
(3)指导学生概括出比例的基本性质,并完成板书。
[评:以上比例的意义和基本性质的教学设计,都把知识的探究过程留给了学生。问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。]
三、分层练习,辨析理解
1.完成练习四第1题区别比与比例。
2.先让学生解答第11页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。
3.完成练习四第2题。
4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。
2、3、4和6
[评:设计有层次的练习,让学生掌握正确组成比例的思路和方法,使各种层次的学生思维都得到发展,从而加深了对知识的理解和掌握。]
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
练习四第3题。
[总评:教者本着体现“教为主导,学为主体,疑为主轴,动(练)为主线”的教学原则,对本课的设计特有新意:①教学思想先进。如重过程教学,让学生亲自经历知识的发生、发展过程,注重培养学生的探究能力和创新意识。②处理教材有新意。如以表格出示几个数量作为学生研究的原始材料,又为学生设计了两个活动内容,符合学生实际,而且可操作性强。③教学设计层次分明,科学合理,环环相扣,水到渠成。
篇17:如何解比例分配应用题六年级教案设计
如何解比例分配应用题六年级教案设计
教学内容:
第十一册p5859,例2、例3,练习十三15
教学要求:
1、使学生认识按比例分配应用题的结构特点和解题思路,能正确解答按比例分配应用题。
2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
教材简析:按比例分配应用题是把一个数量按照一定的比进行分配。它是平均分问题的发展。本课的教学重点是根据两个量的比推想出各占总数量的几分之几。
教学过程:
一、创设情境,提出问题:
我校四(3)班有男生30人,女生18人。体育课上,沈老师要把24个实心球分给男、女同学分成两大组进行练习,可以怎样分呢?男同学组、女同学组各能分到几个?
同桌讨论,再回答。
(估计学生回答:1、平均分,就是男生12个,女生12个;2、这样不合理。3、应该按人数来分,男女生人数的比是30:18,化简后是5:3,按这个比例来分较合理。)
师小结:这样24个实心球按5:3来分,男女生各能分到几个?你能解决这样问题吗?
二、主动探究,归纳方法:
老师把刚才的问题板书成应用题出示,并引导学生一起研究解决刚才的问题:
四(3)班体育课,沈老师要把24个实心球分给男、女同学分成两组练习,男女生人数的比是5:3,男女生各分到实心球几个?
学生尝试独立解决问题。有困难的同学老师建议画个图帮助理解。解答后同桌说说是怎么想的?
学生讨论后汇报交流,说说自己的思路及解答方法。生1:24(5+3)5=15(个)24-15=9(个);生2:先想男生是总人数的几分之几?5+3=8,男生是总人数的5/8。245/8=15(个)24-15=9(个)师补充:这样做,实际上是转化成了求一个数的几分之几是多少?生3:24(5+3)=3(次)35=15(个)24-15=9(个);
方法引导:同学们想出了很多方法来解决这个问题,这些方法都可以,具体解题时用什么方法,同学们可以灵活地选择。
小结:我们分东西,可以用平均分,也可以按一定的比例来分。像刚才一样,把一个数量按照一定的`比例进行分配,这种分配的方法叫做按比例分配。(出示课题:按比例分配的应用题)
三、运用知识解决问题:
(1)初步运用
师:这样的问题你能解决吗?
出示:学校买科技书和故事书共540本,其中科技书和故事书数量的比是5:4,两种书各买几本?
(2)出出金点子:
师:像这样按比例分配的问题在生产、生活中应用非常广泛。下面,我们一起来帮助出出点子,好吗?
出示:水果店的李经理准备用3600元买进一些水果,可以买哪些水果,按怎样的比例分配,每种水果各用几元?你帮助出出主意好吗?
学生先自己做,再交流。
四、总结:
今天,我们学会了哪些知识?并说说我们是怎样学会这些知识的?
五、课堂练习:练习十三14
篇18:正比例和反比例的比较(人教版六年级教案设计)
教学目标
1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.
2.使学生能正确判断正、反比例.
教学重点
正、反比例的联系和区别.
教学难点
能正确判断正、反比例.
教学过程
一、复习准备
判断下面每题中两种量成正比例还是成反比例.
1.单价一定,数量和总价.
2.路程一定,速度和时间.
3.正方形的边长和它的面积.
4.时间一定,工效和工作总量.
二、新授教学
(一)出示课题
教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.
(二)教学例7(课件演示:正反比例的比较)
例7.观察下面的两个表,根据表分别填空.
表1
路程(千米) 5 10 25 50 100
时间(时) 1 2 5 10 20
在表1中相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,时间和路程成( )关系.
表2
速度(千米/时) 100
50 20 10 5
时间(时) 1 2 5 10 20
在表2中相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,时间和速度成( )关系.
1.分组讨论、交流.
2.引导学生讨论回答
(1)从表1中,怎样知道速度是一定的?根据什么判断速度和时间成正比例?
(2)从表2中,怎样知道路程是一定的?根据什么判断速度和时间成反比例?
3.引导学生总结路程、速度、时间三个量中每两个量之间的关系.
速度×时间=路程
4.练习:判断下面两个量成什么比例.
(1)当速度一定时,路程和时间.
(2)当路程一定时,速度和时间.
(3)当时间一定时,路程和速度.
(三)比较正比例和反比例的关系.(继续演示课件:正反比例的比较)
讨论填表:正、反比例异同点
相同点:都有两种相关联的量,一种量随着另一种量变化.
不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.相对应的每两个数的比值(商)是一定的.反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的.
三、课堂小结
今天我们学习了哪些知识?你还有什么问题吗?
四、巩固练习
(一)判断单价、数量和总价中一种量一定,另外两种量成什么比例.为什么?
1.单价一定,数量和总价成( ).
2.总价一定,单价和数量成( ).
3.数量一定,总价和单价成( ).
(二)从汽车每次运货吨数、运货的次数和运货的总吨数这三种量中,你能找出哪几种比例关系?
五、课后作业
一个单位食堂每天用大米的数量、用的天数和大米的总量如下表.
表1
在表1中,相关联的量是( )和( ),( )随着( )变化,(
比例的应用(人教版六年级教案设计)(合集18篇)




