“开心假期”通过精心收集,向本站投稿了5篇高墩大跨径桥梁中运用后支点挂篮技术论文,下面就是小编给大家带来的高墩大跨径桥梁中运用后支点挂篮技术论文,希望能帮助到大家!
- 目录
篇1:高墩大跨径桥梁中运用后支点挂篮技术论文
高墩大跨径桥梁中运用后支点挂篮技术论文
【摘要】后支点挂篮施工技术施工要求高,安全风险较大,在施工中应严格加强施工质量控制。论文结合具体的高墩大跨径桥梁施工实例,阐释后支点挂篮施工技术的具体施工过程,希望能对类似工程起到借鉴作用。
【关键词】后支点挂篮;高墩大跨径桥梁;浇筑施工
1引言
后支点挂篮施工技术是桥梁工程建设中较为广泛应用的一种施工技术[1]。这种施工技术凭借着自身的技术优势,能够有效地确保桥梁工程的施工质量。在后支点挂篮施工过程中,应对挂篮的设计、加工、安装等方面进行严格控制,并严格规范施工人员的项目管理行为。
2后支点挂篮的概念
后支点挂篮是指通过使用悬臂浇筑斜拉以及连续梁等混凝土梁,并在确保能够承受相关荷载的同时,进行逐段向前移动。后支点挂篮的主要组成部分包括承重、提升、锚固、行走以及模板支架等。后支点挂篮实际上是一种受力体系。在进行挂篮的施工时,箱梁上的荷载将传递给挂篮下方的工字钢纵梁,接着荷载再传递到前下横梁和后下横梁上[2]。此外,在进行挂篮行走时,是采用一种滑动的方式。因为一般情况下,在支点处均设置有主轨道,以供挂篮的滑动行走,同时在横座梁的下部设置有幅轨道,这样,通过滑梁、行走小车等设备,挂篮即可实现在箱梁上的行走。在副轨道上设置的链滑车即可实现对挂篮方向的改变。
3工程概况
本工程为某一公路桥梁施工建设项目。公路为双向6车道高速公路,整体式路基断面,标准宽度33.5m。设计汽车荷载:公路-Ⅰ级。设计速度:100km/h。设计基准期:100a。设计安全等级:一级。路线线型标准:主桥K7+851.20~K8+329.988段位于直线段上,K8+329.988~K8+376.20段位于半径R=29000m圆曲线上;竖曲线半径16000m,左侧为2.0%,右侧为-2.0%。该桥梁为高墩大跨径桥梁,总长度为2km。桥梁主桥部分的上部结构为跨度800m的4跨预应力混凝土连续刚构,桥墩最高处达到65m。桥梁宽度:桥梁与路基同宽,上下行分离设臵,桥面净宽为15.45m×2。桥下防洪堤车辆通行净空:h≥5.0m。地震:地震动峰值加速度为0.11g,相应地震烈度为Ⅶ度,桥梁按Ⅷ度设防。根据工程的具体情况,经过综合的分析考虑,对于主梁的施工采用后支点挂篮式悬臂浇筑施工方案。
4后支点挂篮的设计要点
在进行挂篮设计时,应综合各种因素来确定合理的挂篮结构形式,主要考虑的内容包括安全、施工要求、经济性以及通用性等。一般情况下,挂篮的质量与梁段混凝土的质量比值应控制在0.3~0.5之间,同时最大的变形量应控制在20mm以内。根据设计要求,在挂篮行走时,其安全系数应控制在2以上。此外,在进行挂篮荷载设计时,还应充分考虑挂篮结构的稳定性和强度,从而确保结构能够充分的承担挂篮自重、人群荷载、施工使用荷载等。最后还应对挂篮结构进行安全设计,重点考虑挂篮拼装、模板拆除等多个环节。
5后支点挂篮施工安全技术的运用
为了有效地确保后支点挂篮施工的质量和安全,应从施工的前、中、后期进行严格的管理和控制。具体而言,主要应加强施工质量和安全控制的阶段,包括:挂篮的加工和拼装、挂篮悬臂施工等。以下将对这几个施工阶段进行详细的介绍。
5.1施工前期准备
为了确保施工工序的正常顺利进行,在正式施工前,必须做好充足的准备工作。一般情况下,在后支点挂篮施工安全技术中,施工单位应建立完善的安全保障体系,明确相关工作人员的具体岗位和职责,并设立施工安全管理机构。在保障措施严格制定的基础上,明确挂篮安全施工各个工序的安全目标,从而将施工现场的安全责任落实到各相关人员。由于在施工过程中可能出现各种突发状况,因此,各个相关部分应对于工程中可能出现的状况编制切实可行的紧急预案[3]。在后支点挂篮施工安全技术的要求中,最重要的是施工人员自身的问题。因此,需要选择素质良好的施工作业人员。施工人员进入施工现场时应佩戴相关的,如安全帽、安全绳等安全保障设施。
5.2施工中期的挂篮悬臂浇筑施工
1)施工工艺流程。
本工程中具体的施工工艺流程为:纵向预应力束张拉→拆除侧模和底模→挂篮前移到下一段后锚固→调模→绑扎钢筋→安装预应力系统→安装内模→浇筑混凝土。
2)主梁施工设备。
在后支点挂篮施工中,主要需要应用到的机械设备包括起吊设备、张拉设备以及挂篮系统等。各个相关设备应经过安全检查,确保处于良好的使用状态。
3)挂篮模板拆除。
当混凝土强度达到设计强度要求之后即可进行模板的拆除,首先将外侧模拆除。在进行拆模时,应先将侧模上的对拉螺栓松卸下来,接着安装内外滑梁滑移小车。卸除滑梁后锚固系统,并将内外模适当的降低。当纵向预应力束张拉施工完成之后,则采用前后上横梁的吊带对前后下横梁进行锚固。拆卸前后下横梁的锚固系统,以检验挂篮系统在各个工况下的结构受力情况。根据具体情况适当降低平台。为了确保施工操作环节的顺利进行,在施工之前应设置安全操作平台,作业人员在操作过程中,应佩戴安全绳、安全带等安全保障设施。
4)挂篮前移。
当已浇筑梁段的混凝土达到设计强度要求之后,同时在预应力施工完成之后,即可开始进行挂篮的`前移作业。
5)挂篮就位。
当挂篮前移达到下一施工段落时,在调整精确就位后,即可采用锚杆对挂篮进行锚固锁定。如果发现预埋孔出现偏位的问题,应对锚杆底座孔的位置进行修整,同时需要采用贴板进行加强处理。
6)挂篮锚固。
在进行底平台的提升操作时,需要注意的是为了确保施工安全,各个锚固点受力应确保均匀。在混凝土浇筑施工前,应采用经过校验的千斤顶对后锚,根据设计的吨位以此对各个锚固点的锚固力进行检查,从而确保锚固点的受力均匀。如果锚固点受力存在偏差,应及时采取措施,结合情况进行调整。
7)挂篮模板安装。
当进行挂篮模板的安装时,应在所有的临空面设置安全操作平台、防护栏杆以及防护网等,以此确保施工作业人员始终处于封闭的空间状态下,以确保施工的安全性。
8)钢筋、预应力束安装。
在进行钢筋的安装时,应严格按照设计图纸的要求进行钢筋的绑扎。对于钢筋之间的连接可以采用焊接或者机械连接的方式。钢筋接头的质量应确保充分满足设计和规范的要求。在进行预应力管道的安装时,应严格确保位置准确、固定牢固。在施工中应避免预应力筋出现损伤。在腹板钢筋的安装过程中,为了有效的确保施工人员的安全,应设置临时安全操作平台。
9)混凝土施工。
当对悬臂混凝土进行浇筑时,应按照分层对称浇筑的方式。两对称梁段之间的不平衡重量偏差应控制在设计和规范的要求以内。
6结语
后支点挂篮施工技术为高墩大跨径桥梁施工带来便捷。文章结合实例,针对该桥梁为高墩大跨径桥梁,采用后支点挂篮式悬臂浇筑施工方案实施主梁施工。并提出施工前应结合安全、施工要求、经济性以及通用性等选取合理的挂篮结构形式,从挂篮施工准备技术以及挂篮在悬臂浇筑中的具体实施过程展开探讨,总结出了可行的施工控制技术措施,为同类工程提供了参考实例。
【参考文献】
【1】汪碧云,杨君.高墩大跨径桥梁后支点挂篮施工安全技术措施[J].西南公路,(4):90-93.
【2】任祥瑞.特大型桥梁挂篮的设计与安装[J].甘肃科技纵横,(6):136.
【3】李中华,周世清.北中路悬臂现浇箱梁施工创新技术[J].华东公路,(5):41-44.
篇2:高墩大跨径连续钢构桥梁结构抗震设计分析论文
1 高墩大跨径连续钢构桥简介
钢构桥结构较为特殊,是将墩台与主梁整体固结。其承担竖向荷载时,主梁通过产生负弯矩减少跨中正弯矩。桥墩作为钢构桥的主体部分,主要承担水平推力、压力以及弯矩三种力。墩梁固结形式较为特殊,可通过节省抗震支座减少桥墩厚度,借助悬臂施工从而省去体系转换,减少了施工工序。该结构可保持连续梁无伸缩缝,使行车平顺。此外还具有无需设置支座和体系转换功能,桥梁结构在顺桥向和横桥向分别具有抗弯和抗扭刚度,为施工提供具有便利。高墩大跨径连续钢构桥形式优缺点并存,其缺点在于受混凝土收缩、墩台沉陷等因素影响,结构中可产生附加内力。作为高柔性墩,可允许其上部存在横向变位。其优点在于弱化墩台沉降所产生的内力,并减轻其对结构的影响。
其突出受力结构表现为桥墩与桥梁固结为整体,通过共同承受荷载进而较少负弯矩;该桥梁结构受力合理,抗震与抗扭能力强,具有整体性好,桥型流畅等优点。作为高柔性桥墩,可允许桥墩纵横向存在合理变位。
2 桥梁震害的具体表现
2.1 支座
在地震中支座损坏极为常见,支座遭到破坏后能够改变力的传递,进而影响桥梁其它结构的抗震能力,其主要破坏形式有移位、剪断以及支座脱落等。
2.2 上部结构
上部结构遭受震害主要是移位,即纵向、横向发生移位。移位部位通常位于伸缩缝处,具体表现为梁间开脱、落梁、顶撞等。有资料显示,顺桥向落梁在总数中所占比例高达90%,由于这种落梁方式会撞击到桥墩侧壁,对下部结构造成巨大冲击力,因而破坏力极大。
2.3 下部结构
桥梁的下部包含基础、桥墩以及桥台,其遭受破坏后可导致桥梁坍塌,且震后修复难度大,基本不能再投入使用。受水平力影响,薄弱的截面经过反复震动后受到严重破坏。延性破坏多指长细的柔性墩,表现为混凝土开裂、塑性变形,其产生原因为焊接不牢、部件配设不足等。脆性破坏多指粗矮桥墩,表现为钢筋切断,究其原因为墩柱剪切强度不足。桥台多表现为滑移、颠覆。基础的破坏表现为不均匀沉陷、桩基剪切等,其破坏具有隐蔽性,修复难度极大。
3 桥梁震害原因
造成桥梁震害原因较多,主要有地震强度过大,超出桥梁的抗震设防标准;桥梁所处的地理位置不佳,致使地基变形;此外认为原因也可导致桥梁抗震能力不足,例如设计不合理,原材料质量不达标,施工出现操作失误等。
篇3:高墩大跨径连续钢构桥梁结构抗震设计分析论文
4.1 重视高墩大跨径连续钢构桥的总体布置
地震时桥墩顶部位移较大,采用连续钢构结构有助于减少落梁。墩梁固结为整体,则多余的'约束可形成塑性铰,从而提高桥梁的抗震能力。建设高墩桥时,受地理位置影响,易出现刚度和质量问题。合理调整相邻桥墩高度,对于连续梁桥,应尽可能保持其刚度相近,并根据桥墩刚度比与周期比进行严密计算,减少误差,增强高墩桥整体抗震能力。
4.2 选择合适桥墩
在地震中,桥墩形式影响桥梁结构,因而其设计与选型对于抗震安全性具有重要意义。地形与地貌均对桥墩设计产生影响,常见的桥墩形式有门架墩、双柱墩等,但抗弯与抗扭刚度较差,当桥墩超过30m时,易产生失稳现象。高墩大跨径连续钢构桥根据实际情况多采用空心薄壁墩(如图1、2所示)或者独柱T型墩,二者各个方向抗扭与抗弯刚度都较好,具有整体性好等优点。而独柱T型墩适用于高度低于60m时,其原理是将悬挑式盖梁与墩柱充分结合,其截面尺寸与刚度均较小。而心薄壁墩适用于高度低于80m时,外观与独柱T型墩相似,其截面尺寸与刚度均较大。
篇4:高墩大跨径连续钢构桥梁结构抗震设计分析论文
5.1 计算时所需考虑的因素
通常受地形、断层、桥身长度限制,应考虑多点激励的影响。同一地震,其在地表所呈现的反应不同,因而幅值、频谱特征各异,再加上空间变化复杂,因而需考虑多方面因素。
地震时,受到高墩自身质量或周期影响,可形成两个及其以上塑性铰,而忽略高阶振型会导致设计时出现误差,从而影响桥梁抗震时安全性,因而在设计时应将桥墩高阶振型的影响计算在内。
5.2 反应谱方法
在桥梁抗震分析中,反应谱方法较为常用,但其弊端在于地震时假设支座运动规律相同,没有考虑运动的不一致性。对于处于地形复杂的高墩桥而言,这种不合理的假设造成非线性问题出现较大误差。
5.3 随机震动法
该方法是公认的较为合理方法,其结合地震发生的概率,但是计算量较大,同样也会使非线性问题出现误差。随着科技的发展,随机震动虚拟激励法应运而生,不仅解决计算量的问题,同时确保计算的精度,具有效率高,使用方便等优势,在高墩桥梁设计中应用广泛,但在处理罕见地震时存在局限。
篇5:高墩大跨径连续钢构桥梁结构抗震设计分析论文
6.1 重视桥墩台处档块设计
地震中抗震档块出现剪裂现象,表明其设计对于提高桥梁整体抗震能力具有重要作用。在设计过程中,应重视其余主梁刚度的比值、剪裂的程度,此外针对不同跨径与结构的桥梁,应根据实际需要设计不同尺寸的档块。
6.2 可对支座進行隔振处理
设计高墩桥梁时,可采用叠层、铅芯橡胶等隔震支座,在桥梁与桥墩的连接处增加柔性,从而降低对地震的反应。
综上所述,分析高墩大跨径连续钢构桥梁结构抗震设计,有助于完善桥梁总体设计,提高桥梁抗震能力,减少经济损失,并提高桥梁安全性。
参考文献
[1] 宗周红,夏坚,徐绰然.桥梁高墩抗震研究现状及展望[J].东南大学学报(自然科学版),2013(02):445-452.
[2] 王东升,岳茂光,李晓莉,等.高墩桥梁抗震时程分析输入地震波选择[J].土木工程学报,2013(S1):208-213.
[3] 何松涛.高墩大跨径桥梁在悬臂施工阶段刚构的非线性稳定分析[J].公路交通科技(应用技术版),2013(12):174-177.
[4] 卢皓,李建中.强震作用下高墩桥梁抗震性能特点分析[J].地震工程学报,2013(04):858-865.
[5] 许庆鹏,丁修玺.浅谈高墩桥梁抗震设计[J].科技创新导报,2012 (08):119.
[6] 陈明华.山区高墩桥梁抗震设计探析[J].技术与市场,2016(05):217.
★ 跨站入侵技术详解
★ 网络安全技术论文
高墩大跨径桥梁中运用后支点挂篮技术论文(共5篇)




