北师版初一数学上册知识点

时间:2022-11-28 12:16:39 作者:曾西西 综合材料 收藏本文 下载本文

“曾西西”通过精心收集,向本站投稿了6篇北师版初一数学上册知识点,以下是小编为大家准备了北师版初一数学上册知识点,欢迎参阅。

篇1:北师版初一数学上册知识点

初中一年级数学上册知识点

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键.

※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

七年级数学知识点

概率

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。

初一数学复习方法

代数初步知识

1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2. 几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;

(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .

有理数

凡能写成q/p(p,q为整数且p≠0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。

篇2:北师版初一数学知识点

北师大版初一下册数学知识点总结

1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、全等图形:两个能够重合的图形称为全等图形。

18、变量:变化的数量,就叫变量。

19、自变量:在变化的量中主动发生变化的,变叫自变量。

20、因变量:随着自变量变化而被动发生变化的量,叫因变量。

21、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

22、对称轴:轴对称图形中对折的直线叫做对称轴。

初一下册数学知识点总结北师大版

1.1正数与负数

在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。

1.2有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rationalnumber)。

通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。

七年级下册数学复习资料

【相似变换】

※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.

※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

※3、注意点:

①a:b=k,说明a是b的k倍;

②由于线段a、b的长度都是正数,所以k是正数;

③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;

④除了a=b之外,a:b≠b:a,与互为倒数;

【平移变换】

(1)图形平移前后的形状和大小没有变化,只是位置发生变化;

(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)

(3)多次平移相当于一次平移。

(4)多次对称后的图形等于平移后的图形。

(5)平移是由方向,距离决定的。

(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。

这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移

【相似三角形】

※1、在相似多边形中,最为简简单的就是相似三角形.

※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

※3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

※5、相似三角形周长的比等于相似比.

※6、相似三角形面积的比等于相似比的平方.

篇3:北师版五年级数学上册知识点

五年级数学知识点

知识点:倍数

问题:2的倍数有哪些?

2的倍数有:2,4,6,8 …

例1、小蜗牛找倍数(找出3的倍数)。

练习3、5的倍数有哪些?7的倍数呢?

5的倍数:

7的倍数:

一个数的倍数的个数是( ),一个数的最小的倍数是( ),( )的倍数。

用字母表示因数与倍数的关系:a x b = c (a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。

说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?

1、根据算式:4×8=32

说一说,谁是谁的因数?谁是的倍数?

2、根据算式:63÷7=9

说一说,谁是谁的因数?谁是的倍数?

3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?

小试牛刀

1. 填空:

(1)3×7=21,( )和( )是( )的因数,( )是( )和( )的倍数。

(2)72的因数是( ),最小倍数是( ),最小因数是( )。

(3)一个数(0除外),它的因数和最小倍数都是( )。

2.判断:

(1)6是因数,30是倍数。 ( )

(2)因为8÷0.8=10,所以8是0.8和10的倍数,0.8和10是8的因数。 ( )

(3)一个数的因数一定小于这个数。 ( )

(4)甲数比乙数大,甲因数的个数比乙数多。

3、写出各数的因数或倍数。

因数 倍数(写出5个)

10 4

17 7

28 10

五年级数学下册分数的意义与性质知识点

把( )平均分成( )份,这样的( )份用( )表示。

分数的意义:

一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

例如

一个整体可以用自然数1表示,通常把它叫单位“1”。

把 看成单位“1”,每个 是 的1/4。

练习

每个茶杯是(这套茶杯)的( )分之( )。

每袋粽子是( )的( )分之( )。

每种颜色的跳棋是( )的( )分之( )。

阴影的方格是( )的( )分之( )。

二 分数单位

把单位“1”平均分成若干份,表示其中一份的数叫分数单位。例如 ( )的分数单位是( ),( )的分数单位是( ),( )的分数单位是( )。

三 分数与除法

思考

1、把三个苹果平均分给2个人,每个人分几个?

2、把1个苹果平均分给2个人,每个人分几个?

3、把3块饼平均分给5个小朋友,每人分得多少块?

3÷5= (块)

四 分数的分类(真分数与假分数)

( ) ( ) ( )

这些分数比1大还是小?

分子比分母小的分数叫真分数。真分数小于 1。

( ) ( )

( )

这些分数比 1 大,还是比 1 小?

分子比分母大或分子和分母相等的分数叫做假分数。假分数大于 1 或等于 1。

五年级数学提高方法

一、充分重视

五年级的数学学习为什么如此重要,以至于需要引起学生的充分重视?最根本的原因还在于它是学生进入总复习的前期准备。更关键的是,在这一年中学生往往会产生一种错觉,即学生经过四年的不断学习,对于心智还不够成熟的孩子来说,非常有可能会产生疲劳感,进而开始放松、懈怠,而五年级处在进入总复习的前一年,因而学生会倾向于认为自己在这一年可以充分放松,然后以充沛的精力来面对六年级的总复习。

就像已经升入高三的学生,总是以为自己在最后一届秋季运动会之前都可以放松,运动会过后就立即投入到学习当中。然而,不要忘记一点,放松的时间过长,或者使自己保持在一种不紧张的状态,再想紧张起来就没那么容易了,可能要克服的障碍比想象的多得多。所以在这里反复强调,学生一定不要异想天开觉得自己可以在五年级放松懈怠、平稳过渡,反而应该比之前更加努力学习,为下一年的升学复习打下坚实的基础。

二、兼顾从前所学

学生在足够重视五年级的学习后,一方面需要认真学习该学期的新知识,另一方面,也要对之前所学的知识进行回顾。从一年级的数字分类到四年级的各种图形等,都要有所复习。学生可以采取如下两种方法进行回顾。

(1)粗放式复习。顾名思义,就是指复习从前所学知识的大框,可以翻阅教材,着重看教材的目录,梳理所学知识的前后顺序,将知识串联起来,同时要思考,为什么某些知识要在另一些知识之后或之前讲等。通过这样的方式,便可以在心中构建起一个比较模糊、初具形态的知识框架,重复进行可以使学生对所学知识的整理越发清晰,非常有系统性,对于学生日后复习有着极大的帮助。

(2)精细复习。主要是通过做习题的途径来进行,具体的做法就是在做综合题的过程中,一定会遇到一些忘记的或已经生疏的知识,在做完题之后,就从这些遗忘了的知识点入手,翻看教材的讲解部分,加之自己曾经做过笔记等,把这个知识点重新学精学透。此外,由这个知识点所延伸出的其他知识点,也按照上述方式进行学习,就像树枝一样逐渐扩散开来,这样复习也许会耗费大量的时间,但是一个突出的优点就是可以使学生在将知识点复习通透的同时又兼顾知识之间的联系与连续性,这对于学生科学地复习是非常关键的。以上两种复习所学知识的方法,学生可以根据自己的知识掌握程度自行选择,也可以有机结合起来,总之,找到最适合自己的就好。

篇4:北师版数学五年级上册知识点

北师版数学五年级上册知识点

一、小数乘整数 (利用因数的变化引起积的变化规律来计算小数乘法)

知识点一:

1、计算小数加法先把小数点对齐,再把相同数位上的数相加

2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:

积中小数末尾有0的乘法。 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。如:3.60 “0” 应划去

知识点三:

如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。如0.02×2=0.04

知识点四:

计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:

小数乘整数与整数乘整数有什么不同?

1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

二、小数乘小数

知识点一:

因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

知识点二:

小数乘法的一般计算方法:

先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

知识点三:

小数乘法的验算方法

1、把因数的位置交换相乘

2、用计算器来验算

三、积的近似数

知识点一:

先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。

知识点二:

如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。如6.597 保留两位为6.60

四、连乘、乘加、乘减

知识点一:

小数乘法要按照从左到右的顺序计算

知识点二:

小数的乘加运算与整数的乘加运算顺序相同。先乘法,后加法

整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

五、简便运算

整数乘法的交换律、结合律和分配律,对于小数乘法也适用

计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。

对于不符合运算定律的算式,有些通过变形也可以应用。

乘法分配律也可以推广到相应的减法。

小学数学万以内的加法和减法知识点

1、认识整千数(记忆:10个一千是一万)

2、读数和写数(读数时写汉字写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续的两个0,都只读一个0。

3、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数的高位上的数,如果高位上的数相同,就比较下一位,以此类推。

4、求一个数的近似数:

记忆:看位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

较大的三位数是位999,小的三位数是100,较大的四位数是9999,小的四位数是1000。较大的三位数比小的四位数小1。

5、被减数是三位数的连续退位减法的运算步骤:

①列竖式时相同数位一定要对齐;

②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

7、公式

和=加数+另一个加数

加数=和-另一个加数

减数=被减数-差

被减数=减数+差

差=被减数-减数

数学数字0的基本概念

0既不是正数也不是负数,而是正数和负数之间的一个数,且为正数和负数的分界线。当某个数X大于0(即X>0)时,称为正数;反之,当X小于0(即X<0)时,称为负数;而这个数X等于0时,这个数就是0。

篇5:初三数学上册知识点北师版

初三数学上册知识点归纳

第一章 特殊平行四边形

1、菱形的性质与判定

①菱形的定义:

一组邻边相等的平行四边形叫做菱形。

②菱形的性质:

具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

③菱形的判别方法:

一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2、矩形的性质与判定

①矩形的定义:

有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

②矩形的性质:

具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

③矩形的判定:

有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

④推论:直角三角形斜边上的中线等于斜边的一半。

3、正方形的性质与判定

①正方形的定义:

一组邻边相等的矩形叫做正方形。

②正方形的性质:

正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

③正方形常用的判定:

有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形;

对角线相等的菱形是正方形;

对角线互相垂直的矩形是正方形。

④正方形、矩形、菱形和平行边形四者之间的关系

⑤梯形定义:

一组对边平行且另一组对边不平行的四边形叫做梯形。

两条腰相等的梯形叫做等腰梯形。

一条腰和底垂直的梯形叫做直角梯形。

⑥等腰梯形的性质:

等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

三角形的中位线平行于第三边,并且等于第三边的一半。

夹在两条平行线间的平行线段相等。

在直角三角形中,斜边上的中线等于斜边的一半

第二章 一元二次方程

1、认识一元二次方程

只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0

(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。

把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

2、用配方法求解一元二次方程

①配方法 <即将其变为(x+m)2=0的形式>

配方法解一元二次方程的基本步骤:

把方程化成一元二次方程的一般形式;

将二次项系数化成1;

把常数项移到方程的右边;

两边加上一次项系数的一半的平方;

把方程转化成的形式;

两边开方求其根。

3、用公式法求解一元二次方程

②公式法 (注意在找abc时须先把方程化为一般形式)

4、用因式分解法求解一元二次方程

③分解因式法

把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

5、一元二次方程的根与系数的关系

①根与系数的关系:

当b2-4ac>0时,方程有两个不等的实数根;

当b2-4ac=0时,方程有两个相等的实数根;

当b2-4ac<0时,方程无实数根。

②如果一元二次方程 ax2+bx+c=0 的两根分别为x1、x2,则有:

③一元二次方程的根与系数的关系的作用:

已知方程的一根,求另一根;

不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

已知方程的两根x1、x2,可以构造一元二次方程:

x2-(x1+x2)x+x1x2=0

已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根

6、应用一元二次方程

①在利用方程来解应用题时,主要分为两个步骤:

设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);

寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

②处理问题的过程可以进一步概括为:

第三章 图形的相似

1、成比例线段

①线段的比

如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成

四条线段a、b、c、d中,如果a与b的比等于c与d的比,即

那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

②注意点:

a:b=k,说明a是b的k倍

由于线段 a、b的长度都是正数,所以k是正数

比与所选线段的长度单位无关,求出时两条线段的长度单位要一致

除了a=b之外,a:b≠b:a

比例的基本性质:若

则ad=bc; 若ad=bc, 则

2、平行线分线段成比例

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则

3. 黄金分割

如图1,点C把线段AB分成两条线段AC和BC,如果

那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.

黄金分割点是最优美、最令人赏心悦目的点.

4.相似多边形

① 含义:

一般地,形状相同的图形称为相似图形.

对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.

②注意点:

在相似多边形中,最为简单的就是相似三角形.

对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

全等三角形是相似三角的特例,这时相似比等于1.

注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

相似三角形周长的比等于相似比.

相似三角形面积的比等于相似比的平方.

相似多边形的周长等于相似比;面积比等于相似比的平方.

5、探索三角形相似的条件

①相似三角形的判定方法:

②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

③相似三角形的判定定理的证明

④利用相似三角形测高

⑤相似三角形的性质

⑥图形的位似

第四章 投影与视图

1、三视图

① 主视图——从正面看到的图

左视图——从左面看到的图

俯视图——从上面看到的图

②画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.

③虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线.

2、投影

① 物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.

②太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。

③在同一时刻,物体高度与影子长度成比例.

④物体的三视图实际上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影.

⑤探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称

为中心投影

⑥皮影和手影都是在灯光照射下形成的影子.它们是中心投影。

3、视点、视线、盲区的定义以及在生活中的应用

①眼睛所在的位置称为视点,

②由视点发出的光线称为视线,

③眼睛看不到的地方称为盲区

第五章 反比例函数

1、反比例函数的定义

2、用待定系数法求反比例函数的解析式

由于反比例函数

只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。

3、反比例函数的图像及画法

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中

所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:

①列表时选取的数值宜对称选取;

②列表时选取的数值越多,画的图像越精确;

③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;

④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

4、反比例函数的性质

关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:

第六章 概率的进一步认识

用树状图或表格求概率

相关知识点链接:

①频数与频率

频数:在数据统计中,每个对象出现的次数叫做频数,

频率:每个对象出现的次数与总次数的比值为频率。

②概率的意义和大小:

概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间。

【知识点1】频率与概率的含义

在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即

把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。

【知识点2】通过实验运用稳定的频率来估计某一时间的概率

在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。

我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。

【知识点3】利用画树状图或列表法求概率(重难点)

初三上册数学几何知识点

扇形周长公式

因为扇形=两条半径+弧长

若半径为R,扇形所对的圆心角为n°,那么扇形周长:

C=2R+nπR÷180

扇形面积公式

在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积

S=nπR^2÷360

▲什么是圆周率?

圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。

▲什么是π?

π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。

圆的面积 s = π × r × r

其中,π 是周围率,等于3.14

r 是圆的半径。

圆的周长计算公式为:C=2πR 。C代表圆的周长,r代表圆的半径。圆的面积公式为:S=πR2(R的平方) 。S代表圆的面积,r为圆的半径。

椭圆周长计算公式

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆面积计算公式

椭圆面积公式: S=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

1.有关的计算:

(1)圆的周长C=2πR;(2)弧长L= ;(3)圆的面积S=πR2.

(4)扇形面积S扇形 = ;

(5)弓形面积S弓形 =扇形面积SAOB±ΔAOB的面积.(如图)

2.圆柱与圆锥的侧面展开图:

(1)圆柱的侧面积:S圆柱侧 =2πrh; (r:底面半径;h:圆柱高)

(2)圆锥的侧面积:S圆锥侧 = =πrR. (L=2πr,R是圆锥母线长;r是底面半径)

描述定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫圆心。线段OA叫做半径。

集合定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2、圆的表示方法:以O为圆心的圆记做⊙O,读作圆O。

3、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

4、半径:圆心与圆上任意一点所连的线段叫半径。直径:经过圆心的弦叫直径。

5、圆心角:顶点在圆心上的角叫圆心角。

6、圆周角:顶点在圆上,并且两边都与圆相交的角叫圆周角。

7、弦心距:圆心到弦的垂线段的长。

初三数学复习方法

课前要“预、做、复”

每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。

每节新内容学完后,要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。

课上要“听、记、练”

首先, 做好课前的准备。充分做好课前的准备工作是听好课基础。一般情况下,应做好三个方面的准备:

第一,知识准备。每一门学科,都有其严密的知识体系,尤其是数学,其严密性更强,它好像一条锁链, 一环套一环,环环紧扣,前面的知识没有掌握好,后面的知识就难以理解。所以上课前要复习旧课并预习新课,了解新旧知识的联系, 明确新课的学习要求。如果旧的知识接不上,就要想办法补上。

第二,物质准备。课前要准备好课本、文具在内的课堂上必需学习用品,如:课堂笔记本,草稿本,三角板,圆规,量角器等。

第三,精神准备。提前入座,稳定情绪,并可利用这短暂的时间作知识回顾,上一节学了什么?这堂课将学什么? 这样有助于一上课就进入“角色”。

其次,听讲全神贯注。部分同学为什么学习成绩上不去? 为什么课后做作业感到费力? 其中一个重要的原因就是上课不专心听讲。有的同学上课静不下来,注意力容易分散,这就需要专门的训练。

再次,要主动获取知识。主动听课是指积极配合老师的每一个教学环节,主动思考。例如,老师在黑板上写出一道例题,有些同学等待教师讲解,而有些同学则不然,他立即开动脑筋, 抢在老师讲解前分析问题的条件和结论,并考虑解题思路,久而久之,就能提高自己的解题能力和思维能力。

最后,还要做好课堂笔记。课堂上以听为主,以记为辅。记笔记求精求快,而不求多。课堂上主要记教材以外的补充内容、学习中的难点、老师的归纳小结及解题的方法技巧。课后再对笔记进行适当整理;就能将课堂所获得的知识纳入自己的知识仓库。

课后要“思、问、集”

课后作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想。如:方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用,做到绝不出现第二次类似错误。

篇6:北师版八年级上册数学知识点

北师版八年级上册数学知识点

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

数据的收集、整理与描述

一.知识框架

二.知识概念

1.全面调查:考察全体对象的调查方式叫做全面调查.

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.

3.总体:要考察的全体对象称为总体.

4.个体:组成总体的每一个考察对象称为个体.

5.样本:被抽取的所有个体组成一个样本.

6.样本容量:样本中个体的数目称为样本容量.

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.

8.频率:频数与数据总数的比为频率.

9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.

四边形

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

平行四边形的判定

1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

矩形判定定理:

1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:

1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形

等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

解梯形问题常用的辅助线:如图

线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。

如何提高解答数学题的能力

数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:

(1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

(2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

(3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。

多项式定义

在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

小学二年级数学北师版知识点

初一数学上册知识点科教版

新北师版五年级数学知识点总结

初一数学上册知识点

北师版七年级上册数学教案

初一数学上册苏教版知识点

北师版四年级语文知识点总结

北师大版数学四年级上册知识点

北师大版四年上册数学知识点

北师版初二上册历史提纲

北师版初一数学上册知识点(合集6篇)

欢迎下载DOC格式的北师版初一数学上册知识点,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档