五年级华杯赛试题

时间:2024-10-05 03:37:02 作者:心中百合 综合材料 收藏本文 下载本文

【导语】“心中百合”通过精心收集,向本站投稿了8篇五年级华杯赛试题,以下是小编整理后的五年级华杯赛试题,仅供参考,希望能够帮助到大家。

篇1:五年级华杯赛试题

一、选择题:

1、一个双层书架,上层书的本数是下层书的5倍。如果从上层搬80本到下层,那么两层书的本数正好相等。原来上、下层各有图书多少本?

A.下层16本,上层80本       B. 下层20本,上层100本

C. 下层40本,上层200本      D、下层30本,上层150本

2、A、B两船共载客623人,若A船增加34人,B船减少57人,这时两船乘客同样多,A船原有乘客(      )人。

A、266       B、357       C、300       D、350

3、由1、2、3、4、5五个数字组成的五位数有120个,将它们从大到小排列起来,第95个数是(     )。

A、51234       B、31254        C、41253     D、21354

4、已知除法算式中,被除数、除数、商和余数相加得2011,当除数为一位数,余数为6时,被除数是(    )。

A、1797      B、1598      C、1399       D、1199

二、填空题:

1、将一个三位数末两位数字交换位置后得到一个新的三位数,这个新三位数与原三位数的和是一个四位数A73B,那么,符合上述条件的原三位数共有        个。

2、2000+1999-1998-1997+1996+1995-1994-1993++8+7-6-5+4+3-2-1=          。  3、(国富+民富)×强强=2002,算式中的“国富”“民富”“强强”表示3个两位数,相同的汉字代表相同的数字,不同的汉字代表不同的数字。“国、富、民、强”所代表的`四个数的和是         。

4、甲、乙、丙三人的钱数各不相同。甲最多,他拿出一些给乙和丙,使乙和丙的钱数都比原来增加两倍,结果乙的最多;乙再拿出一些给甲和丙,使甲和丙的钱数比原来增加两倍,结果丙最多;丙又拿出一些给甲和乙,使他们的钱数各增加两倍,结果三人的钱数一样多。如果他们三人共有81元,则三人原来的钱分别是     、   、   。

三、解答题:

1、小丽在计算一道求7个自然数的平均数(得数保留两位小数)时,将得数的最后一位算错了,她的错误答案是21.83。正确答案是多少?     2、某校人数是一个三位数,平均每个班级36人,若将全校人数的百位数字与十位数字对调,则全校人数比实际少180人,那么该校人数最多可达到多少人?

3、甲、乙两人进行百米赛跑,当甲到达终点时,乙在甲后面20米处;如果两人各自的速度不变,要使甲、乙两人同时到达终点,甲的起跑线应比原起跑线后移多少米?

如下图所示,正方形与阴影长方形的边平行,正方形边长为10,阴影长方形的面积为6,那么图中四边形ABCD的面积是多少?

篇2:五年级华杯赛试题

一、选择题(每小题10分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.

1、在1至300的全部自然数中,是3的倍数或5的倍数的数共有(        )个。

A、139          B、140            C、141             D、142

2、甲每分钟走55米,乙每分钟走75米,丙每分钟走80米。甲、乙两人同时从A地,丙一人从B地同时相向出发,丙遇到乙后4分钟又遇到甲,则A地与B地间的距离是(      )。

A、4000米      B、4200米         C、4185米          D、4100米

3、对所有的数a,b,把运算a*b定义为a*b=ab-a+b,则方程5*x=17的解是(       )。

A、523         B、2               C、3               D、3

4、植树节到了,某市举行大型植树活动,共有1430人参加植树,要把人数分成相等的若干队,且每队人数在100至200之间,则有分法(       )。

A、3种         B、7种            C、11种            D、13种

5、如图,已知正方形ABCD的边长是12厘米,E是CD边上的中点,连接对角线AC,交BE于点O,则三角形AOB的面积是(         )平方厘米。

A、24           B、36  C、48           D、60

6、下图有九个空格,要求每个格中填入互不相同的数,使得每行、每列、每条对角线上的三个数之和都相等,则图中左上角的数是(      )。

A、9         B、16           C、21         D、23

二、填空题(每小题10分).

7、有一种饮料的瓶身如下图所示,容积是3升。现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空于部分的高度为5厘米。那么瓶内现有饮料             升。

8、在一次“人与自然”知识竞赛中,竞赛试题共有25道题。每道题都给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来。每道题选对得4分,不选或选错倒扣2分。 如果一个学生在本次竞赛中的得分要不低于60分,那么,他至少要选对 __________道题。

9、某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过____________元。

10、小刚骑车从8路汽车的起点站出发,沿着8路车的行驶路线前进。当他骑了1650米时,一辆8路公共汽车从起点站出发,每分钟行450米。这辆汽车在行驶过程中每行5分钟停靠一站,停车时间为1分钟。已知小刚骑车速度是汽车行驶速度的3/2,则这辆汽车出发后要追上小刚需要时间            分钟。

答案:

BCDACB

2.4、19、26.25、17

篇3:五年级21届华杯赛试题

五年级21届华杯赛试题

第一部分

试题一(小学高年级组)

有大、中、小三个瓶子,最多分别可以装入水1000克、700克和300克。现在大瓶中装满水,希望通过水在三个瓶子间的流动使得中瓶和小瓶上表上装100克水的刻度线。

问最少要倒几次水?

答案:6次。

详解:我们首先观察700和300这两个数之间的关系。怎么样可以凑出一个100来呢?700-300=400,400-300=100,这就是说,把中瓶装满水,倒出2次300克就是100克水了。然后把小瓶中的水倒掉,把中瓶的100克水倒入小瓶中就可以了。

所以,一共需要倒6次水:

①把大瓶中的水倒入中瓶,倒满为止;

②把中瓶中的水倒入小瓶,倒满为止;

③把小瓶中的水倒入大瓶,倒满为止;

④把中瓶中的水倒入小瓶,倒满为止,此时,中瓶中刚好有水700-300=100克,此时中瓶标上100克的刻度线。

⑤把小瓶中的水倒入大瓶,倒空为止;

⑥最后把中瓶里的100克水倒入小瓶中即可。

试题二(小学高年级组)

将14个互不相同的自然数,从小到大依次排成一列。已知它们的总和是170;如果去掉最大的数及最小的数,那么剩下的`总和是150.在原来排成的次序中,第二个数是多少?

答案:7。

详解:最大数与最小数之和为20,故最大数不会超过19。从大到小排列,剩下的数依次不会超过18、17、16……7。而由于7+8+……+18=150,由题意有剩下的12个数之和恰为150,于是这12个数只能取上面的情形。在原来的次序中,第二个数为7。

注:这道题是按自然数是1解答的。之前我国中、小学数学教学中,都把自然数等同于正整数,最小的自然数是1.近年来,由于和国际接轨,我国把自然数的定义修订为非负整数,因此,最小的自然数是0。

试题三(小学高年级组)

小木、小林、小森三人去看电影。如果用小木带的钱去买三张电影票,还差5角5分;如果用小林带的钱去买3张电影票,还差6角9分;如果用三个人带去的钱去买三张电影票,就多3角。已知小森带了3角7分,那么买一张电影票要用多少元?

答案:0.39元。

详解:①小木、小林两人带的钱买3张电影票还差多少钱?3角7分-3角=7分。

②小林带了多少钱?5角5分-7分=4角8分。

③买3张电影票需要多少钱?4角8分+6角9分=1元1角7分。

④买1张电影票需要多少钱?1元1角7分÷3=0.39元。

第二部分

试题一(小学高年级组)

有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。问原来每根绳子长多少米?

答案:35米。

详解:若在第一根绳子分成的5段上每段剪掉2米,只剪去了5×2=10(米)。这时两根绳子所分的每段长都相等,段数相差为7-5=2(段),因此第二根绳分成7段每段长恰好为10÷2=5(米)。每根绳子长5×7=35(米)。

试题二(小学高年级组)

0,1,2,3,6,7,14,15,30,___,___,___。

上面这个数列是小明按照一定的规律写下来的,他第一次写出0,1,然后第二次写出2,3,第三次接着写6,7,第四次又接着写14,15,以此类推。那么这列数的最后3项的和应是多少?

答案:156

详解:将小明每次写出的两个数归为同一组,这样整个数列分成了6组,前四组分别为(0,1)、(2,3)、(6,7)、(14,15)。容易看出,每组中的两个数总是相差1,而1×2=2,3×2=6,7×2=14,即任何相邻两组之间,后面一组的第一个数总是前面一组第二个数的2倍。因此下面出现的一组数的第一个应该为15×2=30,第二个应为30+1=31;接着出现的一组数第一个应为31×2=62,第二个为62+1=63。因而最后三项分别为31、62、63,它们的和为31+62+63=156。

试题三(小学高年级组)

有25本书,分成6份,每份至少1本,且每份的本数都不相同。问有多少种分法?

答案将在下周一公布,你会做吗?

答案:5种。

详解:从上面分析知,把6份的书数从小到大排列,最少一份为1本,因此下面的枚举应从第二小的本数来入手。若第二小的本数是3本,则6份本数至少有1+3+4+5+6+7=26本,因此第二小的本数应为2本。

这样再枚举如下:1+2+3+4+5+10;1+2+3+4+6+9,1+2+3+4+7+8;1+2+3+5+6+8;1+2+4+5+6+7.上面枚举是按第三本的本数从3到4枚举的。因此一共5种不同分法。

篇4:华杯赛试题练习

华杯赛试题练习

试题一(小学高年级组)

某俱乐部有11个成员,他们的名字分别是A~K。这些人分为两派,一派人总说实话,另一派人总说谎话。某日,老师问:“11个人里面,总说谎话的有几个人?”那天,J和K休息,余下的9个人这样回答:

A说:“有10个人。”

B说:“有7个人。”

C说:“有11个人。”

D说:“有3个人。”

E说:“有6个人。”

F说:“有10个人。”

G说:“有5个人。”

H说:“有6个人。”

I说:“有4个人。”

那么,这个俱乐部的11个成员中,总说谎话的.有多少个人?

答案:9。

解析:因为9个人回答出了7种不同的人数,所以说谎话的不少于7人。若说谎话的有7人,则除B外,其他回答问题的8人均说了谎话,与假设出现矛盾;若说谎话的有8人,则回答问题的9人均说了谎话,出现矛盾;若说谎话的有10人,则只能1人说实话,而A和F都说了实话,出现了矛盾;若说谎话的有11人,则没有说实话的,而C说了实话,出现矛盾;显然说谎话的有9人,回答问题的9人均说谎话,休息的两人说实话。

试题二(小学高年级组)

甲、乙两地相距450千米,快慢两列火车同时从两地相向开出,3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快______千米。

答案:8。

解析:快车和慢车同时从两地相向开出,3小时后两车距中点12米处相遇,由此可见快车3小时比慢车多行12×2=24(千米)。

所以,快车每小时比慢车快24÷3=8(千米)。

篇5:华杯赛试题解析

甲仓存粮128吨,乙仓存粮52吨,甲仓每天运出12吨,乙仓每天运进7吨。那么多少天以后两仓的存粮就同样多了?

答案:4天。

详解:①甲、乙两仓存粮相差多少吨?128-52=76(吨)

②每天运进19吨,76吨需要运多少天?76÷19=4(天)

列综合算式为:(128-52)÷(12+7)=4(天)

篇6:华杯赛试题解析

有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。问原来每根绳子长多少米?

答案:35米。

详解:若在第一根绳子分成的5段上每段剪掉2米,只剪去了5×2=10(米)。这时两根绳子所分的每段长都相等,段数相差为7-5=2(段),因此第二根绳分成7段每段长恰好为10÷2=5(米)。每根绳子长5×7=35(米)。

篇7:华杯赛试题解析

有25本书,分成6份,每份至少1本,且每份的本数都不相同。问有多少种分法?

答案将在下周一公布,你会做吗?

答案:5种。

详解:从上面分析知,把6份的书数从小到大排列,最少一份为1本,因此下面的枚举应从第二小的本数来入手。若第二小的本数是3本,则6份本数至少有1+3+4+5+6+7=26本,因此第二小的本数应为2本。

这样再枚举如下:1+2+3+4+5+10;1+2+3+4+6+9,1+2+3+4+7+8;1+2+3+5+6+8;1+2+4+5+6+7.上面枚举是按第三本的本数从3到4枚举的。因此一共5种不同分法。

篇8:华杯赛试题解析

0,1,2,3,6,7,14,15,30,___,___,___。

上面这个数列是小明按照一定的.规律写下来的,他第一次写出0,1,然后第二次写出2,3,第三次接着写6,7,第四次又接着写14,15,以此类推。那么这列数的最后3项的和应是多少?

答案:156

详解:将小明每次写出的两个数归为同一组,这样整个数列分成了6组,前四组分别为(0,1)、(2,3)、(6,7)、(14,15)。容易看出,每组中的两个数总是相差1,而1×2=2,3×2=6,7×2=14,即任何相邻两组之间,后面一组的第一个数总是前面一组第二个数的2倍。因此下面出现的一组数的第一个应该为15×2=30,第二个应为30+1=31;接着出现的一组数第一个应为31×2=62,第二个为62+1=63。因而最后三项分别为31、62、63,它们的和为31+62+63=156。

解析第20届华杯赛决赛试题

四杯赛教案反思

五年级数学下册试题

五年级英语期中试题

五年级科学竞赛试题

五年级分数的意义试题

五年级数学上册期中考试试题

华体会体育

华的词语

别样华师

五年级华杯赛试题(共8篇)

欢迎下载DOC格式的五年级华杯赛试题,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档