考研数学:注意重点知识的衔接与转换

时间:2022-12-16 05:13:18 作者:丽影 综合材料 收藏本文 下载本文

“丽影”通过精心收集,向本站投稿了10篇考研数学:注意重点知识的衔接与转换,下面是小编整理后的考研数学:注意重点知识的衔接与转换,希望对大家有所帮助。

篇1:考研数学:注意重点知识的衔接与转换

数学命题的基本原则是重在考查能力,在考查数学的基本概念,基本方法和基本原理的基础上注重对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象能力和综合运用所学知识解决实际问题能力的考查,特别是对考生综合能力、应用能力和建模能力等创新能力的考查。大家一定要了解考研数学考察的出发点在哪,这样才能有的放矢,确定作战目标,准确制定作战方法。

做题不能“干瞪眼”

首先,考生必须牢牢掌握和理解数学的基本概念、基本定理、重要的数学法则、重要的数学结论等数学基础知识,这些是数学的基本要素,不打牢这个基础,其他一切都谈不上。大家要通过平日的训练,切实提高数学的解题能力,做到面对任何一道题都能有条不紊地一步步展开分析和运算。考数学的同学一般都会有过这样的体验,自己没有做出来的题,经别人一说,马上就能恍然大悟,这就是解题能力不强所致,而并不是全然不会做,其实往往就是某一个或两个关键环节没有突破,形成卡壳,数学并没有太多花里胡哨的技巧,一般来说大都是基础知识变换形态之后出现在你面前而已,大家一定要把基础工作做好,这样才能保证自己在面对数学题时不会“干瞪眼”。

篇2:考研数学:注意重点知识的衔接与转换

数学题目千变万化,有各种延伸或变式,同学们要在考试中取得好成绩,一定要认真仔细地复习,华而不实靠押题碰运气是行不通的',必须要重视“三基”,多思多议,不断地总结经验与教训,做到融会贯通。何谓“三基”?第一,基本概念和定义;第二,基本性质和定理;第三,基本方法和结论。现阶段,大家要完成对历年真题的一次性全面的浏览,因为,仅仅靠看教材,一般来说是不能做出历年真题的,有时候看懂都可能是个问题,所以,你这一次看真题主要做到两点:一是尽可能消化真题的解答详细过程;二是了解考研数学的命题形式和结构,感受下考卷的深度和命题方式,做到知己知彼,以明确自己目前的水平与考研数学难度的差距以确定自身该下多少工夫。

篇3:考研数学重点知识梳理

考研数学重点知识梳理

》20的考研序幕已然拉开,很多同学开始了不分昼夜的复习。对于公共课数学来说,基础阶段大家的主要任务是全面整理基本概念、定理、公式,初步总结复习重点,把握命题基本题型,为强化期的复习奠定基础。为了帮助提高大家高效复习,考研专家们为大家梳理了考研数学的难重点,希望大家不要盲目复习。

一、高等数学

高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。具体说来,大家需要重点掌握的知识点有几以下几点:

1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法

由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。

二、概率论与数理统计

在数学的三门科目中,同时它还是考研数学中的难点,考生得分率普遍较低。与微积分和线性代数不同的是,概率论与数理统计并不强调解题方法,也很少涉及解题技巧,而非常强调对基本概念、定理、公式的深入理解。其主要知识点有以下几点:

1.随机事件和概率:包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。

2.随机变量及其概率分布:包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。

3.二维随机变量及其概率分布:包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质;二维随机变量联合分布函数及其性质;二维随机变量的边缘分布和条件分布;随机变量的独立性;两个随机变量的简单函数的分布。

4.随机变量的'数字特征:随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数。

5.大数定律和中心极限定理,以及切比雪夫不等式。

6.数理统计与参数估计

三、线性代数

一般而言,在数学三个科目中,很多同学会认为线性代数比较简单。事实上,线性代数的内容纵横交错,环环相扣,知识点之间相互渗透很深,因此不仅出题角度多,而且解题方法也是灵活多变,需要在夯实基础的前提下大量练习,归纳总结。线性代数的重要知识点主要有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化。

总之,基础阶段的复习最重要的是吃透基本概念,理清知识脉络。这个阶段的学习应该以课本为主,题目可以适量地做一些。做题的目的是为了巩固基本知识,不要为了做题而做题。一般来说,将课本上的课后题做三分之一到一半即可。这个阶段扎扎实实打好基础,再通过后阶段强化冲刺的不断巩固提升,就能在最终的考试中取得好成绩了。最后,祝大家复习顺利!

[InstallDir_ChannelDir]

篇4:考研数学线性代数命题注重知识点的衔接与转换

考研数学线性代数命题注重知识点的衔接与转换

考研数学线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,根据数学辅导专家多年来对考研数学命题的分析发现,线性代数的命题重点,除了对基础知识的注重外,还偏向于知识点的衔接与转换。

举例来说,设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。

再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无关的特征向量所构成,再由特征向量与基础解系间的`联系可知此时若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni个解向量组成,进而可知秩r(λiE-A)=n-ni,那么,如果A不能相似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A)<n-ni,若A是实对称矩阵,则因A必能相似对角化而知对每个特征值λi必有r(λiE-A)=n-ni,此时还可以利用正交性通过正交矩阵来实现相似对角化。

又比如,对于n阶行列式我们知道:若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当|A|≠0时,可用克莱姆法则求Ax=b的惟一解;可用|A|证明矩阵A是否可逆,并在可逆时通过伴随矩阵来求A-1;对于n个n维向量α1,α2,……αn可以利用行列式|A|=|α1α2……αn|是否为零来判断向量组的线性相关性;矩阵A的秩r(A)是用A中非零子式的最高阶数来定义的,若r(A)<r,则A中r阶子式全为0;求矩阵A的特征值,可以通过计算行列式|λE-A|,若λ=λ0是A的特征值,则行列式|λ0E-A|=0;判断二次型xTAx的正定性,可以用顺序主子式全大于零。

凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

篇5:考研 专业课知识重点

2014考研 热门专业课知识重点归纳

专业课复习内容庞杂,跨专业考生更是困难重重,但利用好临考倒计时的时间,专业课仍然可以“异军突起”。每年专业课考研新大纲调整变化的考点中,考查的覆盖率高达50%以上,所以,要注重对变化考点的备考。下面为大家归纳了考研热门专业课知识重点。

西医综合:注意变化的考点

西医综合大纲中对考点设置发生了些许变化,尤其在生理、生化及病理部分变化较多,考生应该依据新大纲查漏补缺,及时消化新大纲。同时,人民卫生出版社第七版教材仍然是医学考研考生的主要复习依据,知识点的掌握情况需要借助教材与大量的历年真题来进行检验,教材与真题交互学习。

计算机:注重增补解析

20考研计算机大纲中除了操作基础没有发生变化以外,其他部分都有知识点的变化。针对变化的考点,考生应该格外注意。由于新增考点在历年真题中没有涉及,建议考生选用大纲增补解析班课程来保证备考效果。

MBA、MPA:逻辑是重点

MBA、MPA、会计硕士、工程管理硕士等参加英语二和管理类联考综合能力科目的.考生,复习时间开始得比较晚,前期工作主要是停留在针对教材的复习之上,新大纲发布后,复习的重点应转移到逻辑和写作部分,这两个科目都是以逻辑学为基础,需要考生进行思维方式的转变。尤其写作科目,新大纲中对写作的评分标准发生了改变,考生应在练习过程中实践新评分标准带给考生的要求。这一阶段数学应该是提高解题技巧、加快解题速度的时期,不要贪求做题的数量,逐一攻破难关才是提高能力的途径。

金融硕士:院校不同科目不同

这两类硕士是比较特殊的,所报考的院校不同,考查的科目也会有所不同。因为金融硕士和应用统计硕士专业的考试科目中存在选考现象,即招生院校可以自行决定科目二与科目三的具体考试科目。老师提醒大家2014年各高校的招生简章已经陆续发布,考生应及时关注简章规定,及时调整自己的复习内容。

网校课程推荐

考研教育网2014年考研政治冲刺辅导全面招生

考研教育网2014年考研英语冲刺辅导全面招生

考研教育网2014年考研数学冲刺辅导全面招生

篇6:考研数学 考前重点知识预测回顾

2014考研数学 考前重点知识预测回顾

考研数学真题高数还是强调了数学考试的目的就是对基本概念、基本性质、基本原理的考察,这类考试性质没有变。具体来说,从整体试卷来看,理工类(数学一、数学二)比经济类(数学三)的难度略微高一点,从近几年真题来看,偏题怪题没有出现,没有考生所说的“变态题”。但部分考题包括一些选择题,如果平常复习仅仅是死记硬背,对于知识点不能灵活掌握运用,这种题做起来会有困难,因此老师详细列举了高数的考点,方便大家查漏补缺

作为考生来说,复习肯定要扎扎实实的,押题的话,我们正好改成重点,尤其是到了冲刺阶段,有所侧重的做题型复习也是有必要的,我们经常说要“抓重点”,抓住重点就可以提高复习的效率,要是侧重掌握某些题型、加深印象,这与全面复习掌握基础是不矛盾的。我们认为押题和有所侧重是在打好基础的情况下侧重,这样才不会走偏,如果一个考生就想押题,让老师告诉你几道题就得高分,这样是不正确的,往往不会成功。

第一章 函数、极限与连续

1、函数的有界性

2、极限的定义(数列、函数)

3、极限的性质(有界性、保号性)

4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)

5、函数的连续性

6、间断点的类型

7、渐近线的计算

第二章 导数与微分

1、导数与微分的定义(函数可导性、用定义求导数)

2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表:“三种类型”:幂指型、隐函数、参数方程;高阶导数)

3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))

第三章 中值定理

1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)

2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)

3、积分中值定理

4、泰勒中值定理

5、费马引理

第四章 一元函数积分学

1、原函数与不定积分的定义

2、不定积分的计算(变量代换、分部积分)

3、定积分的定义(几何意义、微元法思想(数一、二))

4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)

5、定积分的计算

6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)

7、变限积分(求导)

8、广义积分(收敛性的判断、计算)

第五章 空间解析几何(数一)

1、向量的运算(加减、数乘、数量积、向量积)

2、直线与平面的方程及其关系

3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法

第六章 多元函数微分学

1、二重极限和二元函数连续、偏导数、可微及全微分的定义

2、二元函数偏导数存在、可微、偏导函数连续之间的关系

3、多元函数偏导数的计算(重点)

4、方向导数与梯度

5、多元函数的极值(无条件极值和条件极值)

6、空间曲线的.切线与法平面、曲面的切平面与法线

第七章 多元函数积分学(除二重积分外,数一)

1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)

2、三重积分的计算(“先一后二”、“先二后一”、球坐标)

3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)

4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)

5、高斯公式(重点)(不满足条件时的处理(类似格林公式))

6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)

7、场论初步(散度、旋度)

第八章 微分方程

1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解

2、线性微分方程解的性质(叠加原理、解的结构)

3、应用(由几何及物理背景列方程)

第九章 级数(数一、数三)

1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)

2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)

3、交错级数的莱布尼兹判别法

4、绝对收敛与条件收敛

5、幂级数的收敛半径与收敛域

6、幂级数的求和与展开

7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)

篇7:幼小衔接的重点只是知识准备吗

“老师,给我们补补课吧!”

周三,正在上课,鑫鑫妈妈着急地找到我,二筹莫展地说:“沈老师,鑫鑫明年就要上小学了,如果您有时间,能不能给我们做做家教,补补课。我怕他到小学跟不上趟。

“补课?”鑫鑫妈妈的一席话让我吃了一惊。

5岁的鑫鑫明年就要上小学了,鑫鑫妈妈非常着急,因为他的数学和拼音都没有基础,妈妈怕他上小学会跟不上。尽管我们一再承诺,鑫鑫上小学一定没有问题,希望她不要着急,不能走小学路线,可鑫鑫妈妈却并不这样认为。在她看来,孩子应当赢在起点。因此,她一有时间就给鑫鑫补课,提前为孩子进入小学作准备。

那天下午,鑫鑫妈妈又开始给鑫鑫补课了。她给鑫鑫讲6以内的加减法。又是实物又是画图,眉飞色舞地讲了近一个小时,终于自认为讲得很完美,长长地松了一口气。“宝贝,咱们现在看看你刚才学的怎么样,都学会了吗?”

“妈妈,我都学会了。妈妈,我可以去玩了吗?”鑫鑫可怜巴巴地问。

“你这些题都做对了就可以去了。”妈妈叹了一口气,无奈地回答着,顺手给鑫鑫写下了几个算术题。在她的心目中,孩子是应当喜欢学习,乐此不疲才对。鑫鑫的消极情绪让信心满满的妈妈有些失望。随后,妈妈去做饭了。

十几分钟后,塞鑫拿着本子走进厨房,算术题的后面歪歪扭扭写着几个数字,妈妈拿过来一看,鼻子差点气歪。“6-3=53+2-64-3-2”只做对了一个“1+2=3”。鑫鑫妈妈毕竟是受过高等教育,她强忍着满腹的怒火,和颜悦色地拉着鑫鑫来到书桌前,又耐心地给鑫鑫讲了一遍。这次,她直接坐在书桌边,看着鑫鑫做题。

可这次,鑫鑫掰着手指算了半天,却连一个题也算不出来了。

鑫鑫妈妈这次真的着急了,她急切地说:“你看呀,3+2,不是就三个加上两个吗?这不,三个苹果,这不,两个苹果,加起来是几个呀?”.“五个。”鑫鑫小心地回答,他看得出妈妈已经开始生气了。

“是呀,那3+2等于几呀?”鑫鑫妈把态度尽量放温和,满怀期待地看着鑫鑫。“……六……”鑫鑫憋了半天,终于鼓足勇气说。

“笨死了你!”妈妈终于暴发了:“你怎么这么笨呀,你看看尧尧哥哥,人家什么东西一讲就会,人家多棒呀。你都这么大了,这个都不会做。我都给你讲这么明白了你还不会,我怎么生了你这么笨的孩子呀!”妈妈一边说,一边歇斯底里地拍着桌子,把鑫鑫吓得呜呜地哭了起来。

耐心听完鑫鑫妈妈的讲述,我不无担忧地说:“如果再这样下去,鑫鑫很容易对学习产生抵触心理。”可是鑫鑫妈妈还是担心孩子以后上小学会跟不上。

拼音、算术、写字,这些东西在幼儿园要不要教?这是一个困扰着许多老师和家长的问题。

很多家长想当然地认为:学了拼音算术,是做好幼小衔接的基础。如果上了小学,别的小朋友都会写拼音,算算术,就他不会,那他就会觉得自己不如别人,这样时间长了,上小学打不好基础,那孩子一辈子就完了。如果孩子在这时候打好基础,那就是为一生打好基础。孩子的学习就会越学越自信。

事实真的如此吗?不然。

曾经有教育学家做过一份追踪调查,实验表明,在学前学习了拼音、写字、算术的孩子,在小学头三年,学习成绩会在班里处于领先水平,可是三年级之后,许多孩子成绩却一落千丈。

为什么呢?

道理很简单。孩子如果在幼儿园就学了在小学的内容,那么在一、二年级老师讲的东西他们都学过,都会。这就造成了一种假象,好像是学过拼音算术的孩子学习更好。可是这同时也会培养他们不好的习惯,上课听讲不认真。既然他们都会了,那么没有必要认真听老师讲课,自己也能取得好的成绩,那为什么还要认真学习呢?

而随着孩子学习的不断深入,他们就没有办法只凭着在幼儿园学到的一点知识领先了。真正决定他们学习水平的是孩子学习的能力。这也就解释了为什么有的孩子一上三年级成绩就下滑了。幼小衔接,接什么?

正在备课,忽然接到老友的电话,告之要给孩子退园。我困惑,出了什么事?

老友这样回答:“没什么事,就是孩子快上小学了,想把他转到小学上学前班,小学的学前班做幼小衔接,人家说小学的幼小衔接更专业一点,因为上完学前班就接着在那儿上小学了吗,否则到了小学不能接轨。”

幼小衔接,如今这个词语在幼儿园越来越受到家长的重视。特别是当孩子一上大班,家长就希望自己的孩子多学学拼音,写字,提前“衔接”一下。他们认为,衔接得越早,对孩子越好。

幼小衔接的重要性是毋庸置疑的。然而,幼小衔接应当接些什么?只是拼音写字算题?答案当然是否定的。

幼小衔接,首先要做好入学前的心理准备。

许多孩子从幼儿园进入小学会产生不同程度的心理焦虑,面对一个新的环境感到无所适从。针对这一点,我们如果有条件可以带孩子去附近的小学参观一下,对小学的生活有个初步的了解。聊天的时候可以告诉他们:还有两个月你就要上小学了,就要变成一名小学生了。培养他们对于上小学的积极情感,使他们从内心向往小学生活。

生活习惯方面也需要让孩子提前适应。上幼儿园时,有的家长时间观念比较弱,晚送,早接,有事不请假,这会给孩子适应小学作息制度造成实质性的困难。

幼儿园的小朋友在一起生活了三年,彼此之间非常熟悉了,可是进入小学后,孩子们要重新适应新的环境,还要结交新的朋友。主动性是交友的重要一方面,如果幼儿具备了社交的主动性,会让孩子结交许多朋友,这不但可以促进幼儿自信的提高,同时也有利于孩子尽快喜欢上小学生活,继而促进学习的进步。相反,如果孩子没有交友主动性,不愿与其他小朋友交往,则会阻碍幼儿对小学的适应过程。由此,我们应当鼓励孩子大胆地对小朋友表示友好,提高孩子的社交能力和在公共场合表现的能力。

篇8:考研数学复习重点

考研数学复习重点

20考研数学大纲刚刚出台,大纲任然保持一贯的稳定性,这也是在意料之中。现在广大考生讨论的热点问题是,在剩下的时间里,如何有效的备考。接下来,我主要针对这个问题,给大家提出几点复习建议。

第一,按照大纲对数学基本概念、基本方法、基本定理准确把握(也即三基的重要性务必引起重视)。数学是一门逻辑学科,靠侥幸押题是行不通的。只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。

第二,要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路,考生应能够看出面前的题目与他曾经见到过的题目的内在联系。为此必须在复习备考时对所学知识进行重组,搞清有关知识的纵向与横向联系,转化为自己真正掌握的东西。解应用题的一般步骤都是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。

第三,重视历年试题的强化训练。统计表明,每年的.研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,其知识结构基本相同,题型相对固定。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。

篇9:初中数学重点知识

初中数学重点知识归纳

1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

3.公因式的确定:系数的最大公约数·相同因式的最低次幂.

注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

4.因式分解的公式:

(1)平方差公式: a2-b2=(a+ b)(a- b);

(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

5.因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的最后结果要求每一个因式的首项符号为正;

(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式.

6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;

(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式

1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B 的形式,如果AB 中含有字母,式子B 叫做分式.

⎧整式有理式⎨⎩分式2.有理式:整式与分式统称有理式;即 .

3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.

4.分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

a c ac ⋅=, 7.分式的乘除法法则:b d bd

n n a b ÷c d =a d ad ⋅=b c bc . a ⎛a ⎫ ⎪=n . (n 为正整数)b 8.分式的乘方:⎝b ⎭.

9.负整指数计算法则:

(1)公式: a0=1(a≠0), a-n=a (a≠0) ;

(2)正整指数的运算法则都可用于负整指数计算;

⎛a ⎫ ⎪

(3)公式:⎝b ⎭-n n n ⎛b ⎫= ⎪⎝a ⎭a -n -m ,b =b

a m n ;

(4)公式: (-1)-2=1, (-1)-3=-1.

10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.

11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.

12.同分母与异分母的分式加减法法则

13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0) 中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程. 注意:在字母方程中, 一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.

14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程. 特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.

16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.

17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.

18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.

初中数学考试必备公式

圆与弧的公式:

正n边形的每个内角都等于(n-2)×180°/n

弧长计算公式:L=n兀R/180

扇形面积公式:S扇形=n兀R^2/360=LR/2

①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(R>r)⑤两圆内含dr)

定理:相交两圆的连心线垂直平分两圆的公共弦

定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

因式分解公式:

公式:a^3+b^3+c^3-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)

解:a^3+b^3+c^3-3abc

=(a+b)(a^2-ab+b^2)+c(c^2-3ab)

=(a+b)(a^2-ab+b^2)+c(c^2-3ab+a^2-ab+b^2-a^2+ab-b^2)

=(a+b)(a^2-ab+b^2)+c[(c^2-a^2-2ab-b^2)+(a^2-ab+b^2)]

=(a+b)(a^2-ab+b^2)+c[c^2-(a+b)^2]+c(a^2-ab+b^2)

=(a+b+c)(a^2-ab+b^2)+c(a+b+c)(c-a-b)

=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

平方差公式:a平方-b平方=(a+b)(a-b)

完全平方和公式: (a+b)平方=a²+2ab+b²

完全平方差公式: (a-b)平方=a²-2ab+b²

两根式: ax²+bx+c=a[x-(-b+√(b²-4ac))/2a][x-(-b-√(b²-4ac))/2a]两根式

立方和公式: a^3+b^3=(a+b)(a²-ab+b²)

立方差公式:a^3-b^3=(a-b)(a²+ab+b²)

完全立方公式: a^3±3a²b+3ab²±b^3=(a±b)^3.

一元二次方程公式与判别式:

一元二次方程的解 -b+√(b²-4ac)/2a ,-b-√(b²-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b²-4ac=0 注:方程有两个相等的实根

b²-4ac>0 注:方程有两个不等的实根

b²-4ac<0 注:方程没有实根,有共轭复数根

三角不等式:

|a+b|≤|a|+|b| |a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|

等差数列公式:

某些数列前n项和:

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

三角函数公式--两角和公式:

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

三角函数公式--倍角公式:

tan2A=2tanA/(1-tan2A)

cos2a=cos²a-sin²a=2cos²a-1=1-2sin²a

三角函数公式--半角公式:

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

三角函数公式--和差化积:

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) 2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos(A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

初中数学学习方法

一、通读全卷一是看题量多少,不要漏题;二是选出容易题,准备先作答;三是把自己容易忽略和出错的事项在题的空白处用铅笔做个记号

二、认真审题审题一定要细心.要放慢速度,逐字逐句搞清题意(似曾相识的题目更要注意不背答案),从多角度挖掘隐含条件及条件间内在联系,为快速解答提供可靠的信息和依据

三、由易到难先做容易题,后做难题.遇到难题,要敢于暂时“放弃”,不要浪费太多时间,等把会做的题目解答完后,再回头集中精力解决它

四、分段得分数学解答题有“入手容易,深入难”的特点,第一问较容易,第二、三问难度逐渐加大.因此,解答时应注意“分段得分”,步步为营.首先拿下第一问,确保不失分,然后分析第一问是否为第二、三问准备了思维基础和解题条件,力争第二问保全分,争取第三问能抢到分

五、跳跃解答当不会解(或证)解答题中的前一问,而会解(或证)下一问时,可以直接利用前一问的结论去解决下一问

六、逆向分析当用直接法解答或证明某一问题遇到“卡子”时,可以采用分析法.格式如下:假设“卡子”成立,则···(推出已知的条件和结论),以上步步可逆,所以“卡子”成立

七、先思后划当发现自己答错时,不要急于划掉重写.这是因为重新改正的答案可能和划掉的答题无多大区别

八、学会联想当遇到一时想不起的问题时,不要把注意力集中在一个目标,要换个角度思考,从与题目有关的知识开始模拟联想.如“课本上怎么说的?”,“以前运用这些知识解决过什么问题?”,“是否能特殊化?”,“极限位置怎样?”等等

初中数学解题技巧

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

六、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法.运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决.

七、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.

八、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果.运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法.

用归纳法或分析法证明平面几何题,其困难在添置辅助线.面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果.所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置辅助线,即使需要添置辅助线,也很容易考虑到.

九、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决.中学数学中所涉及的变换主要是初等变换.有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易.另一方面,也可将变换的观点渗透到中学数学教学中.将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识.

十、客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型.选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面.

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识覆盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况.

篇10:初二数学重点知识

全等三角形知识点

1.全等图形:能够完全重合的两个图形就是全等图形。

2.全等图形的性质:全等多边形的对应边、对应角分别相等。

3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:

全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

这里要注意:

(1)周长相等的两个三角形,不一定全等;

(2)面积相等的两个三角形,也不一定全等。

小练习

1.下列说法中正确的说法为()

①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,

A.①②③④B.①③④C.①②④D.②③④

2.一个正方形的侧面展开图有()个全等的正方形.

A.2个B.3个C.4个D.6个

3.对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()

①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.

A.1个B.2个C.3个D.4个

考研数学复习知识要点

考研数学 初步复习三大注意

高一物理重点知识与学习要点

考研英语写作衔接词

考研线性代数重点内容与题型总结

病理学重点知识总结

如何掌握高中地理重点知识

幼小衔接数学教学计划

考研英语:历年考研重点

考研数学 线代复习重点解析之行列式与矩阵

考研数学:注意重点知识的衔接与转换(精选10篇)

欢迎下载DOC格式的考研数学:注意重点知识的衔接与转换,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档