CRM需要数据挖掘

时间:2022-11-29 15:33:55 作者:大鸡腿饭 综合材料 收藏本文 下载本文

“大鸡腿饭”通过精心收集,向本站投稿了9篇CRM需要数据挖掘,下面是小编帮大家整理后的CRM需要数据挖掘,希望对大家带来帮助,欢迎大家分享。

篇1:CRM需要数据挖掘

任何企业在制定其增长策略时都需要回答以下两个关键问题:在哪里竞争及如何竞争,回答以上问题的基础在于是否对企业的内、外部环境有一个清晰的认识,了解企业客户(客户种类、客户需求、购买因素)作为对外部环境研究的一个重要方面一直都受到企业管理者的关注。

为此就需要不断地对影响客户行为的因素进行深入的分析,具体包括:客户是谁?客户的购买体验如何?服务或产品的竞争性如何(包括价格、渠道、行销等多方面)?我们都知道,加深对客户的了解是一个循序渐进的过程,具体包括客户特征的描述、客户细分、客户价值分析、客户生命周期分析及客户忠诚度分析等多项内容。

CRM需要数据挖掘

客户的价值已经越来越多地影响着企业的价值,客户关系管理 (CRM)正是通过建立长期而系统的客户关系来提升单个客户价值的战略,其要旨在于帮助企业通过运用适合的技术以及合理的人力资源洞察客户的行为和他们的价值,以便企业能够迅速有效地对客户的需求进行回应。CRM的核心是“了解客户,倾听客户”,CRM的目标可以概括为“吸引潜在客户进入,提高现有客户满意度和忠诚度,降低客户流失”,总之一切的最终目的--提高收益。

在企业关注客户关系管理的同时,信息技术的飞速发展为客户关系管理(CRM)的高效实施提供了技术保证;通过数据挖掘技术对客户需求进行深入分析可以满足企业对个体细分市场的客户关系管理需求。数据挖掘主要是找a寻隐藏在数据中的信息,例如发现趋势、特征及相关性的过程,也就是从数据中发掘出信息或知识;数据挖掘要求使用者具有对商业问题的深入理解及对模型适用条件的深刻认识。

数据挖掘在CRM中扮演的角色

企业通过搜集、累积大量的市场及顾客的资料,建立了庞大的数据仓库,通过采用数据挖掘技术,寻找出对消费者而言最关键、最重要的影响因素,并籍此建立真正以客户需求为出发点的客户关系管理系统。

数据挖掘在CRM中的具体应用包括:客户盈利能力提升、客户挽留、客户细分、客户倾向、渠道优化、风险管理、欺诈监测、购买倾向分析、需求预测、等价格优化等,下面通过对中国移动客户保留计划的分析,来说明数据挖掘在CRM中扮演的角色,

中移动客户保留案例分析

国内移动通信市场的价格战是当前困扰运营商的主要问题,很多客户从一个移动运营商转向另一个移动运营商只是为了得到更低的费用及其他额外的优惠条件(如赠机)。因此需要通过对转网客户群的特征进行深入分析,然后根据分析结果到现有客户资料中找出可能转网的客户群,有针对性地设计一些客户保持计划来预防现有客户的流失。

针对当前的市场竞争状况,中国移动应对市场短期竞争及实现其长期发展的主要策略是:营销重心后移,巩固中高端用户,通过对现有个人用户消费行为的分析设计有针对性的个性化套餐,以达到保留现有客户的目的;具体可以概括为以下几个方面:

关注现有客户的稳定性,通过对现有客户利益诉求的满足,以及对移动品牌宣传的推动,来巩固现有的在网客户;

通过对客户消费行为及偏好差异的分析,针对不同细分人群设计相应的套餐;

通过对客户价值量的差异分析以提供不同的客户服务及忠诚度计划;

积极的客户挽留工作,对客户流失进行监控,及时进行用户挽留;

通过各种合作伙伴的捆绑扩大服务的广度,促进客户发展及客户维系(如移动机场贵宾休息室服务等)。

通过对移动竞争策略的分析,可以发现数据挖掘在中国移动套餐设计中的作用:

1.通过有效的数据挖掘,通过对消费者行为的分析来进行客户细分,具体内容包括界定客户群消费行为的指标、对消费行为的聚类分析、客户群的分类并对其的普遍行为进行描述;2.明确消费者的战略定位,通过对各消费群提的规模及业务贡献的分析,明确各消费群体的竞争稳定性,针对不同的消费群体界定出其在企业中的战略定位,同时通过有效的套餐元素设计来推出针对性的套餐计划。

3.通过对不同群体之间的套餐进行组合,形成包括基本套餐、特殊套餐及可选择性捆绑的套餐模板。

综上,数据挖掘是CRM的前提和基础,CRM是数据挖掘的延续和创新,通过将两者进行有效的组合,不断促进企业单个客户价值的提升和客户规模的扩大,有效地推动着企业价值和实力的不断攀升。

篇2:数据挖掘工具:谁最适合CRM

自从我上次斗胆回答“如何选择数据挖掘工具”之后,已经好几年过去了,本文主要阐述以下两个核心观点:

1. 没有最好的工具,更确切地说,没有适合所有人的最好的工具。

2. 最有用的工具,是那些能够满足你所需要的绝大多数数据挖掘任务的工具。

主要的数据挖掘任务

大多数数据挖掘人员都明白,数据挖掘项目中70%到90%的工作是做数据准备。在数据挖掘工具的演进过程中,数据准备功能的开发一直被放在次要位置上。最后,你要能够对模型准确评估,才能比较多个模型,并将它们推荐给市场人员。

数据准备任务

常见的数据准备任务包括:

◆进行数据评估

以判别出:

缺失值(空字符串、空格、空值)

孤立点

共线性评估(自变量之间的相关性)

◆合并多个数据集;

◆从不同输入格式到通用分析格式的元数据(字段的名称和类型)映射;

◆将类似变量的值变换为通用格式;

◆某些算法对输入变量有特殊要求,需要将数值型变量变换为类别型(通过数据分箱和分类),或者将类别型变换为数值型;

◆将变量值切分为多个字段,或将多个字段合并为一个字段;

◆从现有变量中派生新变量。大多数数据挖掘人员发现,有些最具有预测能力的变量,正是派生出来的变量。

大多数数据挖掘工具会把这些数据挖掘功能放在次要的地位, 本文则会侧重评估常见数据挖掘工具处理这些任务的能力。

除了能支持以上的数据准备任务,一个好的数据挖掘工具还应该包含模型评估的功能,以便比较建模过程中产生的多个模型,并用于支持直效营销(direct marketing)。

模型评估工具

在分析理论中,最好的模型是具有最佳精度的模型,可以准确预测出目标变量的类别,同时在验证数据集上也能表现稳定。这就是说,在预测中我们要考虑响应目标和非响应目标的组合精度。这种方法称为全局精度方法(Global Accuracy method)。大多数数据挖掘工具使用这种方法来确定“最佳”模型。但是,它也有美中不足。全局精度评估方法的背后有一个前提假设,就是各种分类错误的代价是相同的。这种方法在课堂上表现不错,但在实际的CRM数据挖掘应用上则可能存在问题,特别是在那些用于直邮营销的应用上。实际上,这也是过去很多用CRM来支持直邮营销而未能产生明显商业价值的一个主要原因。对模型的评估有一些主要原则,而其中只有一部分是营销部门真正关心的: 最大化目标客户的响应率,最小化所需成本。大多数数据挖掘工具都把注意力集中在预测的组合精度上,却完全忽略了成本的因素。

在直效营销活动中,向未响应的潜在客户(称为“错误肯定”错误,false-positive)发送邮件的成本是相当低的;而如果一个潜在客户可能会响应(称为“错误否定”错误,false-negative),你却没有向他发送邮件,那么这个代价就相当大了(因为没有把他发展为客户,您会损失他所缴纳的会员费,而且他也不可能购买您的其它服务)。因此在直销营销模型的评估中,就应该尽量最小化错误否定的错误,而不是错误肯定。因为营销部门只关注响应率和成本,如果前30%的客户名单中包含了全体响应者的60%,就可以满足他们的需求。对于直销营销来说,尽管前30%的客户仍会有部分人不会响应(错误肯定错误),向他们发送邮件依然是值得的。那是因为我们已经联系了全体响应者中的60%。 此时就比随机发邮件的有效性提高了一倍,也就更加合算。

大多数数据挖掘工具都使用全局精度方法来进行模型评估。它们可能会要求你使用这种方法,通过工具的报表功能来识别出“最佳”模型。不同算法会产生多个模型,我们不应该只是查看工具提供的精度报告,简单比较后就判别哪个是最佳的模型。实际上,更合适的评估应该根据如下条件来做出:按照预测概率值顺序排列模型结果,生成评分列表,然后看真正的响应者是否被放在最前面的分段中。 尽管分类算法可以输出分类概率,实际的类别(例如,0或1)还是对分类概率的进一步归纳(例如,<0.5 = 0; ≥ 0.5 = 1)。 大量真正的“金块”隐藏在数据挖掘工具的功能模块之中。 初级的CRM挖掘人员会把注意力放在分类和精度上面,但真正的“金块”应该是客户保持、购买倾向以及新客户获取的概率值。

我们应该查看累积提升表(cumulative lift table;例如表1),来判别模型是否真正有效地把正确肯定(true-positives)放在了靠前的分组里。累积提升表可以通过以下方式创建:

1.预测概率值按降序方式存储为有序列表

2.把这个有序列表划分为10段(分组)

3.计算每组中的实际命中数(actual hits,实际的响应数)

4.计算每个分组的随机期望值(random expectation),该期望值等于实际响应总数除以10。也就是说,在每个分组中我们期望会有实际响应总数的10%会响应。 如果命中率超过了随机期望值,就意味着模型为该分组带来了提升。

表1:提升表

译者注:

Decile-分组序号;Hits-命中数,即每组内包含的实际响应数,等于TP+FN;

TP-正确肯定;FN-错误否定;TN-正确否定;FP-错误肯定;

(TP和FN对应于实际的响应,TN和FP对应于实际的非响应)

Random Hits-随机命中数,即随机期望值,等于SUM(TP+FN)/10;

% of Total-召回率,等于Hits/SUM(Hits)*100;

Cum % of Total-累积召回率,是% of Total的累积值。

一共划分了10个分组,实际的总响应数为SUM(Hits)=275,因此每组的随机期望值为275/10=27.5。第一组的命中数为81,明显超过了随机期望值,其召回率=81/275=29.45%,

第二组的命中数为43,也超过了随机期望值,其召回率为43/275=15.64%,累积召回率等于第二组的召回率加上前面所有组(即第一组)的召回率,等于15.64%+29.45%=45.09%。

从上表中可以看出,该模型划分肯定和否定的阈值应该是在第二个分组中,这样才出现了第一组都被预测为肯定,但其中有81个是正确的肯定(TP),而735个是错误的肯定(FP);第二组中则同时包含了TP、FN、TN和FP;从第三组之后则都被预测为否定(因为位于阈值之下),因此包含了FN和TN。

正确肯定(True-Positives,TP): 实际的响应中,被正确预测为响应的个数

错误否定(False-Negatives,FN): 实际的响应中,被错误预测为非响应的个数

正确否定(True-Negatives,TN): 实际的非响应中,被正确预测为非响应的个数

错误肯定(False-Positives,FP): 实际的非响应中,被错误预测为响应的个数

通过对提升表的分析可以看到,在第四个分段之后,增量提升(incremental lift,第8列中的”% of Total”)下降到随机期望(每个分段为10%)之下,而前四个分段包含了超过70%的响应。 从下面的增量提升曲线(图1)中可以明显看出增量提升和随机期望的交叉点。

图1:增量提升图示例

在增量提升曲线中标示了各个分段的命中数。 在图1中可以看到,增量提升曲线在第4个分段后和随机期望线(275个响应的10%,即平均每个分段27.5个响应)交叉。 不管营销经理怎么去看,上述的表格和图形都可以把必要的信息传递给他们。 营销人员可以借助模型评估工具,来设定要给多少个客户发邮件。 以表1为例,营销人员可以向前四个分段的客户(占整个评分名单的40%)发邮件,并预期可以命中70%的潜在响应客户。

我们现在已经了解该如何评估数据挖掘模型,接下来就可以深入分析和调整业务流程,借助模型的结果来提高企业的盈利。 业务流程包括:

1.数据挖掘过程

2.知识发现过程

3.业务流程管理(BPM)软件

4.知识管理系统

5.商业生态系统管理

数据挖掘过程

Eric King在“如何在数据挖掘上投资:避免预测型分析中昂贵的项目陷阱的框架”一文(发表于10月的“DM Review”)中主张数据挖掘是一段旅程,而非终点。他把这段旅程定义为数据挖掘过程。 该过程包含如下要素:

1.一个发现过程

2.具有灵活的框架

3.按照清晰定义的策略进行

4.包含多个检查点

5.多次定期的评估

6.允许在反馈环路中对函数进行调整

7.组织为叠代式的架构

过程模型

很多数据挖掘工具的厂商都对这个过程进行了简化,使之更加清晰。 SAS将数据挖掘过程划分为五个阶段: 抽样(Sample),解释(Explain),处理(Manipulate),建模(Model),评估(Assess)。 过去人们常用循环式的饮水器来比喻数据挖掘过程。 水(数据)首先涌上第一层(分析阶段),形成漩涡(精炼和反馈),等到聚积了足够多“已经处理过”的水之后,就溢出来流到下一个更低的层中。 不断地进行这种“处理”,直到水流到最低层。在那里它被抽回顶层,开始新一轮的“处理”。 数据挖掘和这种层次式的叠代过程非常相像。 甚至在很多数据挖掘算法的内部处理也是如此,比如神经网络算法,就是在数据集上多次运行(epochs),直至发现最优解。 Insightful Miner已经在其用户界面中内建了简单过程模型。 这种集成可以帮助用户把必要的数据挖掘任务组织起来,让任务能够按照正确的顺序来处理。

但使用饮水器来比喻数据挖掘过程还不算恰当,因为它没有反映出反馈环路,而反馈环路在数据挖掘过程中是很常见的。 例如,通过数据评估可以发现异常的数据,从而要求从源系统中抽取更多的数据。 或者,在建模之后,会发现需要更多的记录才能反映总体的分布。

在CRISP过程模型中进行了解决这个问题的尝试,该模型是由Daimler-Benz、ISL (Clementine的开发者)和NCR共同制定的。 CRISP同时也被集成到Clementine挖掘工具(现在属于SPSS公司)的设计中。 CRISP几乎反映了完整的数据挖掘环境。

图2:CRISP图例

使用数据建模其实和做陶土模型或者大理石模型差不多。 艺术家首先从一大堆材料开始着手,经过许多次的加工和检查,才诞生了最终的艺术品。很多人在建模过程中常常没有充分理解建模的本质,由此带来了一系列问题,使得建模变得很复杂。 Eric King发现数据挖掘是一个循环的过程(就象上图中的CRISP流程图),而非线性的过程。 这种循环式的数据挖掘过程会让您想起Wankel转式汽车发动机。 这种发动机是一圈一圈旋转的(而非上下运动),不断输出动能来驱动汽车。 与之相似,数据挖掘过程也是不断循环,产生信息来帮助我们完成商业目标。 信息就是推动商业的“能量”。 在挖掘过程中会有很多对前一个阶段的反馈(例如,在完成初步建模之后可能需要获取更多的数据)。

不过,在CRISP流程中还是遗漏了一个要素——那就是对数据仓库或源系统的反馈。 前一次CRM营销活动的结果应该导入数据仓库,为后续的建模提供指导,并能跟踪营销活动间的变化趋势。 我在CRISP流程图中加入了这些反馈,以红线表示(见图2)。

通过数据挖掘过程的结构,我们可以得知数据挖掘工具必需能完成那些任务,但是工具常常会缺少对部分功能的支持。 当产生了挖掘结果时,你会怎么使用这些结果呢? 此外,针对挖掘结果所采取的这些行动又将如何影响后续的挖掘? 数据挖掘工具应该具备的一些功能包括:

1.将模型导出到多种数据库结构中

2.模型的导出格式,适合于决策支持和商业行动的应用

3.挖掘算法的输出数据,可以为另外的算法所用

4.能够比较不同算法的结果

篇3:浅谈数据挖掘

摘要:在电子商务中运用数据挖掘技术,对服务器上的日志数据、用户信息和访问链接信息进行数据挖掘,有效了解客户的购买欲望,从而调整电子商务平台,最终实现利益更大化。本文旨在了解电子商务中的数据源有哪些,发掘数据挖掘在电子商务中的具体作用,从而为数据挖掘的具体设计奠定基础。

关键词:数据挖掘电子商务数据源

一、电子商务中数据挖掘的数据源

1.服务器日志数据客户在访问网站时,就会在服务器上产生相应的服务器数据,这些文件主要是日志文件。而日志文件又可分为Ser-vicelogs、Errorlogs、Cookielogs。其中Servicelogs文件格式是最常用的标准公用日志文件格式,也是标准组合日志文件格式。标准公用日志文件的格式存储关于客户连接的物理信息。标准组合日志文件格式主要包含关于日志文件元信息的指令,如版本号,会话监控开始和结束的日期等。在日志文件中,Cookielogs日志文件是很重要的日志文件,是服务器为了自动追踪网站访问者,为单个客户浏览器生成日志[1]。

2.客户登记信息

客户登记信息是指客户通过Web页输入的、并提交给服务器的相关用户信息,这些信息通常是关于用户的常用特征。

在Web的数据挖掘中,客户登记信息需要和访问日志集成,以提高数据挖掘的准确度,使之能更进一步的了解客户。

3.web页面的超级链接

辅之以监视所有到达服务器的数据,提取其中的HTTP请求信息。此部分数据主要来自浏览者的点击流,用于考察用户的行为表现。网络底层信息监听过滤指监听整个网络的所有信息流量,并根据信息源主机、目标主机、服务协议端口等信息过滤掉垃圾数据,然后进行进一步的处理,如关键字的搜索等,最终将用户感兴趣的数据发送到给定的数据接受程序存储到数据库中进行分析统计。

二、Web数据挖掘在电子商务中的应用通过对数据源的原始积累、仔细分析,再利用数据发掘技术,最终达到为企业为用户服务的目的,而这些服务主要有以下几种。

1.改进站点设计,提高客户访问的兴趣对客户来说,传统客户与销售商之间的空间距离在电子商务中已经不存在了,在Internet上,每一个销售商对于客户来说都是一样的,那么如何使客户在自己的销售站点上驻留更长的时间,对销售商来说将是一个挑战。为了使客户在自己的网站上驻留更长的时间,就应该对客户的访问信息进行挖掘,通过挖掘就能知道客户的浏览行为,从而了解客户的兴趣及需求所在,并根据需求动态地调整页面,向客户展示一个特殊的页面,提供特有的一些商品信息和广告,以使客户能继续保持对访问站点的兴趣。

2.发现潜在客户

在对web的客户访问信息的挖掘中,利用分类技术可以在Internet上找到未来的潜在客户。获得这些潜在的客户通常的市场策略是:先对已经存在的访问者进行分类。对于一个新的访问者,通过在Web上的分类发现,识别出这个客户与已经分类的老客户的一些公共的描述,从而对这个新客户进行正确的归类。然后从它所属类判断这个新客户是否为潜在的购买者,决定是否要把这个新客户作为潜在的客户来对待。

客户的类型确定后,就可以对客户动态地展示Web页面,页面的内容取决于客户与销售商提供的产品和服务之间的关联。

对于一个新的客户,如果花了一段时间浏览市场站点,就可以把此客户作为潜在的客户并向这个客户展示一些特殊的页面内容。

3.个性化服务

根据网站用户的访问情况,为用户提供个性化信息服务,这是许多互联网应用,尤其是互联网信息服务或电子商务(网站)所追求的目标。根据用户的访问行为和档案向使用者进行动态的推荐,对许多应用都有很大的吸引力。Web日志挖掘是一个能够出色地完成这个目标的方式。通过Web数据挖掘,可以理解访问者的动态行为,据此优化电子商务网站的经营模式。通过把所掌握的大量客户分成不同的类,对不同类的客户提供个性化服务来提高客户的满意度,从而保住老客户;通过对具有相似浏览行为的客户进行分组,提取组中客户的共同特征,从而实现客户的聚类,这可以帮助电子商务企业更好地了解客户的兴趣、消费习惯和消费倾向,预测他们的需求,有针对性地向他们推荐特定的商品并实现交叉销售,可以提高交易成功率和交易量,提高营销效果。

例如全球最大中文购物网站淘宝网。当你购买一件商品后,淘宝网会自动提示你“购买过此商品的人也购买过……”类似的信息,这就是个性化服务的代表。

4.交易评价

现在几乎每一个电子商务网站都增加了交易评价功能,交易评价功能主要就是为了降低交易中的信息不对称问题。

电子商务交易平台设计了在线信誉评价系统,对买卖双方的交易历史及其评价进行记录。在声誉效应的影响下,卖家也更加重视买家的交易满意度,并且也形成了为获取好评减少差评而提高服务质量的良好风气。交易中的不满意(或者成为纠纷)是产生非好评(包括中评和差评)的直接原因。那么,交易中一般会产生哪些交易纠纷,这些交易纠纷的存在会如何影响交易评价结果,这些问题的解决对卖家的经营具有重要的指导价值。

总结

数据挖掘是当今世界研究的热门领域,其研究具有广阔的应用前景和巨大的现实意义。借助数据挖掘可以改进企业的电子商务平台,增加企业的经营业绩,拓宽企业的经营思路,最终提高企业的竞争力。

参考文献:

[1].赵东东.电子商务中的web数据挖掘系统设计[J].微计算机信息20xx,23(10-3):168[2].刘晔.Web数据挖掘在电子商务中的应用[J].中国市场20xx,39(9):178

篇4:浅谈数据挖掘

摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技

关键词:客户关系管理毕业论文

高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。

关键词:客户关系管理毕业论文

一、数据挖掘技术与客户关系管理两者的联系

随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。

二、数据挖掘技术在企业客户关系管理实行中存在的问题

现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。

1.客户信息不健全

在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。

2.数据集中带来的差异化的忧虑

以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。

3.经营管理存在弊端

从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的'营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。

三、数据挖掘技术在企业的应用和实施

如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。

1.优化客户服务

以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。

2.利用数据挖掘技术建立多渠道客户服务系统

利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。

四、数据挖掘技术是银行企业客户关系管理体系构建的基础

随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。

篇5:浅谈数据挖掘

首先现在是大数据时代,所以美国计算机数据挖掘专业就业前景肯定的越来越好的,全世界每天都有几十亿人使用计算机、平板电脑、手机和其它数字设备产生海量数据。在这个各个行业和领域都已经被数据给渗透,数据已成为非常重要的生产因素的大数据时代,对于大数据的处理和挖掘将意味着新一波的生产率不断增长和消费者盈余浪潮的到来。

美国计算机数据挖掘专业就业前景:

美国计算机数据挖掘专业很有前途,因为几乎所有公司都会用到数据库,而数据挖掘时从数据库上挖去有用的信息,比数据库更高一级,IT就业市场竞争已经相当激烈,而数据处理的核心技术---数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业 IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大,所以如果美国计算机数据挖掘专业的毕业生在国内和国外都是非常容易就业的。

美国计算机数据挖掘专业薪资:

一般来说具有三年以上工作经验的数据挖掘人才年薪可以达到30到50万人民币/年,应届毕业生起薪在20万人民币/年左右。

篇6:数据挖掘

数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。Data mining (the analysis step of the “Knowledge Discovery in Databases” process, or KDD), an interdisciplinary subfield of computer science, is the computational process of discovering pattern...

目录概述使用成功案例经典算法收缩展开概述

数据挖掘(Data Mining,DM)是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。 知识发现过程由以下三个阶段组成:(1)数据准备,(2)数据挖掘,(3)结果表达和解释。数据挖掘可以与用户或知识库交互。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。 并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。 起源 需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等。 数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2)人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。 发展阶段 第一阶段:电子邮件阶段 这个阶段可以认为是从70年代开始,平均的通讯量以每年几倍的速度增长。 第二阶段:信息发布阶段 从1995年起,以Web技术为代表的信息发布系统,爆炸式地成长起来,成为目前Internet的主要应用。中小企业如何把握好从“粗放型”到“精准型”营销时代的电子商务。 第三阶段: EC(Electronic Commerce),即电子商务阶段 EC在美国也才刚刚开始,之所以把EC列为一个划时代的东西,是因为Internet的最终主要商业用途,就是电子商务。同时反过来也可以说,若干年后的商业信息,主要是通过Internet传递。Internet即将成为我们这个商业信息社会的神经系统。底在加拿大温哥华举行的第五次亚太经合组织非正式首脑会议(APEC)上美国总统克林顿提出敦促各国共同促进电子商务发展的议案,其引起了全球首脑的关注,IBM、HP和Sun等国际著名的信息技术厂商已经宣布为电子商务年。 第四阶段:全程电子商务阶段 随着SaaS(Software as a service)软件服务模式的出现,软件纷纷登陆互联网[5],延长了电子商务链条,形成了当下最新的“全程电子商务”概念模式。

使用

分析方法: ・ 分类 (Classification) ・ 估计(Estimation) ・ 预测(Prediction) ・ 相关性分组或关联规则(Affinity grouping or association rules) ・ 聚类(Clustering) ・ 描述和可视化(Description and Visualization) ・ 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等) 方法简介: ・分类 (Classification) 首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。 例子: a. 信用卡申请者,分类为低、中、高风险 b. 故障诊断:中国宝钢集团与上海天律信息技术有限公司合作,采用数据挖掘技术对钢材生产的全流程进行质量监控和分析,构建故障地图,实时分析产品出现瑕疵的原因,有效提高了产品的优良率。 注意: 类的个数是确定的,预先定义好的 ・ 估计(Estimation) 估计与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类的类别是确定数目的,估值的量是不确定的。 例子: a. 根据购买模式,估计一个家庭的孩子个数 b. 根据购买模式,估计一个家庭的收入 c. 估计real estate的价值 一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。 ・ 预测(Prediction) 通常,预测是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。 相关性分组或关联规则 (Affinity grouping or association rules) 决定哪些事情将一起发生。 例子: a. 超市中客户在购买A的同时,经常会购买B,即A =>B(关联规则) b. 客户在购买A后,隔一段时间,会购买B (序列分析) ・ 聚类(Clustering) 聚类是对记录分组,把相似的记录在一个聚集里。聚类和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。 例子: a. 一些特定症状的聚集可能预示了一个特定的疾病 b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群 聚集通常作为数据挖掘的第一步。例如,“哪一种类的促销对客户响应最好?”,对于这一 类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。 ・ 描述和可视化(Description and Visualization) 是对数据挖掘结果的表示方式。一般只是指数据可视化工具,包含报表工具和商业智能分析产品(BI)的统称。譬如通过Yonghong Z-Suite等工具进行数据的展现,分析,钻取,将数据挖掘的分析结果更形象,深刻的展现出来。 挖掘分类 以上七种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘・ 直接数据挖掘 目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。 间接数据挖掘 目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系 。 ・ 分类、估值、预言属于直接数据挖掘;后四种属于间接数据挖掘

成功案例

数据挖掘帮助Credilogros Cía Financiera S.A.改善客户信用评分 Credilogros Cía Financiera S.A. 是阿根廷第五大信贷公司,资产估计价值为9570万美元,对于Credilogros而言,重要的是识别与潜在预先付款客户相关的潜在风险,以便将承担的风险最小化。 该公司的第一个目标是创建一个与公司核心系统和两家信用报告公司系统交互的决策引擎来处理信贷申请。同时,Credilogros还在寻找针对它所服务的低收入客户群体的自定义风险评分工具。除这些之外,其他需求还包括解决方案能在其35个分支办公地点和200多个相关的销售点中的任何一个实时操作,包括零售家电连锁店和手机销售公司。 最终Credilogros 选择了SPSS Inc.的数据挖掘软件PASWModeler,因为它能够灵活并轻松地整合到 Credilogros 的核心信息系统中。通过实现PASW Modeler,Credilogros将用于处理信用数据和提供最终信用评分的时间缩短到了8秒以内。这使该组织能够迅速批准或拒绝信贷请求。该决策引擎还使 Credilogros 能够最小化每个客户必须提供的身份证明文档,在一些特殊情况下,只需提供一份身份证明即可批准信贷。此外,该系统还提供监控功能。Credilogros目前平均每月使用PASW Modeler处理35000份申请。仅在实现 3 个月后就帮助Credilogros 将贷款支付失职减少了 20%. 数据挖掘帮助DHL实时跟踪货箱温度 DHL是国际快递和物流行业的全球市场领先者,它提供快递、水陆空三路运输、合同物流解决方案,以及国际邮件服务。DHL的国际网络将超过220个国家及地区联系起来,员工总数超过28.5万人。在美国 FDA 要求确保运送过程中药品装运的温度达标这一压力之下,DHL的医药客户强烈要求提供更可靠且更实惠的选择。这就要求DHL在递送的各个阶段都要实时跟踪集装箱的温度。 虽然由记录器方法生成的信息准确无误,但是无法实时传递数据,客户和DHL都无法在发生温度偏差时采取任何预防和纠正措施。因此,DHL的母公司德国邮政世界网(DPWN)通过技术与创新管理(TIM)集团明确拟定了一个计划,准备使用RFID技术在不同时间点全程跟踪装运的温度。通过IBM全球企业咨询服务部绘制决定服务的关键功能参数的流程框架。DHL获得了两方面的收益:对于最终客户来说,能够使医药客户对运送过程中出现的装运问题提前做出响应,并以引人注目的低成本全面切实地增强了运送可靠性。对于DHL来说,提高了客户满意度和忠实度;为保持竞争差异奠定坚实的基础;并成为重要的新的收入增长来源。 基本步骤 数据挖掘的步骤会随不同领域的应用而有所变化,每一种数据挖掘技术也会有各自的特性和使用步骤,针对不同问题和需求所制定的数据挖掘过程也会存在差异。此外,数据的完整程度、专业人员支持的程度等都会对建立数据挖掘过程有所影响。这些因素造成了数据挖掘在各不同领域中的.运用、规划,以及流程的差异性,即使同一产业,也会因为分析技术和专业知识的涉入程度不同而不同,因此对于数据挖掘过程的系统化、标准化就显得格外重要。如此一来,不仅可以较容易地跨领域应用,也可以结合不同的专业知识,发挥数据挖掘的真正精神。 数据挖掘完整的步骤如下: ① 理解数据和数据的来源(understanding)。 ② 获取相关知识与技术(acquisition)。 ③ 整合与检查数据(integration and checking)。 ④ 去除错误或不一致的数据(data cleaning)。 ⑤ 建立模型和假设(model and hypothesis development)。 ⑥ 实际数据挖掘工作(data mining)。 ⑦ 测试和验证挖掘结果(testing and verification)。 ⑧ 解释和应用(interpretation and use)。 由上述步骤可看出,数据挖掘牵涉了大量的准备工作与规划工作,事实上许多专家都认为整套数据挖掘的过程中,有80%的时间和精力是花费在数据预处理阶段,其中包括数据的净化、数据格式转换、变量整合,以及数据表的链接。可见,在进行数据挖掘技术的分析之前,还有许多准备工作要完成。 行业应用 价格竞争空前激烈,语音业务增长趋缓,快速增长的中国移动通信市场正面临着前所未有的生存压力。中国电信业改革的加速推进形成了新的竞争态势,移动运营市场的竞争广度和强度将进一步加大,这特别表现在集团客户领域。移动信息化和集团客户已然成为未来各运营商应对竞争、获取持续增长的新引擎。 随着国内三足鼎立全业务竞争态势和3G牌照发放,各运营商为集团客户提供融合的信息化解决方案将是大势所趋,而移动信息化将成为全面进入信息化服务领域的先导力量。传统移动运营商因此面临着从传统个人业务转向同时拓展集团客户信息化业务领域的挑战。如何应对来自内外部的挑战,迅速以移动信息化业务作为融合业务的竞争利器之一拓展集团客户市场,在新兴市场中立于不败之地,是传统移动运营商需要解决的紧迫问题。 IBM全球企业咨询服务部经过研究认为,传统移动运营商在拓展集团客户信息化市场的过程中所面临的外部挑战主要来自三个方面,即市场需求不成熟,技术与业务融合,全业务的竞争。同时,运营商在自身发展上也存在诸多问题,例如目标市场细分不清晰,信息化需求挖掘与评估不足;产品规划和管理难以满足客户信息化需求;渠道较为单一,无法有效覆盖客户;对合作伙伴吸引力较弱,尚未形成共赢的价值链;在运营管理层面,业务流程、销售团队能力以及IT支撑上都不适应集团信息化业务的发展。 从目前网络招聘的信息来看,大小公司对数据挖掘的需求有50多个方面(来源见参考资料): 1、数据统计分析 2、预测预警模型 3、数据信息阐释 4、数据采集评估 5、数据加工仓库 6、品类数据分析 7、销售数据分析 8、网络数据分析 9、流量数据分析 10、交易数据分析 11、媒体数据分析 12、情报数据分析 13、金融产品设计 14、日常数据分析 15、总裁万事通 16、数据变化趋势 17、预测预警模型 18、运营数据分析 19、商业机遇挖掘 20、风险数据分析 21、缺陷信息挖掘 22、决策数据支持 23、运营优化与成本控制 24、质量控制与预测预警 25、系统工程数学技术 26、用户行为分析/客户需求模型 27、产品销售预测(热销特征) 28、商场整体利润最大化系统设计 29、市场数据分析 30、综合数据关联系统设计 31、行业/企业指标设计 32、企业发展关键点分析 33、资金链管理设计与风险控制 34、用户需求挖掘 35、产品数据分析 36、销售数据分析 37、异常数据分析 38、数学规划与数学方案 39、数据实验模拟 40、数学建模与分析 41、呼叫中心数据分析 42、贸易/进出口数据分析 43、海量数据分析系统设计、关键技术研究 44、数据清洗、分析、建模、调试、优化 45、数据挖掘算法的分析研究、建模、实验模拟 46、组织机构运营监测、评估、预测预警 47、经济数据分析、预测、预警 48、金融数据分析、预测、预警 49、科研数学建模与数据分析:社会科学,自然科学,医药,农学,计算机,工程,信息,军事,图书情报等 50、数据指标开发、分析与管理 51、产品数据挖掘与分析 52、商业数学与数据技术 53、故障预测预警技术 54、数据自动分析技术 55、泛工具分析 56、互译 57、指数化 其中,互译与指数化是数据挖掘除计算机技术之外最核心的两大技术。

经典算法

1. C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。 2. K-means算法:是一种聚类算法。 3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中 4.Apriori :是一种最有影响的挖掘布尔关联规则频繁项集的算法。 5.EM:最大期望值法。 6.pagerank:是google算法的重要内容。 7. Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。 8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。 9.Naive Bayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(Naive Bayes) 10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝。 关联规则规则定义 在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事: “尿布与啤酒”的故事。 在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:“跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在”尿布与啤酒“背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。 数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。

篇7:CRM寻求突破 挖掘数据抓住客户

某商场实行会员积分制度,依据会员的积分卡建立了CRM系统,会员可凭积分卡在购物时享受一定的折扣优惠,根据消费金额进行积分,同时每年还可获得一本商场内商户的打折优惠券,

会员卡搜集的资料主要是会员的个人信息,包括性别、联系方式、居住地址等,同时由于会员在消费时需刷卡才能积分并享受优惠,故所有会员的每一次消费信息包括花费金额、购买时间、所购商品名称、所购商品的促销折扣、享受的总折扣都有记录。但该商场仅将此资料作为积分兑奖的依据加以利用,同时对长时间未到店的用户进行短信促销推广,这样做实际仅利用了CRM数据库中很小的一部分信息,对于海量的会员购物细节信息并没有加以深度的利用。

在周边商场不断打折促销的压力下,该商场采用同样的折扣手段进行促销以吸引消费者,但效果不佳,商场的营业额出现了增长的停滞甚至下跌。商场面对困境决定对用户的数据进行深度的发掘,希望能够对商场的会员采取有针对性的促销措施,以避免客户的流失。

CRM是步枪 数据挖掘是

针对这一案例,本尼菲咨询数据挖掘咨询顾问认为,传统企业管理的优势通常体现在后台,ERP系统帮助企业实现了内部商业流程的优化,提高了生产效率。而面对前台变幻莫测的市场时,企业往往缺乏真正有效的工具的帮助,诸如:什么产品最受欢迎、哪些顾客偏好购买哪种产品、原因是什么、有多少回头客、什么类型的客户为企业带来现金流、什么类型的客户为企业带来利润、哪些用户较具成长能力、哪些用户有离开的倾向、离开的原因有哪些等,目前大部分企业还只能依靠经验来推测,CRM系统的应用还仅仅局限在浅层,很多数据并没有被转化为能够帮助客户的知识加以利用,而仅仅是作为一个数据被忽略掉了。

目前CRM系统已经为企业提供了一个收集、分析和利用各种客户信息的系统,帮助企业充分利用其客户管理资源,也为企业在电子商务时代从容自如地面对客户提供了科学手段和方法。目前所有企业面临的一个共同问题是:企业数据量非常大,而其中真正有价值的信息却很少。如何有效地利用这些海量的信息,是摆在大多数企业面前的一个重大的问题。

大量的调查和行业分析家都明确了这样一个事实,即建立和维持客户关系是取得竞争优势的惟一且最重要的基础,这是网络化经济和电子商务对传统商业模式变革的直接结果。而实现这一目标的有力武器就是数据挖掘。

数据挖掘与CRM之间的关系类似于枪和子弹的关系,CRM就是一支步枪,而数据挖掘工具则为这支步枪装备了强力的 。这一组合将成为企业赢得市场、取得市场成功的有效助力。

数据分析形成会员分类 进行精细化营销

那么,怎样才能对用户的数据进行深度挖掘呢?让我们看看这个商场是怎么做的。

首先,这个商场根据用户的消费额和消费频率将用户进行分级,对消费金额较高的重点客户进行定期电话回访,以保证高端客户稳定。在这个环节中,数据挖掘团队首先对用户的消费额度和消费频率进行平均,再将每一个用户的消费频率和消费额度与平均值相比,得到与平均值有显着差异的用户,通过进一步的电话和短信访问区分出高价值客户和低价值客户,

再将高价值用户的消费额与消费频率进行交叉,对高价值用户进行进一步的细分。其次,分析师根据用户的消费频率和购物习惯将用户进行分类,根据对会员进行的电话访问结果和消费数据的分析,建立了会员的购物模式分类模型,通过聚类分析,将会员归类到各个细分的类别当中,再经过与商场的一线人员的实际沟通,对分类结果进行进一步的修正。对每一个新加入的会员经过判别分析后直接归入到其所属的类型当中,在经过一段时间的观测取得一定量数据后,即可对其展开针对性的营销推广活动。

用户在持有会员卡进行一定频率的消费后,模型自动判断用户在商场的购物类型和习惯,将会员细分为价格敏感型、超市购物型、品牌忠诚型、附近居住型等不同的类型。根据差别分析的结果检验,商场发现,价格变化对价格敏感型用户的差别影响程度达到了87.2%,其他类型的用户群体在差别检验中,也显着地体现出了其主要的影响因素。

这一结果首先被应用于针对性的定制营销。商场有针对性地发送了不同的促销信息,包括对价格敏感型用户在推送内容上主要以打折促销信息为主,将其习惯在商场购买的商品的相关打折促销信息准确地通过短信推送到其手中。而对于品牌忠诚型消费者则有选择地推送相关品牌的新品上市、价格促销等信息。同时通过与用户的频繁接触,对用户的个人信息进行了定期的维护和更新,使得商场有能力通过邮件递送的方式,将过去需要消费者到店领取的优惠券直接递送到消费者的手中。

在第二阶段,根据本地消费者与商场会员的购物习惯,将本地消费者习惯购买的商品的相关信息,根据消费者的购物习惯进行共同的促销信息推送,以吸引原本在其他地方购买商品的用户在本商场进行更多的相关产品购买。例如购买品牌服装的女性消费者通常具有较大的化妆品及护肤用品的消费需求,在过去,由于商场面积较大以及商场一贯的高端形象,很多消费者是在其他商场购买化妆品和护肤用品的,但经过对消费者购物习惯的数据挖掘后,商场针对只在商场购买服装的女性消费者有针对性地根据其购物的价位推送相关化妆品和护肤用品的广告,同时调整了购物通道的设计,使得消费者能够更容易从服装区到达化妆品区域。经过一个月左右的实际检验,商场的化妆品和护肤用品销售额得到了大幅度的增长。

图1商场根据用户的消费频率和购物习惯将用户进行分类,建立了会员的购物模式分类模型

针对性营销商场数据采集与分析会员消费

图2商场通过对CRM系统数据采集与分析,对会员进行有针对性的营销。

链接

零售企业如何有效应用CRM数据

针对目前在各零售企业普遍应用的CRM系统情况,本尼菲数据挖掘分析师建议:

首先,在企业系统建设规划阶段,充分考虑来自不同部门的近期及长期需求,充分将CRM系统实施后可能会为企业的运营带来的变化向各部门详细阐述,由各部门提出各自对于系统的期望和要求,统一汇总调整后整理为系统的建设需求。在此过程中,要充分考虑CRM数据挖掘对于企业市场营销与市场微观环节的影响以及对决策支持的重要性。

其次,在CRM设计阶段预留出足够的升级空间,比如数据库在设计时不仅要考虑目前有能力收集的数据,更要为未来可能会收集到的数据预留出足够的空间。

同样,系统的设计不仅是为了收集数据进行统一的提取和分析,还要考虑未来逐步实现智能数据分析,将真正的商业智能逐步引入到系统当中,这就需要在数据搜集、传输、储存等环节充分考虑到这方面的要求。

最后,整个系统的设计应建立在有效、易用、扩展性强的基础上,充分打好后台的基础,在企业CRM系统运行一段时间后,针对CRM运营数据进行全面分析,以保证随着商业模式和规模的不断升级,系统能够尽可能地无缝升级——只需进行前端应用层面的修正即可保证在数据结构不出现大的变化的情况下,实现对经营管理的有效支撑。

篇8:用数据挖掘提升电信CRM能力

CRM在需求下变动

电信运营商CRM系统的规划和实施主要解决的问题是:销售过程管理、销售预测、订单管理和销售分析,主要管理对象为企业的大客户,

销售过程管理即对业务人员与客户的接触纪录进行管理。电信运营商的大客户销售管理也是分行业、分区域,因此往往容易形成多级客户管理的模式,如何让不同层级的员工更好地了解企业与客户的沟通,从而及时满足客户需求并获取销售机会,成为重要的管理问题。

因此,企业需要通过CRM系统来解决业务人员的客户拜访进程纪录、费用管理及销售漏斗管理等问题。其管理数据包括:客户联系人决策树、客户交互纪录、费用等;销售漏斗的管理包括:各客户所处的不同状态、预计签单额、跟单销售人员等;订单管理即对客户购买的产品/服务、价格、期限、SLA协议进行管理;销售分析则是对销售状况按产品、时间、员工、价格、趋势等做OLAP分析。

在提供以上关键应用解决方案的同时,项目组也要对该运营商的其他系统作充分调研,让业务部门最大程度地建立全面的客户视图,

包括与营销管理系统、Call-Center、OSS、流程管理系统等接口,通过这些系统与CRM系统的数据交换,让业务部门实时了解企业与客户的交互。

换位的缺陷

可以肯定的是,以上的这些工作在帮助运营商提升客户关系管理能力方面起了非常重要的作用。但随着电信市场的竞争,尤其是资费竞争使客户忠诚度日渐下降,加之运营商在CRM方面的认识不断深化,数据挖掘技术在国内的兴起,我们又不得不换一个视角来思考问题。

销售过程的管理能够了解客户深层次的需求吗?对于电信企业上百万的住宅用户如何进行销售过程的管理?销售过程管理,使企业只能通过表面的交互来了解客户,不能深入洞察客户的需求。

电信运营商现有的CRM系统已经帮助企业积累了大量数据:客户基本信息、客户联系人决策关系、客户交互纪录、销售费用、销售状态、产品、价格、趋势、Call-Center交互纪录、甚至账务信息等。面对日益激烈的资费竞争,如何深入应用这些信息,提升企业客户洞察能力,发掘客户需求,提升客户满意度,进而利用客户的消费趋势和规律发掘新客户,成为摆在各电信运营商面前的实际问题。

引入数据挖掘

电信企业有其先天性的IT优势,大量的数据包括:客户基本信息、产品/服务使用信息、各种通话时长、各种通话费用、通话时间偏好、与企业互动信息等,都可拿来作为分群的变量(维度)。

篇9:模糊数据挖掘在CRM中的应用

1 CRM概述

客户关系管理(CRM)就其功能来看,就是借助先进的信息技术、网络技术和管理思想,通过对企业业务流程的重组来整合客户信息资源,并在企业内部实现客户信息和资源的共享,为客户提供更经济、更快捷更满意的产品和服务,提高客户价值、忠诚度和满意度,保持和吸引更多的客户,从而增强企业的赢利能力,最终实现企业利润的最大化,

为实现这样的目标,企业可通过建立完整的客户数据、量身订制的产品及服务、有效的管理来建立以客户为中心的组织,去了解客户生命周期、掌握最有价值的客户及其需求、发展以个人财务需求为导向的销售模式,最终达到提高客户满意度,并提升企业的竞争力与获利率。

客户划分是 CRM中的首要问题,一个企业在经营策划时要非常明确以下问题:销售对象是哪个客户层,哪些客户需要这样的产品,是否考虑了客户生命周期,是否建立了以客户需求为导向的客户关系,谁是公司最有价值的客户。要回答和解决以上问题,首要任务就是综合各种数据,从不同角度对客户进行分群、分组划分。

2 数据挖掘技术概述

数据挖掘是一种知识发现的过程,它主要基于统计学、人工智能、机器学习等技术,从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。高度自动化地分析数据,做出归纳性的推理,从中挖掘出潜在的模式,并对未来情况进行预测,以辅助决策者评估风险,做出正确的决策。对于企业而言,数据挖掘有助于发现业务的趋势,揭示已知的事实、预测未知的结果,提高市场决策能力。其演化过程如图 1所示。

然而单纯的数据挖掘可能会导致“尖锐边界”等问题,因此考虑将模糊逻辑和数据挖掘结合起来的模糊数据挖掘技术引人到客户关系管理系统中。

3 模糊数据挖掘方法

3.1 确定模糊集

建立样本特性指标矩阵,设聚类的对象的全体集合X={x1,x2,…,xn},为了使分类效果科学合理,首先要选取具有实际意义且有较强分辨性和代表性的统计指标。现假设X中每一个元素Xj(j=1,2,…,n。)有m个统计指标Xij=(x1j,x2j,…,xnj),其中,分量Xij表示第j个元素的第i项统计指标值(i=1,2,…,m;j=1,2,…,n)。本步骤的关键是统计指标值的求法。统计指标值反映实际的精确程度,是取得最优聚类的先决条件,由于各企业的实际情况不一样,所选取的统计指标也应各不相同。因此,统计指标值的求法因实际问题而定。

3.2 对样本特性指标矩阵进行数据规格化

在实际问题中,通常不同的数据有不同的量纲。因此,需要根据模糊矩阵的要求,进行标准化处理。一般可通过以下变换来实现。

3.2.1平移/标准差变换

3.3 标定― 建立模糊相似矩阵

所谓标定,是指根据实际情况,选用一定的方法对对象进行比较得出模糊相似矩阵。根据上述已建立的指标体系Xj(j=1,2,…n),求出相似系数rij表示Xi与Xj按m个特征相似的程度,得到模糊相似矩阵R=(rij)mxn本步骤的关键是如何合理地求出相似系数rij,由于求相似系数的方法很多,而且需要因实际情况不同而选用不同的方法。

求相似系数的方法很多,主要有最大最小法、算术平均值最小法、几何平均值最小法、相关系数法、夹角余弦法、距离法、数量积法、绝对值指数法、绝对值倒数法、绝对值减数法等方法。

对于一些实际问题,很难用解析表达式来刻画事务间的相关程度,这时只有请有经验者或专家进行评分,用〔0,1〕上的数表示。选取什么样的方法描述两个元素之间的相似程度,将直接影响分类的效果。通常是同时选三四种,最后看分类与实际吻合的情况,择优选取。

3.4 求传递闭包― 构造模糊等价矩阵

用传递闭包法求R的模糊等价矩阵,

传递闭包是包含R的最小传递矩阵,设 t(R)是R的传递闭包,通常采用平方法求R的传递闭包,即R→R2→R4 →Rg →…→R2k经有限次运算后,一定有R2k=R2k+1,于是t(R)=R2k。

3.5 聚类结果

利用各个需求对该次分类的相对隶属度数据应用相对类别(级别)特征公式,得到各个部件归属各类的相对类别特征值H(r)表,从而获得了该分类数目下的部件类别划分结果。

根据择近原则,判断该样本接近哪个模式,从这个模式的整体情况预测其发展结果。

4 应用模糊数据挖掘实现客户分类

假定每一个客户对一类产品的外观、使用环境功能、可靠性都有各自的要求,那么,对于产品簇建模过程来说,要将这些不同客户的不同需求转化为产品的工程指标,并最终转化为产品的零部件,工作量是非常大的,也是不科学的。所以要对不同客户的需求进行必要的聚类,通过聚类将产品需求分为不同的簇,同一簇中的产品需求视为相同,不同簇中的产品需求视为相异。这样就可以减少产品模型的种类,并且使形成的产品种类最大限度地满足不同客户的需求。

4.1构造模糊集

选取样本为5x5阶矩阵。设从外观、使用环境、产品功能、可靠性、忠诚度5个方面描述对产品的需求,构建模糊集 R如表1所示。

4.2 关联矩阵规格化

首先根据各个产品需求在产品中的地位给出其相应的权重(相当于指标对聚类作用的权重)。应用式(1)和式(2)实现规格化,结果如表2所示。

4.3 求传递闭包― 构造模糊等价矩阵

用传递闭包法求R的模糊等价矩阵。传递闭包是包含R的最小传递矩阵,设 t(R)是 R的传递闭包,通常采用平方法求R的传递闭包,即R→R2→R4 →Rg →…→R2k经有限次运算后,一定有R2k=R2k+1,于是t(R)=R2k。求得最优模糊矩阵。最优模糊矩阵表述的内容是每一个需求对各类别(共有m个)的相对隶属度。

4.4聚类结果

利用各个需求对该次分类的相对隶属度数据,应用相对类别(级别)特征公式,得到各个部件归属各类的相对类别特征值H(r)表,从而获得了该分类数目下的部件类别划分结果。应用下述的公式对最优模糊矩阵进行处理。

设分类状态为1~m,某部件对某正态的相对隶属度表示为RA1(r)~ RAc(r),即表达了上文的最优模糊矩阵。首先,相对隶属度满足归一化条件:

设状态变量i以对应的相对隶属度为权重,其总和    称为相对状态特征值或级别特征值。表示了i与H(r)分布列的整体相对特征,因此,H(r)可以作为样本R对模糊概念或指标Ai归属状态判断的相对指标,它利用了状态变量i对全部相对隶属度信息,使样本 R的归属更为全面和客观。改变分类的数目m,重复上述步骤,产生新的分类,最终得到针对不同m分类的产品需求聚类结果。当m=3时,最优模糊矩阵如表3所示。

通过对m=3时产品需求聚类分析结果的观察,可以容易地发现各个需求指标的聚分程度:{R5},{R1,R3},{R2,R4}。这说明,在考虑客户需求时,对于忠诚度高的客户群体,可以将他们的需求作为一类产品类型来重点构建;对于第二种分类,说明应该着重针对产品外观和产品功能来构建一类产品模型;同理,另外一种产品模型的构建应着重考虑产品的使用环境和产品的可靠性。可以看出,通过这样的聚类,产品模型的种类减少了,但产品模型覆盖的客户需求是完备的。

5 结束语

模糊数据挖掘能够自动地从数据库中发掘出新的知识,经过检验和验证,然后返回对用户有用的结果,而不是根据用户对事物的假设去检验和验证。它与传统的数据分析本质的区别是:它是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘系统已成功地用于超大型数据库的知识挖掘。

在信息时代,要充分利用企业的信息资源,从以产品为中心的管理模式转变为以客户为中心的管理模式上来,利用模糊数据挖掘技术,分析客户的特征,探索企业和所对应市场的运营规律,不断提高企业的经济效益是企业发展的必由之路。

数据挖掘读书笔记

飞机实时监控数据挖掘方法研究

基于决策树的红色籽用西瓜数据挖掘

学前教育师资信息素养的数据挖掘应用研究教育论文

保险行业CRM解决方案评析

挖掘的近义词是什么

高职智慧校园建设中大数据挖掘技术的应用论文

法国CRM市场面面观

数据管理制度

数据报告

CRM需要数据挖掘(精选9篇)

欢迎下载DOC格式的CRM需要数据挖掘,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档