【导语】“梦幻小城”通过精心收集,向本站投稿了3篇实际问题的函数刻画教案,下面是小编整理后的实际问题的函数刻画教案,希望对大家有所帮助。
篇1:实际问题的函数刻画教案
实际问题的函数刻画教案
学习目标
1、知道什么叫数学模型,知道数学建模的意义。
2、会用函数刻画现实世界中变量间的依赖关系。
3、知道函数的一些模型。如正反比列函数、一次函数。
学习重点、难点
用函数观点刻画实际问题。(重点)
准确理解题意,理解变量间的关系。(难点)
预习提要
一、问题1 当人的生活环境温度改变时,人体代谢率也有相应的变化,表4-2给出了实验的一组数据,这组数据能说明什么?
环境温度/(℃) 4 10 20 30 38
代谢率/[4185J/(h .m2)] 60 44 40 40.5 54
(⒈)在这个实际问题中出现了几个变量?它们之间能确定函数关系吗?为什么?
(2)、结合图4-5分析代谢率在什么范围下降,什么范围上升?
(3)温度在什么范围内代谢率变化较小比较稳定,什么范围代谢率变化较大?
二、问题2某厂生产一种畅销的新型工艺品,为此更新专用设备和制作模具花去了200000元,生产每件工艺品的直接成本为300元,每件工艺品的售价为500元,产量z对总成本C、单位成本P、销售收入R以及利润L之间存在什么样的函数关系?表示了什么实际含义?
(1)总成本C与产量x的关系是什么?
(2)单位成本P与产量x的关系是什么?
(3)销售收入R与产量x的关系是什么?
(4)利润L与产量x的关系是什么?
(5)利润关系式是什么函数?当x取何值时亏损、盈利?
精讲释疑
问题三、问题3如图4-7,在一条弯曲的河道上,设置了6个水文监测站,现在需要在河边建一个情报中心,从各监测站沿河边分别向情报中心铺设专用通信电缆,怎样刻画专用通信电缆的总长度?
检测拓展
类型一:数学模型为正比列、反比列函数的问题
1、一个圆柱形容器的底面直径为dcm,高度为hcm,现以每秒S 的速度向容器内注入某种溶液,求容器内溶液高度y与时间t(秒)的函数关系式及定义域。
2、有m部同样的机器一起工作,需要m小时完成一项任务。
(1)设由x部机器(x为不大于m的正整数)完成同一任务,求所需时间y(小时)与机器的部数x的函数关系式。
(2)画出所求函数当m=4时的图像。
类型二:数学模型为一次函数
2、某家报刊销售店从报社买进报纸的'价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社。在一个月(30天)里,有20天每天都可以卖出400份,其余10天每天只能卖出250份。设每天从报社买进的报纸的数量相同,则应该每天从报社买进多少份才能使每月所获利润最大?并计算该销售点一个月最多可赚的多少元?
4、某人开汽车以60 的速度从A地到150km远处的B处,在B地停留1h后,再以50 的速度返回A地。把汽车离开A地的距离x(km)表示为时间t(h)(从A地出发开始)的函数,并画出函数的图像;再把车速v( )表示为时间t(h)的函数,并画出函数的图像。
篇2:二次函数与实际问题(复习)教案
二次函数与实际问题(复习)教案
《二次函数与实际问题》(复习)教案 单位:上饶县尊桥中学 年级:九 设计者:罗兴满 时间:6月13日 课题 二次函数 课型 复习课 教学目标 知识技能 掌握二次函数的解析式求法,能灵活运用抛物线的解析式的求法和图象的性质知识解一些实际问题. 数学思考 通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力. 解决问题 学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性. 情感态度 经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活. 教学重点 二次函数解析式的求法和图象及其性质,应用二次函数分析和解决简单的实际问题. 教学难点 二次函数解析式的求法性质的灵活运用,能把相关应用问题转化为数学问题. 课前准备(教具、活动准备等) 制作课件 教 学 过 程 教学步骤 师生活动 设计意图 基础知识之 自我构建 1、二次函数解析式的`三种表示方法: (1)顶点式:y=a(x-h)2+k (2)交点式:y=a(x-x1)(x-x2)(3)一般式: 2、求二次函数的解析式,在怎样的情况下,对应地设其解析式求解更方便。 通过二次函数,请学生说出结论,主要让学生回忆二次函数有关基础知识.同学们之间可以相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性. 基础知识之 基础演练 例1、已知二次函数的图象过点(1,4),且与x轴交点为(-1, 0)和(3,0),求此函数的解析式。 例2、已知二次函数为x=4时有最小值-3且它的图象与x轴交点的横坐标为1,求此二次函数解析式. 第1题主要是学生复习用一般式求二次函数的解析式。 第2题主要复习二次函数的顶点式解析式的简捷求法。 基础知识之 灵活运用 例3、利用二次函数解决实际问题 一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米, (1)根据题意建立直角坐标系,并求出抛物线的解析式。 (2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少? 第3题涉及用一般式二次函数求实际问题的解析式,二次函数的平移性质,根据图象平移,就能正确写出该运动员应该跳多高。让学生经历和体验图形平移的变化过程,引导学生感悟知识的生成、发展和变化.数形结合思想是一种重要的数学思想。 难点突破之 思维激活 例4.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m. (1)建立如图所示的直角坐标系,求此抛物线的解析式. (2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥220km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米? 本部分这道题目不能呆板地应用二次函数的基础知识,而要综合相关知识,以达到能力提升之目的.这种函数Y=ax2 学生都以为只要一个点的坐标就够了,但这里有两个未知数,就只有列方程组才可以求出所要的未知数的值。 另一方面,抛物线的问题,似乎与另外的一个问题无关,但实际上这种关联,需要思维的跨越,这里的时间,正是在第二问中所要用的路程与速度、时间相关联的。这一点如果联系不起来,那么就无法解题。 难点突破之 聚焦中考 例5:某商场销售一批名牌衬衫,平均每天可售出20件,进价是每件80元,售价是每件120元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降低1元,商场平均每天可多售出2件,但每件最低价不得低于108元. ⑴若每件衬衫降低x元(x取整数),商场平均每天盈利y元,试写出y与x之间的函数关系式,并写出自变量x的取值范围. ⑵每件衬衫降低多少元时,商场每天(平均)盈利最多? 本题首先读懂题意,正确求出二次函数解析式.二次函数的最值是体现二次函数实际应用价值的一种常见题型,它在优选方案、减小投入、增大收益中意义非凡.解题时通常借助顶点坐标来求,但有时由于实际问题实际意义的限制,需结合自变量的取值范围进行调整.本题由图象可知,抛物线顶点(15,1250)不在本题图象上,它不是最高点,最高点应该是(12,1232)或者这样理解:顶点横坐标是15,不满足,因此不能理解为:当时,y取最大值为1250元. 反思 与 提高 1、本节课你印象最深的是什么? 2、通过本节课的函数学习,你认为自己 还有哪些地方是需要提高的? 3、在下面的函数学习中,我们还需要注意 哪些问题? 归纳本章知识网络图示 实际问题 二次函数 利用二次函数的图象和性质求解 实际问题的答案 让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基础,由此达到数学教学的新境界――提升思维品质,形成数学素养.篇3:实际问题与反比例函数教案设计
实际问题与反比例函数教案设计
一、教学目标
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的.基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题
★ 二次函数教案
★ 反比例函数教案
★ 刻画人物作文
★ 初二学生函数教案
★ 函数的单调性教案
★ 函数课件
实际问题的函数刻画教案(精选3篇)




