刘西垣:考研数学概率论与数理统计备考指南

时间:2023-05-22 03:35:33 作者:台阶 综合材料 收藏本文 下载本文

【导语】“台阶”通过精心收集,向本站投稿了6篇刘西垣:考研数学概率论与数理统计备考指南,下面是小编收集整理后的刘西垣:考研数学概率论与数理统计备考指南,供大家参考借鉴,欢迎大家分享。

篇1:刘西垣:考研数学概率论与数理统计备考指南

刘西垣:考研数学概率论与数理统计备考指南

【来源:海文学校】

概率论与数理统计题型分析:

在硕士研究生入学考试的数学统考试卷中,尽管概率统计和线性代数所占分数比例完全相同(数一均为20分;数三、数四都是25分)。但是概率论与数理统计部分得分一般均低于线性代数部分,更远远低于它在数学试卷中占的比例。 这一方面是因为大多数考生在复习和答卷时,把概率论与数理统计放在最后,常因时间紧迫,思虑不周而造成准备不充分,进而导致答卷失误。还有些数一的考生根据几年以前的试题分析,认为数一的概率论与数理统计的考题比数三和数四的容易,但是他们忽略了近两、三年来,这一情况已经发生了改变,比如今年概率论与数理统计的两个大题,数一的得分率远远低于数三和数四的得分率;再一方面就是概率论与数理统计自身的特点,使一部分考生在复习时难得要领,与微积分和线性代数相比,概率论与数理统计所研究的不是确定性现象,而是随机现象。因此,在学习方法上,它不但要求学生善于运用形式逻辑,而且必须掌握较强的直观分析技巧,这也就使得考生在复习和解题时感到困难。从近几年的硕士研究生入学数学考试阅卷结果也可以看出,这部分试题得分率普遍较低,出于对这类题目的畏惧,有些考生甚至完全放弃这部分试题。

与“微积分”和“线性代数”不同的是,在概率论与数理统计中对基本概念的深入理解所占的比例相当大,而其中解题的方法并不多,涉及到的技巧是很少的(甚至可以说没有技巧),但对考生分析问题的能力要求高一些,概率论与数理统计中的一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。

复习指导与解题技巧:

要想考研不是说从今年三月份开始就可以了,我认为从你考上大学那天开始,你就应该开始了,好好听课,别等到现在都忘得差不多了.所以说呢,第一阶段是没有起点的,那么这一段作为概率统计怎么复习?不能拿着过去学过的课本来看一看,做一做就不管了.为什么?第一,你所学过的东西不一定考,考的很多东西都没有学过,考研要的是新的方法,我们讲的基本概念,基本公式,基本方法要掌握,但你没有学过的方法也应该掌握。

在考试的时候很多学生都有看不懂题目的困惑,也比较着急。其实,看不懂题目一方面是因为做的题目比较少,另一个很重要的方面是对基本概念、基本性质理解的不够深刻,没有理解到这些概念的精髓和用途。海文信息中心建议学子一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念,可以结合一些实际问题理解概念和公式,反过来,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念,要把它准确的理解,概念要理解准确,通过例子理解概念,通过实际物体理解概念。只要公式理解的准确到位,并且多做些相关题目,考卷中碰到类似题目时就一定能够轻易读懂和正确解答。

概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的.解决中。

概率论与数理统计的考分分布不仅均值偏低,而且“方差”也大。根据多年的考试成绩分析,中等及中上等考生的微积分和线性代数的成绩相差并不是很大,他们之间在数学成绩上的差距主要来源于概率论与数理统计部分,一些竞争在不稳定边缘上的考生甚至因此而失去被录取的机会。

根据上述分析,海文认为对多数考生来说,概率论与数理统计部分是考生在数学统考中的一个弱项,是关系考生在选拔性考试中竞争力强弱的关键一环,对中等水平的考生来说,尤为如此。我们认为考生在数学科目的复习安排上,要先从最薄弱的一环开始,也就是说,在整个数学课程复习之初,要按照最新考研大纲规定的内容,先将概率论与数理统计再学习一遍,要一节一节地复习,一个概念一个概念地领会,一个题一个题地做,以达到正确理解和掌握基本概念、基本理论和基本方法。要特别指出的是在这一阶段复习时,不要轻视对教科书中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。这一阶段一般最迟应在今年暑假开始之前完成。尽管这一阶段仅仅是概率论与数理统计乃至数学全面复习的先导,但它是为开始全面复习打基础的阶段。在此过程中,不要过多地去追求难题、技巧,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就要不遗漏地弄会、搞透。这个阶段虽然涉及综合性提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,更何况,很多综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的最基本概念、理论和方法。

篇2:考研数学概率论与数理统计备考指导

考研数学概率论与数理统计备考指导

一、几何型概率及概率数理统计的复习

几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,数学三虽然明确写在大纲里,还没有考。几何概率是一个考点,但不是一个考察的重点。它考的可能性很小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的'度量或者整个样本空间度量的比。这个度量的话指的是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。

几何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做。

二、数理统计考试重点及参数估计比重

参数估计这部分它占数理统计的一多半内容,参数估计这块应该是最重要的。统计里面第一章就是关于样本还有统计量分布这部分,这部分就是求统计量的数字特征,统计量是随机变量。统计里面有什么题型,一个参数估计,一个求统计量数字特征或者求统计量的分布,统计量是随机变量,任何随机变量都有分布。自然会有这样的题型。求统计量的数字特征,求统计量的分布,然后参数估计,然后估计的标准。统计这个内容对大家来说应该是比较好掌握的,题型比较少,你比较好把这个题做好。

篇3:考研数学概率论与数理统计

2013考研数学概率论与数理统计

随机事件和概率考查的主要内容有:

(1)事件之间的关系与运算,以及利用它们进行概率计算;

(2)概率的定义及性质,利用概率的性质计算一些事件的概率;

(3)古典概型与几何概型;

(4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

(5)事件独立性的概念,利用独立性计算事件的概率;

(6)独立重复试验,伯努利概型及有关事件概率的计算。

要求:考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。

随机变量及概率分布考查的主要内容有:

(1)利用分布函数、概率分布或概率密度的定义和性质进行计算;

(2)掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;

(3)会求随机变量的函数的分布。

(4)求两个随机变量的简单函数的分布,特别是两个独立随机变量的和的分布。要求:考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。

随机变量的数字特征考查的主要内容有:

(1)数学期望、方差的定义、性质和计算;

(2)常用随机变量的数学期望和方差;

(3)计算一些随机变量函数的数学期望和方差;

(4)协方差、相关系数和矩的定义、性质和计算;

要求:考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。

大数定律和中心限定理考查的主要内容有:

(1)切比雪夫不等式;

(2)大数定律;

(3)中心极限定理。

要求:考生会用切比雪夫不等式证明有关不等式,会利用中心极限理进行有关事件概率的近似计算。

数理统计的基本概念考查的主要内容有:

(1)样本均值、样本方差和样本矩的概念、性质及计算;

(2)χ2分布、t分布和F分布的定义、性质及分位数;

(3)推导某些统计量的(特别是正态总体的某些统计量)的分布及计算有关的概率。

要求:考生熟练掌握样本均值、样本方差的性质和计算,会根据χ2分布、t分布和F分布的定义和性质推导有关正态总体某些统计的计量的分布。

参数估计考查的主要内容有:

(1)求参数的矩估计、极大似然估计;

(2)判断估计量的'无偏性、有效性、一致性;

(3)求正态总体参数的置信区间。

要求:考生熟练地求得参数的矩估计、极大似然估计并判断无偏性,会求正态总体参数的置信区间。

假设检验考查的显著的主要内容有:

(1)正态总体参数的显著性检验;

(2)总体分布假设的χ2检验。

要求:考生会进行正态总体参数的显著性检验和总体分布假设的χ2检验。

常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:

(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。

这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。

在解答这部分考题时,考生易犯的错误有:

(1) 概念不清,弄不清事件之间的关系和事件的结构;

(2) 对试验分析错误,概率模型搞错;

(3) 计算概率的公式运用不当;

(4) 不能熟练地运用独立性去证明和计算;

(5) 不能熟练掌握和运用常用的概率分布及其数字特征;

(6) 不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。

综合历年考生的答题情况,得知概率论与数理统计试题的得分率在0.3左右,区分度一般在0.40以上。这表明试题既有一定的难度,又有较高的区分度。

篇4:考研数学复习概率论与数理统计

考研数学复习概率论与数理统计

概率与数理统计这门课程从试卷本身的难度的话,在三门课程中应该算最低的,但是从每年得分的角度来说,这门课程是三门课中得分率最低的。这主要是由两方面造成的:一方面是时间不充裕,概率解答题位于试卷的最后,学生即使会,也来不及解答;另一方面是概率本身学科的特点,导致很多学生觉得概率非常难。

概率与数理统计学科的特点:

1、研究对象是随机现象。高数是研究确定的现象,而概率研究的是不确定的,是随机现象。对于不确定的,大家感觉比较头疼。

2、题型比较固定,解法比较单一,计算技巧要求低一些。比如概率的解答题基本上就围绕在随机变量函数的分布,随机变量的数字特征,参数的矩估计和最大似然估计这几块。

3、高数和概率相结合。 求随机变量的分布和数字特征运用到高数的理论与方法,这也是考研所要求考生所具备的解决问题的综合能力。很多考生因为积分计算不过关,导致概率失分。所以考生应该加强自己的积分计算能力。

在复习概率与数理统计的过程中,把握住这门课程的特点,并且能够结合历年考试试题规律,概率一定能取得好成绩。下面我们通过各章节来具体分析。

1、随机事件和概率

“随机事件”与“概率”是概率论中两个最基本的概念。“独立性”与“条件概率”是概率论中特有的概念。条件概率在不具有独立性的场合扮演了一个重要角色,它是一种概率。正确地理解并会应用这4个概念是学好概率论的基础。对于公式,家要熟练掌握并能准确运算。而大家比较头疼的古典概型与几何概型的计算问题,考纲只要求掌握一些简单的概率计算。所以在复习的过程中,不要陷入古典概型的计算中。

事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。事件关系及其运算是本章的重点和难点,概率计算是本章的重点。注意事件与概率之间的.关系。本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。相当一部分考生对本章中的古典概型感到困难。大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。应该将本章重点中的有关基本概念、基本理论和基本方法彻底理解和熟练掌握。

2、随机变量及其分布。

将随机事件给以数量标识,即用随机变量描述随机现象是近代概率论中最重要的方法。本章的重点是随机变量分布函数的概念和性质、分布律和概率密度,随机变量的函数的分布,一些常见的分布。

近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。随机变量函数的分布是重点,这种题型是比较固定的,方法也是固定的,没有难点。例如,求离散型随机变量函数的分布律分为三步曲: 定取值,求概率,和为1。

3、多维随机变量的分布。

主要考查的是二维随机变量,是概率论重点内容。二维随机变量的学习类比于一维随机变量。在涉及二维离散型随机变量的题中,常常要考生自己建立分布;二维连续型随机变量的相关计算要涉及二重积分,要熟练地应用二重积分和二次积分。

随机变量函数的分布,基本上每年都以解答题的形式进行考察,考生要非常重视。随机变量函数的分布分为四中情况,其中两个离散型随机变量函数的分布是比较简单的,两个连续型随机变量函数的分布是考试频率最高的,也是考生比较头疼的。因为它涉及到二次积分,如何正确的确定积分范围,这是正确解题的关键。由于部分同学高数基础知识不扎实,导致在做此类题目时失分较多。所以考生要格外重视,加强训练。一个离散型一个连续型随机变量函数的分布,和分别以选择题和解答题的形式进行命题,这是比较新的一类题目。最后一种情况是求最大值、最小函数的分布,它的考试频率也是比较高的。对于随机变量函数的分布,掌握每类题目的做题方法,多加练习,拿到满分是可以的。

另外,二维连续型随机变量的边缘分布、条件分布也是考试的重点和难点。深刻理解条件分布的定义,同时正确确定积分范围,这是和高数的积分计算相联系的。

4、随机变量的数字特征。

它是描述随机变量分布特征的数字,他们能够集中地刻画出随机变量取值规律的特点。这是概率的重点,近10年至少考了13次有关数字特征的问题,特别是随机变量函数的期望。要灵活应用数字特征相应的计算公式,同时结合高数积分的性质,这会给计算带来很大的方便。

除了求一些给定的随机变量的数学期望外,很多数学期望或方差的计算都与常用分布有关。应该牢记常用分布的参数的概率意义,特别是二项分布、指数分布、均匀分布和正态分布。

5、大数定律及中心极限定理。

它都是讨论随机变量序列的极限定理,他们是概率论中比较深入的理论结果。这部分内容不是重点,也不经常考,只要把这些定理、定律的条件与结论记住就可以了。

前5章是概率的内容,其中3、4是考试的重点,考生务必熟练掌握。后面的章节是数理统计的内容。

6、样本及抽样分布

统计学的核心问题是由样本推断总体,要理解统计的一些基本概念。

掌握几个常用统计量,特别是正态总体的抽样分布。掌握三大分布的典型模式及其分位点。本章内容是数理统计的基础,也是重点之一,经常以选择题、填空题的形式出现。若涉及到统计量的数字特征,也可能以解答题的形式出现,例如的考题。

7、参数估计

矩估计和最大似然估计是考试的重点,经常以解答题的形式进行考查。对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。区间估计和假设检验只有数一的同学要求是历年考题中出现最少的一类内容。

以上这些概率与数理统计的复习方法希望对的考生们能够有所帮助,也希望同学们在平时多做些练习题提高自己的做题速度和效率。

篇5:考研数学概率论与数理统计解析

2013考研数学概率论与数理统计解析

考研结束了,相信很多考生松了一口气。今年的考研数学试题从整体上看,与去年差别不大,难度相比去年略有提升。专家现从概率论与数理统计这个科目出发,对今年的考试做一下几方面分析。

首先,出题的方向和题目的类型也都完全在预料之内,没有偏题怪题。只要考生有比较扎实的基础,复习全面,是很容易拿到高分的。细致地分析起来,今年的题目有这样几个特点:

一是依旧强调对概念的理解。如数学一和数学三的填空题,都是考查概念。数一的第七题,考查对概念的进一步理解。只要掌握好概念,客观题是很容易拿到分数的。

二是仍以计算为主。如在正确掌握概念的基础上,还是以计算为主。无论是数一数三的.解答题还是客观题,每道题都需要计算。所以计算还是我们考试的主体。

三是考查学生的分析能力。如数学一的第8题,就考查我们的分析能力。直接根据概念做是做不出来的,需要分析出他们的关系,从而解出最后结果。还有数三的第8题,需要先分析出X+Y=2的所有可能情况,然后才能得出正确结果。

概率论与数理统计和高等代数不同,高等代数中计算技巧多一些,而概率论与数理统计概念和公式比较多,对计算技巧的要求低一些,但对考生分析问题的能力要求高一些,概率论与数理统计中的一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。

要达到考试的要求只要公式理解的准确到位,并且多做些相关题目,考卷中碰到类似题目时就一定能够轻易读懂和正确解答。概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二项分布,要结合他的实际背景,伯努利试验中成功的次数的概率。这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。

只有掌握了最本质的概念,在此基础上做一定量的题去巩固所学知识。这样才能对概念的理解更加到位,从而做题更加轻松快捷准确。

篇6:考研数学概率论与数理统计怎么复习

考研数学概率论与数理统计怎么复习

从考研数学大纲颁布来看,不管数一还是数三,概率方面没有做一点改变,所以我们目前就根据近几年考研真题谈一下目前对概率与数理统计的复习:

尽管概率统计和线性代数所占分数比例完全相同。但是概率论与数理统计部分得分一般均低于线性代数部分,因为大多数考生在复习和答卷时,把概率论与数理统计放在最后,常因时间紧迫,思虑不周而造成准备不充分,进而导致答卷失误。概率论与数理统计部分是大多数考生在数学统考中的一个弱项,是关系考生在选拔性考试中竞争力强弱的关键一环,对中等水平的考生来说,尤为如此。我认为处于现阶段的考生在数学科目的复习安排上,要先从最薄弱的一环开始,也就是说,在目前整个数学课程复习之初,要按照考研大纲规定的内容,先将概率论与数理统计后面,要一节一节地复习,一个概念一个概念地领会,一个题一个题地做,以达到正确理解和掌握基本概念、基本理论和基本方法。要特别指出的是在这一阶段复习时,不要轻视对教科书中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。这一阶段一般最迟应在国庆节之前完成。尽管这一阶段仅仅是概率论与数理统计乃至数学全面复习的先导,但它是为开始全面冲刺复习打基础的阶段。在此过程中,不要过多地去追求难题、技巧,要脚踏实地、全面仔细地复习,从10年的真题告诉考生,凡是考纲上有的内容,就要不遗漏,出现掌握和会用的考点要弄会、搞透。这个阶段虽然涉及综合性提高性题型不多,但基础打得好将为下阶段全面冲刺复习创造一个有利前提,更何况,很多综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的最基本概念、理论和方法。

下面我总结一下常考题型:

常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:

(1)确定事件间的关系,进行事件的运算;

(2)利用事件的关系进行概率计算;

(3)利用概率的性质证明概率等式或计算概率;

(4)有关古典概型、几何概型的概率计算;

(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

(6)有关事件独立性的证明和计算概率;

(7)有关独重复试验及伯努利概率型的计算;

(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;

(9)由给定的试验求随机变量的分布;

(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;

(11)求随机变量函数的分布(12)确定二维随机变量的分布;

(13)利用二维均匀分布和正态分布计算概率;

(14)求二维随机变量的边缘分布、条件分布;

(15)判断随机变量的独立性和计算概率;

(16)求两个独立随机变量函数的`分布;

(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;

(18)求随机变量函数的数学期望;

(19)求两个随机变量的协方差、相关系数并判断相关性;

(20)求随机变量的矩和协方差矩阵;

(21)利用切比雪夫不等式推证概率不等式;

(22)利用中心极限定理进行概率的近似计算;

(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;

(24)推证某些统计量(特别是正态总体统计量)的分布;

(25)计算统计量的概率;

(26)求总体分布中未知参数的矩估计量和极大似然估计量;

(27)判断估计量的无偏性、有效性和一致性;

(28)求单个或两个正态总体参数的置信区间;

(29)对单个或两个正态总体参数假设进行显著性检验;

(30)利用χ2检验法对总体分布假设进行检验。

考研数学 概率论数理统计十问

概率论与数理统计课件

《概率论与数理统计》教学改革探讨论文

雅思备考指南

考研数学:书目及备考经验

考研考试数学备考策略

考研数学复习备考五件事

考研经验:考研数学146高分备考心得

考研数学全年备考规划建议

考研数学备考 合理规划复习

刘西垣:考研数学概率论与数理统计备考指南(通用6篇)

欢迎下载DOC格式的刘西垣:考研数学概率论与数理统计备考指南,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档