“健康香菜”通过精心收集,向本站投稿了13篇比例尺(六年级)(人教版六年级教案设计),下面是小编给各位读者分享的比例尺(六年级)(人教版六年级教案设计),欢迎大家分享。
- 目录
篇1:比例尺(六年级)(人教版六年级教案设计)
教学目标
1.使学生理解比例尺的意义并能正确地求出平面图的比例尺.
2.使学生能够应用比例知识,根据比例尺求图上距离或实际距离.
教学重点
理解比例尺的意义,能根据比例尺正确求出图上距离或实际距离.
教学难点
设未知数时长度单位的使用.
教学步骤
一、复习准备
(一)填空.
1千米=( )米 1分米=( )厘米
1米=( )分米 1厘米=( )毫米
30米=( )厘米 300厘米=( )分米
15千米=( )厘米 40毫米=( )厘米
(二)解比例.
二、新授教学
谈话导入:(出示准备好的地图、平面图)同学们请看,这些分别是祖国地图、本省地图和学校的平面图.在绘制这些地图和平面图的时候,都需要把实际的距离按一定的比例缩小,再画在图纸上.有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上.不管是哪种情况,都需要确定图上距离和实际距离的比.今天我们就来学习这方面的知识--比例尺.
板书课题:比例尺
(一)教学例4(课件演示:比例尺)
例4.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.
1.读题回答:这道题告诉了我们什么?要求什么?
教师板书:图上距离∶实际距离
2.思考.
(1)要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?应该怎么办?
(2)是把厘米化成米,还是把米化成厘米?为什么?应该怎样化?
教师板书:10米=1000厘米
3.求出图上距离和实际距离的比.
教师板书:10∶1000=1∶100或 =
答:图上距离和实际距离的比是1∶100.
4.揭示比例尺的意义.
教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字--比例尺.(教师在“图上距离∶实际距离”的后面板书:=比例尺)有时图上距离和实际距离的比也可以写成分数形式.
板书:
图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比.
教师强调:
(1)比例尺与一般的尺不同,它是一个比,不应带有计量单位.
(2)求比例尺时,前、后项的长度单位一定要化成同级单位.
(3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”.
5.练习
北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺.
(二)教学例5(课件演示:比例尺)
例5.在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?
教师提问:题目中告诉了我们什么已知条件?要求什么?
根据比例尺的意义,已知比例尺和图上距离,能不能用解比例的方法求出实际距离呢?怎样求?
(因为 ,已知图上距离为15厘米,比例尺为 ,要求的实际距离不知道,可用 表示,所以可列比例式 )
1.讨论:这个比例式中的 指的是实际距离.题中要求的是南京到北京的实际距离为多少千米,根据本题的已知条件,所设未知数 应用什么单位? 为什么?
2.订正并追问
(1)为什么要设南京到北京的实际区高为 厘米?
(2)这个比例式表示的实际意义是什么?
(3)解这个比例式的依据是什么?
(4)在求出 =90000000后,为什么还要化成900千米?
3.反馈练习.
先说出下图中的比例尺是多少;再用直尺量出图中河西村与汽车站间的距离是多少厘米,并计算出实际的距离大约是多少千米.
篇2:统计表(六年级)(人教版六年级教案设计)
教学建议
教材分析
学生在第八册和第十册已经初步学习了数据的收集和整理、简单统计表的制作和条形统计图的初步认识,以及求平均数的方法.本小节是在学生已有知识的基础上,进一步教学编制和分析含有百分数的统计表,通过教学使学生进一步认识统计的意义和作用,并受到国情的教育。
在学生掌握了一般的复式统计表的基础上,这一节教学含有百分数的复式统计表.这里没有重复教学统计表的形式和制法,而是让学生根据已学知识思考,怎样才能清楚地看出一个统计表中有关数量间的百分比关系.教材通过一个例题教学含有百分数的统计表,启发学生想,只要在原来的统计表中再增加一栏,算出题中所需的百分数,依次填上就可以了.同时,在每一个统计表的后面,教材还通过填空让学生看表回答问题,这不仅有助于培养学生运用所学知识解决实际问题的能力(如根据统计图表提供的数据分析问题,寻求解决的方法),也有助于培养学生用统计的思想分析思考问题的习惯.
“合计”和“总计”是小学阶段学习简单的统计知识中常用的两个数学术语,这两个术语常常在同一张表中同时出现,两者虽一字之差,但含义不同,容易混淆.“总计”与“合计”是根据表的性质和需要来确定的.一般来说,单式的统计表只有合计.在复式的统计表中,一般既含有合计,又要有总计.“合计”是各个分类事物的统计数据之和,“总计”是反映各类事物的总数量.
教法建议
学生在第八册和第十册已经初步学习了数据的收集和整理、简单统计表的制作和条形统计图的初步认识,以及求平均数的方法.本小节是在学生已有知识的基础上,进一步教学编制和分析含有百分数的统计表,通过教学使学生进一步认识统计的意义和作用,并受到国情的教育.
含有百分数的统计表,可以采用迁移法进行教学.通过“1、复习旧知:教师出示表格,学生分别说出每个数据表示什么和计算方法.2、质疑引新:现在的表格能反映出有关数据之间的关系吗?应该怎么办?3、小组讨论:只要在表格的右侧增加一栏,把有关百分数的数据填入表中即可.4、对比深化:合计与总计有什么不同?5、分析表格:根据表中数据可以得出什么结论?”这五个步骤进行教学.教学中要注意发挥学生的主体作用,由学生自主探究得出新知.
教学目标
1.使学生初步学会制作一些含有百分数的简单的统计表.
2.通过看表,会回答一些简单的问题.
教学重点
在已学过统计表的形式和制法的基础上,会制作含有百分数的统计表.
教学难点
掌握统计表中数量之间的百分比关系,会分析含有百分比的统计表。
教学步骤
一、铺垫孕伏
1.复习旧知.
我们已经学过,把调查收集到的数据,加以分类整理,请看下面表格(下表),你能说出每个数据分别表示什么吗?
2.计算.
教师提问:表格中“合计”的数据怎样算?
3.引新.
统计表不仅反映某一类事物的具体数据,而且还能说明有关数据之间的关系,如表中合计的数据表示了三年同类项目收入的总和,现在的表格,还能反映出村办企业收入占全村的总收入的百分比吗?(不能)
下面我们就继续学习百分数在统计中的应用.
二、探求新知
(一)教学例题.
1.出示例题.
下面是~东山村每年的总收入与村办企业收入的统计表.如果要使这个统计表表示出这三个年度中村办企业收入占全村总收入的白分之几,应该怎样做?
教师提问:例题向我们提出了什么问题?
2.增加栏目,扩展统计表含量.
教师提问:
(1)计算每个年度村办企业收入占全村总收入的百分比比较容易,计算出的三个百分数写在表格的什么位置?
(表格右侧旁边)
(2)能不能把表格向右侧扩充一下,把有关百分数的数据也纳入表中?
篇3:简单应用题(人教版六年级教案设计)
教学目的
1.使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法.
2.通过教学,进一步提高学生分析和解答应用题的能力.
3.探索知识间的内在联系,激发学生的学习兴趣.
教学重点
掌握简单应用题的结构,正确解答简单应用题.
教学难点
掌握简单应用题的数量关系.
教学过程
一、基本训练.
1.口算.
2.2+3.57 × ×1.2
1.4- +0.5 11.3-8.6
( + )×12 (0.18+ )÷9 7.75- -
2.下面各题只列式不计算.
(1)六年级学生为灾区捐款,六年级1班捐款105元,六年级2班捐款98元.两个班一共捐款多少元?
(2)学校图书馆买来150本故事书,借给五年级1班48本,还剩多少本?
(3)农具厂每天能够生产56件农具,7天能够生产多少件农具?
(4)水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?
(5)成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?
(6)五年级有学生136人,其中 是女生,女生有多少人?
二、归纳整理.
揭示课题:今天我们就来复习这样的简单应用题.(板书:简单应用题的整理和复习)
(一)教学例1:某工厂有男工人364人,女工91人.这个厂的男工和女工一共有多少人?
教师提问:这道题有哪几个已知条件?
问题是什么?
问题与已知条件有什么关系?
你为什么要这样回答?
教师总结:
这道题中,需要求的结果与两个已知条件直接相关.只要把两个已知数合并起来,就可以直接计算出结果.这是一道简单应用题.
(二)变式练习.
1.改变问题:根据例1中的两个已知条件,你还能够提出其他问题,编成简单应用题吗?
①男工比女工多多少人?
②男工人数是女工人数的几倍?
③女工人数是男工人数的几分之几?
2.改变条件:根据上面编出的应用题和列出的算式,你能够分别调换每一道题中的已知条件和问题,各编成两道不同的简单应用题吗?
①某工厂男工和女工一共有455人,男工有364人,女工有多少人?
②某工厂男工和女工一共有455人,女工有91人,男工有多少人?
③某工厂有女工91人,男工比女工多273人,男工有多少人?
④某工厂女工比男工少273人,女工有91人,男工有多少人?
⑤某工厂有女工91人,男工人数是女工人数的4倍,男工有多少人?
⑥某工厂有男工364人,女工人数是男工人数的 ,女工有多少人?
⑦某工厂男工人数是女工人数的4倍,男工有364人,女工有多少人?
⑧某工厂有女工91人,女工人数是男工人数的 ,男工有多少人?
教师提问:通过我们的编题,你发现了简单应用题的什么特点?你的收获是什么?
教师总结:从以上的编题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的.也就是说,都是可以由已知条件经过一步计算直接求出答案.
(三)复习已经学过的一些常见的数量关系.
通过例1我们已经研究了一些简单应用题的数量关系,下面我们再来复习一些常见的数量关系.(出示下表)
数量关系 数量关系式
收入、支出、结余 收入-支出=结余
单价、数量、总价
单产量、数量、总产量
速度、路程、时间
工作效率、时间、工作总量
本金、时间、利率、利息
1.请你们以小组为单位,先举例说明数量关系的意义,在填出每组数量中最基本的数量关系式.
2.根据这些数量关系式你能够各编出三道不同的应用题吗?
篇4:统计表(六年级)(人教版六年级教案设计)
教学目标
1.进一步了解统计的意义和作用,知道它们的特点和用途。
2.使学生在初步掌握把原始数据分类整理的基础上学会制作一些含有百分数的简单统计表。
3.会对统计表进行一些初步的分析,能指出这些统计表所说明的问题。
4.渗透统计思想,结合统计表的知识,对学生进行国情教育。
教学重点和难点
重点:在已学过统计表的形式和制法的基础上,会制作含有百分数的统计表。
难点:掌握统计表中数量之间的百分比关系,会分析含有百分比的统计表。
教学过程设计
(一)复习准备
1.老师出示六年级师生为灾区儿童捐款的数据。
问:(1)你们看看这些数据说明了什么?
数据:六(1)班48人 捐款480元
六(2)班 49人 捐款 520元
六(3)班 45人 捐款 465元
六(4)班 47人 捐款 423元
(2)你能很快说出哪班人均捐款最多吗?如果列成表,这个问题就可以简明生动地表达出来了。(板书:简明生动)
(3)你们能不能利用以前学过的制表知识把六年级为灾区人民捐款情况简明生动地表达清楚呢?
(学生分小组制表。)
(4)汇报各小组制表情况。(运用实物投影仪将学生绘制的统计表投影出来。)
投影出示:
讨论:(1)从表中你还知道什么?(发散学生的思维,自己提问题自己回答。)
(2)请你算算哪班捐款占全年级的百分比大,还需将表怎么修改?
揭示课题:今天这节课我们共同研究含有百分数的统计表的制表问题。
(二)学习新课
1.出示例1。
例1 下面是东风机床厂1993年第四季度的产量统计表。想一想怎样算出表中空缺的数据。
(1)把你的计算结果填入表中的空格内,再验算合计数和总计数,检验结果是否正确。
(2)如果要想知道一、二车间生产台数分别占总产量的百分之几,怎么算呢?如何制表?
分组讨论,四人一组共同完成一幅统计表。
(3)根据统计表进行分析。(再加一栏百分数。)
①一、二车间产量分别占总产量的百分之几?
②第二车间的产量是第一车间产量的百分之几?
③第一车间比第二车间多百分之几?
2.做一做。
下面记录的是某班男生一次数学考试的成绩。(单位:分)
100 93 69 99 89 76 81 100 88 65
91 87 92 81 87 93 78 85 78 77
根据上面的成绩填写下表,再算出这班男生考试的平均分数和及格率。
参加考试人数:__________;总分数:___________;
平均分数:___________;及格率:___________。
(1)让学生用画“正”字方法分类整理,然后填入表内。
(2)根据表后填空回答问题。
①怎么求平均分数?具体说出数量关系。
②什么叫及格率?怎么求及格率?
(三)巩固反馈
1.根据以下数据填统计表。
人民化肥厂生产情况如下:上半年计划生产15万吨,实际完成15.9万吨,下半年计划生产20万吨,实际完成20.5万吨。
教师提醒学生:不要把上半年、下半年完成计划的百分数加起来。
教师引导分析讨论表后问题。
(1)“完成计划的百分比”是什么意思?
(2)如果改成“超产百分之几”怎么理解?怎么计算?数量关系是什么?
(3)“总计”一栏应该用什么方法计算?
2.王庄小学六年级学生体育达标情况如下:
六(1) 50人 达标48人
六(2)45人 达标42人
六(3) 48人 达标45人
六(4) 46人 达标45人
(1)算出各班达标率和全年级学生达标率。
(2)哪个班达标率最高?哪个班达标率最低?达标率最高的班和最低的班相差百分之几?
(3)哪几个班达标率比年级达标率高?把它制成统计表,要有“合计”。
3.改革开放来上海居民收入增长情况如下:
(1)将它制成复式统计表,并分别算出职工工资和农民纯收入从1978年~增长的幅度。
(2)比较一下19每人年收入是1978年每人年收入的百分之几?
(四)课堂总结
今天我们又学会了什么知识?统计表有什么优点?(简明、生动、用数字说明问题。)正因为统计表有这样的优点,所以在统计工作中为表明数量关系往往利用统计表进行统计。
(五)布置作业
1.让学生调查本年级各班男生、女生人数并制成统计表。(注意写合计、总计。)
2.请学生以小组为单位去交通路口调查10分钟内机动车通过路口情况,作好记录,并制成统计表。
课堂教学设计说明
本节课是在学生学过复式统计表的基础上增加了有关数量的百分数,使学生知道百分数在统计工作中的作用,教师从学生熟悉的为灾区小朋友捐款的情况引入新课,学生易于接受。在巩固练习反馈中又增加了改革开放20年上海职工、农民收入情况练习制表,不仅使学生感受到统计表的意义和作用,同时也使学生受到一些国情教育。
板书设计
篇5:比例尺教学设计 (人教版六年级下册)
教学目标
(一)知识教学点
感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。
(二)能力训练点①培养学生发现问题、分析问题、解决问题能力;②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;
③辩证唯物主义的初步渗透
教学重点 比例尺的应用。
教学难点 比例尺的实际意义。
教学过程
一、设置教学情境,感受比例尺
(一)画画比比
1、 估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?
请你估计一下黑板的长和宽。
2、 丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)
3、 画黑板:你能照样子把黑板画在本子上吗?(师巡视)
4、 质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)
[评析:“照样子画黑板”是同学们美术课上再熟悉不过的举动,但以此为本节课的开始,让学生在不知不觉中体会到了比例尺,实为教者的匠心之笔!]
5、挑两个黑板图(一个画得不像一个画得较像)出示:
a) 评价:①谁画得更像一点?
②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)
b) 师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)
图上长7厘米,长缩小:350÷7=50 图上长5厘米,长缩小:350÷5=70
宽1.5厘米,宽缩小:150÷1.5=100 宽2.5厘米,宽缩小:150÷2.5=60
c) 点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。
[评析:实践出真知!让学生分析画得“像与不像”使学生真真切切地感受到了比例尺的作用,以此激发学生学习比例尺的兴趣。]
(二)再画再比
1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)
2、课件展示准确的平面图:
3、请你帮老师算算长和宽分别缩小多少倍?
图上长3.5厘米缩小:350÷3.5=100 宽1.5厘米缩小:150÷1.5=100
4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)
[评析:从画黑板--提出问题到“比比谁画得像”--分析问题再到“如何画得更像”--解决问题。教者均是置学生于熟悉的生活背景下,感受并理解比例尺意义,体现了数学的生活性。]
二、结合实际,理解比例尺
(一)说一说
①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。
②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。
③图A、图B长和宽比例尺各是多少?分别表示什么?
小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。
④用自己话说说什么叫做比例尺?怎样计算比例尺?
小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。
(二)算一算
①下图是我校附近的平面图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?
评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?
②从1﹕10000这一比例尺上,你能获取那些信息?
板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。
[评析:比例尺是一个实用性很强的知识点,教师在帮助学生理解比例尺意义时,运用实例让学生“说一说”、“算一算”,口脑并用,从多角度多方位理解比例尺的实际含义,为下面多种角度计算实际距离、图上距离打下知识准备。]
三、联系实际,应用比例尺
(一)求图上距离
1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?
①独立思考,试试看,如感觉有困难小组内小声讨论。
②评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?
方法一:400米=40000厘米 方法二:400米=40000厘米
40000÷10000=4(厘米) 40000×1/10000=4(厘米)
方法三:10000厘米=100米 方法四:用比例解(略)等等
400 ÷100=4(厘米)
小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。
③如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)
[评析:“怎样计算图距和实距?”教者一改以往根据比例尺计算方法去死套公式(图距=实距×比例尺;实距=图距÷比例尺)的做法,也一改教材中“烦琐”的比例解法,而是借助于学生对比例尺的多角度理解,不把知识点“讲死”,让学生灵活的选择解决方法,很好的体现了新课标的理念--以人为本,即让不同的学生学不同的数学,让不同的学生得到不同的发展。
2、练一练:
区委东北是我区闹市区--十村,已知区委和十村实际距离是2.5千米,在这图上应画多长?如何画?自己画画看。(课件演示)
3、画一画:
①请准确地画出教室前黑板的平面图。(怎样画才算准确?)
②评讲:你是如何画的?方法一:自己定一个比例尺算出图上长和宽然后画;方法二:在原有图上以长的比例尺为比例画出宽;方法三:在原有图上以宽的比例尺为比例画出长。
(二)求实际距离
1、 西厂门在区委的东南面,(课件演示)量得图上距离是9厘米,如何算实际距离?有几种算法?
①独立思考;②合作交流;③讲评算理。(略)
2、练习:南钢宾馆在区委西南(课件演示)量得图上距离是18厘米,如何算实际距离?
[评析:用学生熟悉的生活场景--大厂区各地名,采取学生感兴趣的活动--画“地图”联系实际应用比例尺意义计算图距和实距,使学生对数学倍感亲切,感觉数学就在我们身边,突出的体现了数学的生活性。]
(三)新课延伸
1、 南京距大厂40千米,画在这幅图上要画多少厘米?
①独立列式计算(400厘米)。
②要画400厘米,你有何感觉?(太长画不下)
③画不下怎么办?(调整比例尺)
④说说你的调整方案?
[评析:一石激起千层浪!在矛盾冲突中培养学生发现问题、分析问题、解决问题的能力,同时达到使学生跳出大厂看“比例”的目的。]
2、请拿出标有南京上海的地图,找出比例尺并说说意义。
①同座位间合作算出实际距离。
②一辆汽车从南京早上9﹕00从南京出发赶往上海,要赶下午2﹕00的飞机,如果车速是每小时80千米,问能否赶及?为什么?
2、五一长假是旅游的黄金季节,请同学们采访一下听课的老师,最向往哪个大城市,然后根据地图帮老师算出实际距离,再告诉被采访的老师。
[评析:很有创意!采访老师,就地取材增加课的参与度;学生下位采访,体现课的开放性,培养学生解决实际问题能力的同时培养学生的交际能力。使课堂教学内容得到了再延伸!]
四、课堂总结,回顾比例尺(略)
[总评:本节课循着一根知识主线--比例尺的意义与应用,引入新知别出心裁,探究新知有章有法,练习设计富有创意;同时循着一根能力主线--培养学生解决实际问题能力,无论是哪个环节的例子都来源于学生熟悉的生活,重视学生的独立探究与合作讨论相结合。同时多次运用多媒体辅助教学,充分体现了以教师为主导,学生为主体,训练为主线的严禁课堂教学结构,使学生学的轻松,学有成效。]
篇6:六年级《比例尺》说课稿
说教材
《比例尺》是九年义务人教版小学数学第十二册第三单元《正比例和反比例》一章的最后一个内容。比例尺在人们的生活中应用广泛。这课内容是在学习了比的知识、正反比例和图形的放缩的基础上学习的。是比的知识,正比例和乘除法意义的综合应用。本课要求学生要充分理解和掌握比的意义,根据乘除法的意义来求比例尺、图上距离和实际距离。
说学习目标
《新课标》指出;“数学教学应联系生活实际,让学生亲身经历知识产生、形成的必要性,感受数学的力量,激发学习数学兴趣。为此,我制定以下学习目标:
1、学生理解比例尺的意义,学会求比例尺。
2、学生经历比例尺产生过程和探究比例尺应用的过程,提生解决实际问题的能力。
3、结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
学习重点:重点是理解比例尺的概念,根据比例尺的意义求出比例尺。学习难点:是从不同角度理解比例尺的意义。
说学法
本节课主要采取讨论、交流、自主学习、合作学习的学习形式。为学生创设“笑笑家平面图”这一情境,通过教师点拨、引导,让学生在操作中体会“比例尺”在生活中的必要性,从而掌握比例尺的计算公式:比例尺=图上距离÷实际距离。在比例尺的计算公式基础上,教师点拨学生利用已学的知识,自主学习,常识解答。总结求比例尺、图上距离和实际距离的方法。整节充分体现“学生为主、教师为辅。”的教学理念。让学生积极参与,提高学习数学的乐趣。
说导学设计
一、情境导入
师:同学们,我们的祖国历史悠久,地域辽阔,大约有960万平方千米。如果我们想把整个中国的地域一眼看尽,有没有可能?
师:对,今天老师就把中国地图搬进了课堂。
(出示一幅中国地图)
师:你们知道人们是怎样把960万平方千米的大中国画在这张没有半个黑板大的地图上的吗?
生:把它缩小。
师:对了,就是把我们的祖国缩小画在地图上的。老师这里还有一幅中国地图,请同学们认真观察这两幅地图,你有什么发现?
生:它们的大小变了,形状没有变。
师:为什么大小变了,而形状没有变呢?
生:因为它们缩小的倍数不同,所以大小不同,而形状相同。
再出示一副螺丝钉的放大图。
师:这幅图是否能很清楚地看到它的螺纹?
师:在日常生活中人们经常要用到把一些实际的物体缩小或扩大一定的倍数画成平面图。
师:同学们想不想也亲手试一试,把我们的教室平面图画出来呢?
二、探究新知
师:下面就请你们来当一个小小的设计师,课前我们已测量出教室的长是8米,宽是6米,请你们把教室的平面图画在老师发给你的白纸上,并完成表格。
在下表中填出图上的长、宽与实际的长、宽的比,并化简。
图上距离:
实际距离=
图上距离与实际距离的比
师:同学们的作品都完成了,请你们在小组里交流自己的作品,重点交流你是怎么确定图上的长和宽的距离。
学生汇报。
(师选出大小不同的作品贴在黑板上)
师:我们请这些作品的设计者来说说你们是怎样设计的,并指出你所画的平面图的图上距离和实际距离各是多少,它们的比值是多少。
师根据学生的回答板书:
图上距离:实际距离
(1)8厘米:8米=8:800=1:100
6厘米:6米=6:600=1:100
(2)4厘米:8米=4:800=1:200
3厘米:6米=3:600=1:200
师:通过刚才的活动,我们知道图上距离与实际距离之间存在着一种倍数关系,这就是今天我们要研究的新知识——比例尺(板书课题)
师:什么是比例尺呢?谁能用自己的话来说一说?
师根据学生的回答板书。(强调第二种写法)
师(指着贴在黑板上的教室平面图)这些平面图的比例尺各是多少?
三、解决问题
师:同学们已经认识了比例尺,请同学上前台找到两幅中国地图上的比例尺。
生找到,教师板书:
1:600000
请学生说说这个比例尺所表示的意思。
鼓励学生有不同的说法。
出示线段比例尺,请学生思考表示什么意思。
学生汇报。
学生尝试把线段比例尺改写成数值比例尺。
指名板演。
集体订正。强调书写格式。
在出示螺丝钉放大图的比例尺:60:1
与上面的比例尺比较,有什么不同。
总结相同的和不同的。
四、巩固练习
1、做一做。学生独立完成,指名板演。
集体订正。
2、判断下列这段话中,哪些是比例尺,哪些不是?为什么?
五、课堂小结
今天这节课你有什么收获?
六、课外作业
篇7:轴对称图形(人教版六年级教案设计)
教学目标
1.通过观察和操作认识轴对称图形和轴对称的含义.
2.会画出轴对称图形的对称轴.
3.使学生在操作中加深对图形的认识,建立空间观念.
教学重点
认识轴对称图形,并能正确画对称图.
教学难点
认识图形,建立空间观念.
教学过程
一、复习准备
口算
二、新授教学
(一)出示图片:树叶、蜻蜓、天平
(二)分组讨论
1.这些图形有什么特点?
2.找出一些生活中实例图形.
(三)学生汇报
图形左右部分一样
(四)出示图片:实验
先把一张纸对折,在折好的一侧画出图形,剪下来,再把纸打开,看一看能得到一
个什么样的图形?
(五)小结:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴.
(六)练习
1.下面哪些图形是轴对称图形?找出它们的对称轴.(出示图片:练习一)
2.画出下面图形的对称轴.(出示图片:练习二)
3.下面的图形,哪些是轴对称图形?(出示图片:练习三)
(七)分组实验.
1.出示图片:几何图形
2.哪些图形是轴对称图形?画出它们的对称轴.
3.小结:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形.有的轴对称图形有不止一条对称轴.
三、课堂练习
1.下面的数字,哪些是轴对称图形?它们各有几条对称轴?(出示图片:练习五)
2.画出下面每组图形的对称轴.各能画几条?(出示图片:练习六)
3.把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?(出示图片:练习四)
四、课后作业
运用学过的知识,用纸剪去一个对称图形,可以怎样剪?
五、板书设计
轴对称图形
轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.
对称轴:折痕所在的这条直线叫做对称轴.
教案点评:
该教学设计体现了以学生为主体,通过让学生动手画、折、剪、量、比等方法,引导学生主动探索,启发调动了学生全部心理活动的积极性,使情感、意志、兴趣、注意、动机都趋于积极化,使学习知识和提高能力同步得到发展。
探究活动
设计花坛
活动目的
1.加深学生对几何图形的认识,建立空间观念.
2.培养学生应用数学知识解决实际问题的能力.
活动题目
有一块边长为10米的正方形的空地,现在要在空地上设计一个花坛,使花坛的面积是空地面积的二分之一,问如何设计?
活动过程
1.学生以小组为单位,分小组讨论.
2.学生分小组汇报.
3.全班共同评选最佳设计.
参考答案
篇8:对称图形(六年级)(人教版六年级教案设计)
教学目标
1.使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。
2.通过观察、思考和动手操作,培养学生多种能力,渗透美的教育。
教学重点
理解对称图形的概念及性质,会找对称轴。
教学难点
准确找全对称轴。
教学准备
1.教具:投影片、图片、剪刀、彩纸。
2.学具:蝴蝶几何图片、剪刀、白纸。
教学过程
(一)导入新课
你们看这些图形好看吗?观察这些图形有什么特点?
(图形的左边和右边相同。)
你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)
这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)
你怎么知道图形的左边和右边相同?(看出来的……)
还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)
你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)
(二)讲授新课
1.对称图形的概念。
(1)对称图形和对称轴的定义。
以剪出的图形为例,贴在黑板上。
问:你们剪出的这些图形都有什么特点?
(沿着一条直线对折,两侧的图形能够完全重合。)
师:像这样的图形就是对称图形。(板书课题)
折痕所在的这条直线叫做对称轴(画在图上)。
问:现在谁能准确说出什么是对称图形?什么是对称轴。
板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。
(2)加深理解概念。
以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。
(3)巩固概念。(投影)
①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。
生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。
②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。
投影出示,折一折,说明是否是对称图形,并在( )里写明有几条对称轴。
生边回答老师边填在投影片上,并用小棒摆出对称轴。
回答:
1° 任意三角形不是对称图形。
2° 等腰三角形是对称图形,有一条对称轴。
3° 任意梯形不是对称图形。
4° 正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)
5° 平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)
6° 长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)
7° 圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)
8° 等腰梯形是对称图形,有一条对称轴。
③小结。
问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?
④练一练
打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。
第2个图和第4个图较难,要引导学生用对折的思想思考,关键找准第一条对称轴,其它就好找了。
2.对称图形的性质。
(1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。
(2)测量并归纳性质。
打开书第125页,看下半部分的对称图形,用尺子量一量图中的 A,B,C,D点到对称轴的距离分别是多少厘米?(保留一位小数)
认真度量,结果填在书上,你发现什么?
投影订正。填后的结果:
A点到对称轴的距离是0.6厘米。
B点到对称轴的距离是1.2厘米。
C点到对称轴的距离是0.6厘米。
D点到对称轴的距离是1.2厘米。
问:根据测量的结果你发现什么?
(A,D两点及B,C两点都分别在对称轴两侧。A,D两点到对称轴的距离相等,都是0.6厘米;B,C两点到对称轴的距离也相等,都是1.2厘米。)
问:根据度量结果,你们能总结出对称图形的性质吗?
板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。
(3)验证性质。
量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。
看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。
(三)课堂总结
今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?
(四)巩固练习
1.第127页1题,画出对称轴。
2.在你周围的物体上找出三个对称图形。
3.让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。
4.你能否应用对称图特点,剪出美丽的窗花或五角星。
课堂教学设计说明
为了让学生多种感官参与教学活动,使学生积极主动地学习,讲课时首先出示一组对称图形,让学生去观察图形的特点,说出图形左边和右边相同,左右之分是以图形中间那条直线为界线,为讲解对称图形的知识打下基础。然后,通过提问:你是怎么知道图形的左边和右边是相同的?让学生广泛讨论,动手折叠,使学生了解了这些图形的特点:“沿一条直线对折,两侧的图形能够完全重合。”这只是感性认识,为了使学生进一步理解什么是对称图形,设计了让学生很快剪出一个具有这些特点的简单图形。这个环节虽然对部分同学感到困难,但是通过互相启发还是能做出来的,达到强化这类图形特点的目的,就能水到渠成地突破教学重点。这样设计教案体现了以学生为主体,通过让学生动手画、折、剪、量、比等方法,引导学生主动探索,启发调动了学生全部心理活动的积极性,使情感、意志、兴趣、注意、动机都趋于积极化,使学习知识和提高能力同步得到发展。
篇9:复合应用题(人教版六年级教案设计)
教学目的
1.通过解答一组相关的应用题,使学生进一步理解复合应用题是怎样在简单应用题的基础上发展起来的.
2.使学生进一步掌握分析应用题的方法,进一步提高学生分析和解答应用题的能力.
3.培养学生认真负责的态度和良好的学习习惯.
教学重点
能够掌握复合应用题的结构,正确解答复合应用题.
教学难点
使学生掌握复合应用题的关系.
教学过程
一、基本训练.
1.口算.
2.5×4 127+28 0.37+1.6 88÷16
3.37+6.63 8.4÷0.7 0.125×8 1.02-0.43
1.25+ 1÷ ×16
2.要求下面的问题需要知道哪两个条件?
(1)实际每天比原计划多种多少棵?
(2)桃树的棵数是梨树棵数的多少倍?
(3)五年级平均每人捐款多少元?
(4)这堆煤实际烧了多少天?
(5)剩下的书还需要多少小时能够装订完?
(6)小明几分钟可以从家走到学校?
教师总结:
应用已经学过的数量关系,根据题目中的问题考虑需要哪两个直接条件,是我们分析和解答简单应用题的关键.
二、归纳整理.
揭示课题:这节课,我们复习复合应用题(板书课题).
(一)教学例2:
a.学生夏令营组织行军训练,原计划每小时走3.75千米;实际每小时走4.5千米.实际比原计划每小时多走多少千米?
b.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际每小时走了4.5千米.实际比原计划平均每小时多走多少千米?
c.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际2.5小时走完原定路程.实际比原计划平均每小时多走多少千米?
1.指名读题,学生独立解答.(学生板演)
2.小组讨论:这三道题都有什么联系?这三道题有什么区别?
联系:这三道题说的是同一件事,要求的问题也相同,都是求“实际比原计划平均每小时多走多少千米?”要求最后问题都需要先知道原计划每小时走的千米数和实际每小时走的千米数.
区别:
a、实际每小时走的和原计划每小时走的千米数都是已知的,只需要一步计算;
b、实际每小时走的千米数是已知的.原计划每小时走的千米数是未知的,需要两步计算;
c、实际每小时走的千米数和原计划每小时走的千米数都是未知的,需要三步计算.
3.教师质疑:对于不能一步直接求出结果的应用题,我们应该怎样进行分析呢?请你们以小组为单位试着分析b、c量道例题.
4.教师总结:从上面这组题我们可以看出,复合应用题都是由几个简单一步应用题组合而成的.在分析数量关系时我们可以从所求问题出发逐步找出所需要的已知条件,直到所需条件都是题目中的已知的为止.
5.检验应用题的方法.
我们想知道此题目做的对不对,你有什么好办法吗?
(1)按照题意进行计算;
(2)把所求得的问题作已知条件,按照题意倒着算,看最后结果是否符合题意.
三、巩固反馈.
1.解答并且比较下面两道应用题,说说它们之间有什么区别?
(1)时新手表厂原计划25天生产手表1000只,实际每天生产50只.实际比原计划提前几天完成任务?
(2)时新手表厂原计划25天生产手表1000只,实际比计划提前5天完成任务.实际每天生产手表多少只?
2.判断:下面列式哪一种是正确的?
(1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?
A:2100-240×5÷3 B:(2100-240)÷3
C:(2100-240×5)÷3
(2)一个装订小组要装订2640本书,3小时装订了240本,照这样计算,剩下的书还需要几小时才能够装完?
A:(2640-240)÷240
篇10:分数应用题(人教版六年级教案设计)
教学目标
1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.
2.培养学生分析、解答两步计算的分数应用题的能力和知识迁移的能力.
3.培养学生的推理能力.
教学重点
培养学生分析、解答两步计算的分数应用题的能力
教学难点
使学生正确地解答两步计算的分数一般应用题.
教学过程
一、复习引新
(一)全体学生列式解答,再说一说列式的依据.
两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?
13÷2-5
=6.5-5
=1.5(千米)
根据:路程÷相遇时间-甲速度=乙速度
(二)教师提问:谁来说一说相遇问题的三量关系?
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
(三)引新
刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)
二、讲授新课
(一)教学例1
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇.甲每小时行5千米,乙每小时行多少千米?
1.读题,分析数量关系.
2.学生尝试解答.
方法一:解:设乙每小时行 千米.
方法二: (千米)
3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?
相同:解题思路和解题方法相同;
不同:数据不同,由整数变成分数.
4.练习
甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?
(二)教学例2
例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?
1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.
由此得出:一批水果的重量 第一次+第二次
2.列式解答
方法一:解:设这批水果有 千克
方法二:
3.以组为单位说一说解题的思路和依据.
4.练习
六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 .六年级有学生多少人?
三、巩固练习
(一)写出下列各题的等量关系式并列出算式
1.甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?
2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 .这部书稿有多少页?
(二)选择适当的方法计算下面各题
1.一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?
2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?
四、课堂小结
今天我们学习的分数应用题和以前所学的知识有什么联系?有什么区别?
五、课后作业
1.商店运来苹果4吨,比运来的橘子的2倍少 吨.运来橘子多少吨?
2.一套西装160元,其中裤子的价格是上衣的 .上衣和裤子的价格各是多少元?
六、板书设计
分数应用题
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过
小时相遇.甲每小时行5千米,乙每小时行多少千米? 例2.一个水果店运一批水果,第一次运了50千克,第二次运了
70千克,两次正好运了这批水果 的 ,这批水果有多少千克?
解:设乙每小时行 千米
答:,乙每小时行 千米.
解:设这批水果有 千克
答
篇11:解比例(六年级)(人教版六年级教案设计)
教学目标
1.使学生理解解比例的意义.
2.使学生掌握解比例的方法,会解比例.
教学重点
使学生掌握解比例的方法,学会解比例.
教学难点
引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已
学过的含有未知数的等式.
教学过程
一、复习准备
(一)解下列简易方程,并口述过程.
2 =8×9
(二)什么叫做比例?什么叫做比例的基本性质?
(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?
6∶10和9∶15 20∶5和4∶1 5∶1和6∶2
(四)根据比例的基本性质,将下列各比例改写成其他等式.
3∶8=15∶40
二、新授教学
(一)揭示解比例的意义.
1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.
2.学生交流
根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.
3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.
(二)教学例2.
例2.解比例 3∶8=15∶
1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.
2.组织学生交流并明确.
(1)根据比例的基本性质,可以把比例改写为:3 =8×15.
(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.
(3)规范并板书解比例的过程.
解:3 =8×15
=40
(三)教学例3
例3.解比例
1.组织学生独立解答.
2.学生汇报
3.练习:解下面的比例.
= ∶ = ∶
三、全课小结
这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.
四、巩固练习
(一)解下面的比例.
1. 2. 3.
(二)根据下面的条件列出比例,并且解比例.
1.5和8的比等于40与 的比.
2. 和 的比等于 和 的比.
3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8.
五、布置作业
(一)解比例.
= = ∶ =3∶12
(二)商店有一种衣服,售价是24元,比原来定价便宜25%.现在售价比原来定价便宜多少元?
(三)一个梯形的面积是12平方厘米,它的上底是3厘米,下底是5厘米,高是多少厘米?(列方程解答)
六、板书设计
教案点评
该教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。
篇12:位置教案设计 (人教版六年级上册)
【教学内容】
《义务教育课程标准实验教材数学》六年级上册第2~3页。
【教学目标】
1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。会在方格纸上用“数对”确定位置。
2.通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。
3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。
【教学重点】
使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。
【教学难点】
在方格纸上用“数对”确定位置。
【教学过程】
一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置
1.谈话引入。
今天有这么多老师和我们一起上课,同学们欢迎吗?
老师们都很想认识你们。咱们先来给他们介绍一下我们班的班长,可以吗?
2.合作交流,在已有经验的基础上探究新知。
(1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的位置,把你的方法写或画在纸上。
汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排…
哪个小组也用语言描述出了班长的位置?
请班长起立,他们的描述准确吗?
刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排……)
看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。
板书:列 行
老师左手起第一组就是第一列…,横排就是第一行…
班长的位置在第4列、第3行。
还有其他的表示方法吗?
画图的方法:
如果大家是站在老师这个位置看全班的座位,这张图应该怎么放?(课件)
把座位图转过来,班长的位置变了吗?为什么?
(没变,还是第四列第三行,因为老师和我们看到的方向正好相反,但位置没变)
(2)探究新知。
在这张座位图中,你能找到自己的位置吗?
师指图:这是谁的位置?(我的,我的位置在第五列,第4个)
指名描述自己的位置?
同桌说说自己的位置。
今天老师还要教你们一种更为简洁的方法来确定位置,想知道吗?
板书:(2,5)
你们知道,这是谁的位置吗?
2,5分别表示什么意思?像这样用两个数来表示位置,我们称它们为数对。(板书)
下面我们就来研究用数对的方法来确定位置。(板书)
(3)巩固新知。
A、谁能用数对表示出自己的位置?指名两个,说出数对的含义,板书出来。
老师板书:(5,2),请这个同学起立,回答问题:(2,5)(5,2)这两个数对都由数字2、5组成,他们表示的位置一样吗?为什么
(两个数字组成顺序不一样,表示的意思就不一样)
B、老师出示图中的点,相应的学生说数对,其他同学判断对错。
(1,5)(4,2)(3,3)
当出示(3,3)时,问:两个3的意思一样吗?
在我们班的位置中,这样的数对还有吗?
如果有个班级最后一个同学的位置是(7,7),你知道这个班有多少人吗?为什么?
(49个,因为表示有7列,7行,所以7×7=49人)
C、小游戏:接龙。
老师先说出一组数对,相应的同学起立,说出下一个同学的位置,以此类推。
先让学生在心中想好你想叫得同学的位置。
D、寻找新位置。
同学们都会用数对表示自己的位置了吗?下面这个环节要检验你们每一个同学是否真的会了。
收拾好你的东西,根据你手中的数对,快速找到你的新位置。
(学生的数对里有两个特殊设计:(3, )和( ,3)
二、通过多种练习,使学生会在方格纸上用数对确定位置
1.出示动物园示意图。
你能看懂这张图吗?图上的数字表示什么意思?
请你用数对说出飞禽馆和南门的位置。
请你写出狮虎山,猴山,大象馆的位置。
观察这三个地点在图中的位置和他们的数对,你有什么发现?
周六,小红和妈妈去动物园玩,她们的游玩路线如下
请你说出她们的参观路线。
请你设计一条路线:
(1)从南门进,从北门出。(2)经过所有的景点。(3)不走重复路线。
用数对写出路线方案。
2.老师的礼物。
老师相送给每位同学一份礼物,但是只有掌握了今天所学的知识的同学才能看到这份礼物。
学生按照数对涂色。
介绍经验:这么多数对,你是怎么做到不丢不重,又准确的找到位置的。
看来这些同学取得成功时有方法的,老师真心祝贺你们,没有成功的同学也别气馁,老师把信心送给你们,只要吸取好的经验,下次一定会成功。
思考:在这幅图中,数对确定位置的方法和之前有什么相同和不同?
(方法一样,一组数对表示一个方格,而不是一个点)
3.第5页第4题第(2)小题:描出下列各点并按字母顺序依次连成封闭图形,看看是什么图形。
这道题的构图方式和刚才的心行构图有什么不同?
三、生活中的数学
用数对确定位置,在生活中应用广泛,你能举出例子吗?
教师出示:地图、围棋图…
四、小结
五、小小设计师
以小组为单位,任选构图方式,用数对确定位置,设计一个图案。把设计方案和效果图都记录在图表纸上。
[位置教案设计 (人教版六年级上册)]
篇13:简单的统计(人教版六年级教案设计)
教学目标
1.进一步加深对统计工作重要性的认识.
2.进一步加深对求平均数问题数量关系的理解,熟练掌握解答方法.
3.学会分析统计表中包括的内容及各部分之间的关系,进一步掌握编制和检查一个统计表的方法.
教学重点
本节课整理和复习近平均数、统计表、统计图三项内容.通过学习掌握平均数的数量关系、解题关键和方法,进一步明确统计表包括的内容及数量关系,掌握编制、填充、检查统计表的方法.
教学难点
综合运用已学过的知识,分析解答有关求平均数问题的应用题,编制和检查统计表.
教学步骤
一、铺垫孕伏.【演示课件“简单的统计”】
1、教师提问导入.
同学们,记忆是智慧之母,你们谁的记忆最好呢?提个问题考考大家:在小学阶段都学了哪些统计知识?都是在哪册书上学的?
2、学生汇报.
在第十册的第一单元学习了数据的收集和整理,求平均数;
在第十二册的第四单元学习了统计表和统计图.
二、归纳整理.
(一)加深对统计工作重要性的认识.
1、学生讨论汇报.
2、教师说明:统计知识在生产、工作、科学研究等方面的应用非常广泛.我们要认真学好统计知识,提高统计能力.
(二)整理复习求平均数.【继续演示课件“简单的统计”】
例1.某初级中学七个班的学生人数如下:
初中一年级:一班40人,二班38人;
初中二年级:一班40人,二班40人;
初中三年级:一班41人,二班38人,三班36人.
1、学生读题,分析条件和问题.
2、独立解答.
3、教师提问:在求一组数据的平均数时,必须先求出什么?
例1的平均数是按什么平均?
如果已知七个班的平均人数,求这七个班的总人数该怎样计算?
4、启发思考:求平均数的关键是什么?
关键:先求出一组数的总数量,再知道平均分成几份.用总数量除以要分的总份数就等于平均数.
5、练习.
在一堆小麦中取样五次,每次测得小麦的千粒重是:32克、34克、36克、35克、38克.这五次测得的小麦千粒重平均数是多少?
6、学生独立解答例2.
振华小学六年级学生做玩具小熊.一班48人,共做267个;二班50人,共做292个;三班47人,每人做6个.六年级学生平均每人做多少个?
7、思考:结合两道例题的解答过程,能试着概括出一个关系式吗?
总数量÷总份数=平均数
(三)整理和复习统计表.
1、指导看书.
2、教师提问:统计表中横向有几栏,纵向有几栏,分别表示什么?
制作一个统计表,一般包括哪些内容?
3、分析统计表中各数据之间的关系,根据已填的数据,把空缺的数据填满.
4、教师说明:统计表的内容是根据统计的实际需要而确定的.在编制和分析统计表时关键要弄清各栏目、各数量之间的关系.
5、练习.
(1)下面记录的是某班女生1分钟仰卧起坐测验的成绩(单位:次)
25 33 31 28 13 36 30 29 32 21
32 29 25 30 19 27 31 35 26 28
根据上面的成绩填写下表,再算出这班女生测验的平均次数.
参加测验人数: 总次数: 平均次数:
(2)下面是育新小学六年级两个班学生上学期体育成绩统计表.
比例尺(六年级)(人教版六年级教案设计)(精选13篇)




