路程问题六年级应用题练习及参考答案

时间:2023-07-21 03:35:02 作者:Julikinder 综合材料 收藏本文 下载本文

【导语】“Julikinder”通过精心收集,向本站投稿了11篇路程问题六年级应用题练习及参考答案,以下是小编整理后的路程问题六年级应用题练习及参考答案,欢迎阅读分享,希望对大家有帮助。

篇1:路程问题六年级应用题练习及参考答案

路程问题六年级应用题练习及参考答案

1.通讯员以每小时6千米的速度到某地去,返回时因绕另一条路而多走3千米,回程时他每小时行7千米,仍比去时多用10分钟,问往返各是多少千米?

2.两个集镇之间的公路除了上坡就是下坡,没有水平路段,客车上坡的速度保持为15千米,下坡的速度保持为每小时30千米,现知道客车在两地之间往返一次,需在路上行驶4个小时,求两地之间的距离。

答案

第一题

3千米需要的时间是3÷7=3/7小时,用3/7-10/60=11/42小时的时间相当于去的时候的1-6/7=1/7,所以,去时的时间是11/42÷1/7=11/6小时。所以去的时候的路程是11/6×6=11千米,返回就是11+3=14千米。

第二题

去时的下坡是返回的上坡,去时的上坡是返回上的下坡。所以所有的上坡路和下坡路相等。上坡和下坡的`速度比是15:30=1:2。下坡用去的时间是4÷(1+2)=4/3小时,所以上坡路长4/3×30=40千米。故两地之间的距离是40千米。

设:两地之间的距离为x;

在两地之间往返一次,上坡的路程等于下坡的路程等于x。

x/15+x/30=4

x(1/15+1/30)=4

x/10=4

x=40(千米)

两地之间的距离为40千米

篇2:路程问题应用题及答案

路程问题应用题及答案

1.A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时。丙车与甲、乙两车距离相等时是几点几分?

解析:

丙车与甲、乙两车距离相等时必在它们正中间,而这点正是甲、乙两车平均走过的路程。

可以考虑用平均速度来算。(60+54)÷2=57甲、乙两车平均速度57千米/小时

(207-57×0.5)÷(57+48)=1.78:30后1.7小时(102分钟)是10:12

丙车与甲乙两车距离相等,说明丙车行到了两车的中点上。我们假设丁,也和甲乙两人同时从A地出发到B地,以(60+54)÷2=57千米/小时的速度行驶,丁车就一直在甲乙两车的中点上。丙车和丁车相遇时,丙车就与甲乙两车距离相等了。丁车先行了57×30/60=28.5千米,

又经过了(207-28.5)÷(57+48)=1.7小时和丙车相遇,即丙车于10:12,与甲乙两车距离相等。

2.甲、乙、丙三人,甲每分钟走20米,乙每分钟走22.5米,丙每分钟走25米.甲、乙从东镇,丙从西镇,同时相向出发,丙遇乙后10分钟再遇甲,求两镇相距多少米?

答案与解析:

由题干可知,丙先与乙相遇,再过10分钟与甲相遇,所以丙与乙相遇时,丙与甲的距离为甲、丙在10分钟内相向而行的路程之和:(20+25)*10=450(米),而这段路程正是从出发到乙、丙相遇这段时间里,甲、乙所行的路程之差.所以从出发到乙、丙相遇所用的`时间为:450÷(22.5-20)=180(分).所以,东、西两镇的距离为:(25+22.5)*180=8550(米).

3.甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时。在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?

〔分析〕甲的速度为乙的2倍,因此,乙走了4小时的路,甲只要2小时就可以了,这样就可以求出甲的速度。

解:甲的速度为:100÷(4-1+4÷2)

=100÷5=20(千米/小时)

乙的速度为:20÷2=10(千米/小时)

答:甲的速度为20千米/小时,乙的速度为10千米/小时。

篇3:六年级上册数学应用题练习和答案

六年级数学应用题一

1、救生员和游客一共有56人,每个橡皮艇上有上名救生员和7名游客。一共有多少名游客?多少名救生员?

2、王伯伯家里的菜地一共有800平方米,准备用 种西红柿。剩下的按2︰1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?

3、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?

4、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3︰4︰5。这个三角形三条边各是多少厘米?

5、一个三角形的三个内角度数的比是1︰2︰3,这个三角形中最大的角是多少度?这个三角形是什么三角形?

6、修路队要修一条长432米的公路,已经修好了全长的 ,剩余的任务按5︰4分给甲、乙两个修路队。两个修路队各要修多少米?

7、在“学雷锋”活动中,五年级和六年级同学平均做好事80件,其中五、六年级做好事件数的比是3︰5。五、六年级同学各做好事多少件?

8、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4︰5,客车和货车每小时各行多少千米?

9、用一根长282.6厘米的铁条焊接成一个圆形铁环,它的半径是多少厘米?

10、一个底面是圆形的锅炉,底面圆的周长是1.57米.底面积是多少平方米?(得数保留两位小数)

11、小东有一辆自行车,车轮的直径大约是66厘米,如果平均每分钟转100周,从家到学校的路程是4144.8米,大约需要多少分钟?

12、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?

13、一个圆形牛栏的半径是15厘米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计。)如果每隔2米装一根木桩,大约要装多少根木桩?

14、公园草地上一个自动旋转喷灌装置的射程是10米,它能喷灌多大的范围?

15、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

16、街心花园修建一个圆形花坛,周长是31.4米,在花坛的周围修建一条宽是1米的环形小路。这条小路的面积多少?

17、小明购买了5角和8角的邮票共16张,共用去10.7元。小明买这两种邮票各多少张?

18、,中国科学院、中国工程院共有院士1263人,其中男院士有1185人。女院士占院士人数的百分之几?

19、甲、乙两队开挖一条水渠。甲队单独挖要8天完成,乙队单独挖要12天完成。现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。乙队挖了多少天?

20、有一个两位数,它的各位数字的和是7,若从这个数减去27,所得的数恰好是这个数各位数字的次序倒转。求这个数。

六年级数学应用题二

1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?

2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?

3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?

4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?

5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?

6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?

7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?

8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?

9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?

10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵?

11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?

12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?

13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?

14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3 ,两周共修了多少千米?

15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是 1/2全长的 ?

16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8。两天共看了多少页?

17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?

18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?

19、小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元?

20、电视机厂今年计划比去年增产2/5。去年生产电视机1/5万台,今年计划增产多少万台?

六年级数学应用题三

1、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?

2、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?

3、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的3/4。运来面粉多少吨?

4、甲筐苹果9/10千克,把甲的1/9给乙筐,甲乙相等,求乙筐苹果多少千克?

5、一桶油倒出2/3,刚好倒出36千克,这桶油原来有多少千克?

6、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?

7、服装厂第一车间有工人150人,第二车间的工人数是第一车间的2/5,两个车间的人数正好是全厂工人总数的5/6,全厂有工人多少人?

8、一批水果120吨,其中梨占总数的2/5,又是苹果的4/5,苹果有多少千克?

9、甲乙两数的和是120,把甲的1/3给乙,甲、乙的比是2:3,求原来的甲是多少?

10、小红采集标本24件,送给小芳4件后,小红恰好是小芳的4/5,小芳原有多少件?

11、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。求大桶里原来装有多少千克油?

12、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?

13、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?

14、王华以每小时4千米的速度从家去学校,1/6小时行了全程的2/3,王华家离学校有多少千米?

15、3台织布机3/2小时织布72米,平均每台织布机每小时织布多少米?

16、一辆汽车行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?

17、有一块三角形的铁皮,面积是3/5平方米。它的底是3/2米,高是多少米?

18、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?

19、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?

20、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?

六年级数学应用题四

1、甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的3/5,A、B两地相距多少米?

2、一所小学扩建校舍,原计划投资28万元,实际投资比原计划节省了 1/7,实际投资多少万元?

3、玩具厂计划生产游戏机2000台,实际超额完成 1/10,实际生产多少台?

4、一根电线长40米,先用去 3/8,后又用去 3/8米,这根电线还剩多少米?

5、某种书先提价 1/6,又降价 1/6,这种书的原价高还是现价高?

6、一本书共100页,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少页?

7、光明小学十月份比九月份节约用水 1/9,十月份用水72吨,九月份用水多少吨?

8、修一条公路,修了全长的 3/7后,离这条公路的中点还有1.7米,求这条公路的长?

9、光明小学有60台电脑,比五爱小学多 1/5,五爱小学有多少台电脑?

10、光明小学有60台电脑,比五爱小学少1/5,五爱小学有多少台电脑?

11、一袋大米两周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,这袋大米共重多少千克?

12、小明读一本书,已读的页数是未读的页数的3/2,他再读30页,这时已读的页数是未读的7/3,这本书共多少页?

13、饲养小组养的小白兔是小灰兔的3/5,小灰兔比小白兔多24只,小白兔和小灰兔共多少只?

14、某渔船一天上午捕鱼1200千克,比下午少1/7,全天共捕鱼多少千克?

15、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?

16、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?

17、牧场养牛480头,比去年养的多1/5,比去年多多少头?

18、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?

19、打扫多功能教师,甲组同学1/3小时可以打扫完,乙组同学1/4小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?

20、一项工程,甲独做18天完成,乙独做15天完成,甲、乙两人合做,但甲中途有事请假4天,那么甲完成任务时实际做了多少天?

六年级数学应用题五

1、有一批零件,甲、乙两人同时加工,12天完成,乙、丙两人同时加工,9天完成,甲、丙两人同时加工,18天完成,三人同时加工,几天可以完成?

2、小明身上的钱可以买12枝铅笔或4块橡皮,他先买了3枝铅笔,剩下的钱可以买几块橡皮?

3、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务,这批零件共有多少个?

4、电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几?

5、一种电脑原价6800元,现降价1700元,降价百分之几?

6、一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几?

7、一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几?

8、从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几?

9、六(1)班有男生32人,女生28人。六(2)班人数是六(1)班的95%,六(2)班有多少人?

10、一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几?

11、买来足球55个,买来的篮球比足球少20%,买来篮球多少个?

12、一堆沙子,第一次运走40%。第二次运走30%,还剩下48吨。这堆沙子有多少吨?

13、一个面粉厂,用20吨小麦能磨出13000千克的面粉。求小麦的出粉率?

14、在100克水中,加入25克盐。这盐水的含盐率是多少?

15、某种菜籽出油率为33%,要想榨出100千克菜籽油。至少要多少千克菜籽。

16、李师傅加工200个零件,经检验4个是废品,合格率是多少?照这样计算,加工700个零件,不合格的有多少个。

17、小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元?可取回本金和利息共有多少元?

18、王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税。王老师每月税后工资是多少元?

19、一种篮球原价180元,现在按原价的七五折出售。这种篮球现价每只多少元?每只便宜了多少元?

20、李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成?

六年级数学应用题六

1、明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元?

2、小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克?

3、某商品现价18元,亏了25%,亏了多少元?如果想赢利25%,应按多少元出售该商品?

4、含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水?

5、某件皮衣原价1800元,现降价270元该商品是打了几折出售的?

6、保险公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人?

7、某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米?

8、小军以每套72元的价格买了一套打折服装,比原价便宜8元。这套服装打了几折出售的?

9、1520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水?

10、一个圆形鱼塘,周长314米,这个鱼塘的面积是多少平方米?

11、一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?

12、一辆自行车车轮外直径70厘米,如果平均每分钟车轮转100周,从望直港镇到宝应县城大约需要25分钟。望直港镇到宝应县城大约多少千米?

13、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?

14、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加,这时参加的同学是未参加的2/3,六年级一共有多少人?

15、学校美术小组人数的5/6正好是科技小组人数的5/8。已知美术小组有24人。这学校科技小组有多少人?

16、一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨?

17、学校用40米长的铁丝(接头处不计)围成一块长方形菜地,已知长方形宽是长的1/4,学校的这块菜地面积是多少?

18、汽车的速度是火车速度的4/7。两车同时从两地相向而行,在离中点15千米处相遇,这时火车行了多少千米?

答案解析

(一)应用题

1、一共有7名救生员,49名游客

2、西红柿320平方米,黄瓜320平方米,茄子160平方米

3、这个长方形的长是10米,宽4米

4、这三条边的长度是21、28、35厘米

5、这个三角形中最大的角是90度,这是一个直角三角形

6、甲队要修180米,乙队要修144米

7、五年级同学做60件,六年级同学做100件

8、货车每小时行40千米,客车每小时行50千米

9、它的半径是45厘米

10、底面积是0.2平方米

11、大约需要20分钟

12、分钟尖端所走的路程是62.8厘米

13、需要282.6米长的铁丝;大约要装47根木桩

14、能喷灌314平方米范围

15、草坪面积是1884平方米

16、这条小路的面积34.54平方米

17、买了5角邮票7张、8角邮票9张

18、女院士占6%

19、乙队挖了3天

20、这个数是52(设这个数各位上的数字是x,则十位上的数字是7-x,则可列出方程式)

(二)应用题

1、一共用去9/20米

2、绵羊有43只

3、再看60页

4、再用去1/10千克

5、第二天吃去30千克

6、4次可运去1/2,已经运走了58吨

7、计划比九月份节约4吨

8、面积432平方米

9、大约含水4千克

10、女生植树125棵

11、三年级64人

12、两车相距175千米

13、一共植树288棵

14、两周共修了22/15千米

15、再修3/8千米

16、两天共看了36页

17、第三天从第26页开始看

18、运来黄沙3/8吨

19、小伟捐了14元

20、今年计划增产800万台

(三)应用题

1、再挖750米

2、六年级采集5/9千克

3、运来面粉是300吨

4、乙筐苹果有7/10千克

5、这桶油原来有54千克

6、甲队比乙队多修40米

7、全厂有工人252人

8、苹果有600000千克(60吨)

9、原来的甲是72

10、小芳原有21件

11、大桶里原来有17千克油

12、这个长方体的体积是1536立方厘米

13、小红给小明40张邮票

14、王华家离学校1千米

15、平均每台织布机每小时织布16米

16、可以走7.5千米

17、这个三角形铁片高4/5米

18、运来梨20筐,苹果30筐

19、这个直角三角形的面积是24平方厘米,它的斜边长10厘米

20、这个长方形的面积是147平方米

(四)应用题

1、甲乙两地相距1500米

2、实际投资24万元

3、实际生产2200台

4、这根电线还剩24.625米

5、这本书原价比现价高

6、第三天看了55页

7、九月份用水81吨

8、这条公路长23.8千米

9、五爱小学有50台电脑

10、五爱小学有75台电脑

11、这袋大米15千克

12、这本书共有300页

13、小白兔和小灰兔共有96只

14、全天捕鱼2600千克

15、这桶油有50千克

16、这条路长360米

17、比去年多80头

18、合打这份材料的1/2需要15/16小时

19、甲乙组合作需要1/7小时打扫完整个教室

20、甲完成任务时实际做了6天(总共用了10天,减去甲中途离开的4天)

(五)应用题

1、三人同时加工需要8天

2、还可以买3块橡皮(12支铅笔=4块橡皮,说明1块橡皮=3支铅笔)

3、这批零件共有144个

4、超额完成了20%

5、降价25%

6、甲速度是乙速度的75%

7、实际工作效率比计划提高了25%

8、乙堆煤的重量比甲堆煤少40%

9、六(2)班有57人

10、分两种情况回答(即销售利润率和成本利润率):

①如果是相对于价格的25%:则利润为100×25%=25,所以成本应该是100-25=75

卖120元时,利润为120-75=45,所以此时的销售利润率为45÷120=37.5%

②如果是相对于成本的25%:设成本为X,则(100-X)÷X=25%,解得X=80,所以成本为80,当售价为120时,利润为120-80=40,所以成本利润率为40/80=50%

11、篮球有44个

12、这堆沙子有160吨

13、小麦的出粉率是65%

14、这盐水的含盐率是20%

15、至少需要303千克菜籽

16、合格率98%;700个中不合格的有14个

17、可得税后利息96元;可取回本金和利息一共5096元

18、王老师每月税后工资1437.5元

19、这种篮球现价每只135元,每只便宜了45元

20、去年比前年的玉米增产了2成

(六)应用题

1、这个计算器原价80元

2、去年收稻谷2600千克

3、亏了6元(该商品成本价24元);如果想盈利25%,应按30元出售

4、加入6千克盐

5、该商品打85折出售

6、这个保险公司有男职工40人

7、这条公路全长2000米

8、这套服装是打9折出售的

9、需要蒸发掉760千克水

10、这个鱼塘面积7850平方米

11、至少需要薄膜314平方米,需要花157元

12、大约5.5千米

13、还要10天才能修完这条水渠

14、六年级一共有300人

15、科技小组有32人

16、这批化肥共有60吨

17、这块菜地面积是64平方米

18、这时火车行驶了70千米

篇4:六年级应用题答案

六年级应用题答案

应用题:工程问题

有一项工程,由三个工程队每天轮流做。原计划按甲、乙、丙次序轮做,恰好整天完工;如果按乙、丙、甲次序轮流做,比原计划多用0.5天;如果按丙、甲、乙次序轮流做,比原计划多用1/3天,已知甲单独做13天完工,且3个工程队的效率各不相同,那么这项工程由甲、乙、丙三个队合作要几天?

答案:

根据条件可以作如下分析:有两种情况分析。

第一种情况:

①甲乙丙;甲乙丙;……;甲乙丙;甲

②乙丙甲;乙丙甲;……;乙丙甲;乙丙(1/2)

③丙甲乙;丙甲乙;……;丙甲乙;丙甲(1/3)

三个工程队的工作效率的关系是:

甲=乙+丙×1/2=丙+甲×1/3

可以得到:丙=乙=甲×2/3,所以不符合条件。

第二种情况:

①甲乙丙;甲乙丙;……;甲乙丙;甲乙丙

②乙丙甲;乙丙甲;……;乙丙甲;乙丙甲(1/2)甲(1/2)

③丙甲乙;丙甲乙;……;丙甲乙;丙甲乙(1/3)乙(2/3)

可以得到:丙=甲×1/2,乙=甲×1/2÷2/3=甲×3/4

所以三个工程队合作的时间是13÷(1+1/2+3/4)=52/9天。

应用题:路程问题

1.通讯员以每小时6千米的速度到某地去,返回时因绕另一条路而多走3千米,回程时他每小时行7千米,仍比去时多用10分钟,问往返各是多少千米?

2.两个集镇之间的公路除了上坡就是下坡,没有水平路段,客车上坡的.速度保持为15千米,下坡的速度保持为每小时30千米,现知道客车在两地之间往返一次,需在路上行驶4个小时,求两地之间的距离。

答案

第一题

3千米需要的时间是3÷7=3/7小时,用3/7-10/60=11/42小时的时间相当于去的时候的1-6/7=1/7,所以,去时的时间是11/42÷1/7=11/6小时。所以去的时候的路程是11/6×6=11千米,返回就是11+3=14千米。

第二题

去时的下坡是返回的上坡,去时的上坡是返回上的下坡。所以所有的上坡路和下坡路相等。上坡和下坡的速度比是15:30=1:2。下坡用去的时间是4÷(1+2)=4/3小时,所以上坡路长4/3×30=40千米。故两地之间的距离是40千米。

设:两地之间的距离为x;

在两地之间往返一次,上坡的路程等于下坡的路程等于x。

x/15+x/30=4

x(1/15+1/30)=4

x/10=4

x=40(千米)

两地之间的距离为40千米

应用题:人数问题

李口和向阳两个学校的学生到烈士墓去,所去人数都是10的倍数,租14座的中巴一共要72辆,如果改租19座的中巴,李口比向阳多用车7辆,两校参加扫墓的学生各多少人?

解析:充分利用10的倍数。

两个学校共有人数比14×72=1008人少,比14×71=994人多,即共有1000人。

改租19座的中巴后,可以乘坐1000÷19=52辆……12人,即53辆车。

所以李口学校租车(53+7)÷2=30辆车,向阳学校租车30-7=23辆。

所以李口学校有学生30×19=570人,向阳学校有学生1000-570=430人。

验证一下:

如果李口少10人,还是30辆车,向阳学校有学生430+10=440人

440÷19=23辆……3人,需要24辆车,相差30-24=6辆,不符合要求。

两校参加扫墓的学生共有:14×72=1008(人)

因去的人数是10的倍数,车辆不能超员,所以学生总数1000人;

设:李口学生数为x,则向阳学生数为1000-x

李口租19座的中巴数=x/19

向阳租19座的中巴数=(1000-x)/19

x/19-(1000-x)/19=7

2x-1000=7×19

2x=1133

李口学生数为x=570(人)

向阳学生数为1000-x=430(人)

篇5:六年级应用题答案

有关六年级应用题答案

有关六年级应用题答案

填空

(1)一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。已知慢车每小时行45千米,甲、乙两站相距( )千米。

(2)两辆卡车为农场送化肥,第一辆车以每小时30千米的速度由县城开往农场,第二辆车晚开了2小时,结果两车同时到达。已知县城到农场的距离是180千米,第二辆车每小时行( )千米。

(3)一支队伍长450米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队伍的最前面,然后再返回队尾,一共用了( )分钟。

(4)一列火车长150米,每秒行19米。全车通过420米的大桥,需要( )分钟。

(5)船在河中航行时,顺水速度是每小时12千米,逆水速度是每小时6千米。船速每小时( )千米,水速每小时( )千米。

(6)有一根长2米的木料,如锯成每段长为4分米的短木料,需要24分钟;如果把它锯成每段长5分米的短木料,需要( )分钟。

应用解答

1.一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米?3.A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?

2.A、B是圆的直径的两端,小张在A点,小王在B点同时出发,相向行走,他们在距A点80米处的C点第一次相遇,接着又在距B点60米处的D点第二次相遇。求这个圆的周长。

3.一列火车通过一座 1000米的大桥要 65秒,如果用同样的速度通过一座 730米的隧道则要50秒。求这列火车前进的速度和火车的长度。

4.一只轮船在静水中的.速度是每小时21千米,船从甲城开出逆水航行了8小时,到达相距144千米的乙城。这只轮船从乙城返回甲城需多少小时?

5.相邻两根电线杆之间的距离是45米,从少年宫起到育英小学门口有36根电线杆,再往前585米是书店,求从少年宫到书店一共有多少根电线杆。

6.解放军某部出动80辆汽车参加工地劳动,在途中要经过一个长120米的隧道。如果每辆汽车的长为10米,相邻两辆汽车相隔20米,那么,车队以每分钟500米的速度通过隧道,需要多少分钟?

7.参加小学生运动会团体操的运动员排成一个正方形队列,如果要使这个正方形队列减少一行和一列,则要减少33人。参加团体操表演的运动员有多少人?10.甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走75米,甲出发4分钟后,乙才开始出发。乙带了一只狗和乙同时出发,狗以每分钟150米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止。这只狗共奔跑了多少路程?

(3)答案:

填空答案

(1)810千米(2)45千米/小时(3)9分钟(4)0.5分钟(5)船速9千米/小时,水3千米/小时(6)18分钟

应用解答答案

1.20×2÷(65-60)=8(小时)65×8=520(千米)60×8=480(千米)

2.38×3÷(8+11)=6(小时)11×6-38=28(千米)

3.(80×2-60+80)×2=360(米)

4.(1000-730)÷(65-50)=18(米/秒)(车速)18×65-1000=170(米)(车长)

5.144÷(21-144÷8+21)=6(小时)

6.585÷45+36=49(根)

7.[120+10×80+20×(80-1)]÷500=5(分钟)

8.(33+1)÷2=17(人)17×17=289(人)

9.(1100-65×4)÷(65+75)=6(分钟) 150×6=900(米)

篇6:六年级应用题及答案

六年级应用题及答案

1.苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?

2.某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍。问共有多少学生参加数学竞赛。

3.学校买来一批英文打字机分给各班学习。如果其中两个班每班分到4台,其余班级每班分2台,则多4台;如果有一个班分6台,其余班级每班分4台,则不足12台。这个学校买来的英文打字机共有多少台?

4.蜘蛛有 8只脚,蜻蜓有 6只脚和两对翅膀,蝉有 6只脚和一对翅膀,现有这三种小虫共18只,共有脚118只,翅膀20对。求每种小虫的只数。

5.小象说:“妈妈,我到你现在这么大时,你就是 31岁了。”大象说:“我像你这么大年龄时,你只有1岁。”大、小象现在各几岁?6.有三个数,每次选取其中两个数,算出这两个数的平均值,再加上余下的第三个数,这样算了三次,分别得到35、27和25。求原来这三个数是多少。

7.有甲、乙、丙三种练习本,小芳各买2本,共付4.8元;小红买了2本甲种本、3本乙种本、4本丙种本、共付7.6元;小青买了2本甲种本、4本乙种本、5本丙种本,共付9.4元。甲、乙、丙三种练习本每本售价各是多少元?

8.有三堆弹子,共46颗。第一次从第一堆里拿出与第二堆颗数相同的弹子并入第二堆里;第二次再从第二堆里拿出与第三堆颗数相同的弹子并入第三堆里;第三次再从第三堆里拿出与第一堆剩下的颗数相同的弹子并入第一堆里。经过这样的变动后,三堆弹子的颗数恰好完全相同。原来每堆弹子各有多少颗?

9.李叔叔要在下午3点上班,他估计快到上班时间时到屋里去看钟,可是钟早在12点10分就停了,他开足发条却忘了拨指针便匆匆离家,到工厂一看钟,离上班时间还有10分钟。夜里11点下班,李叔叔马上离厂回到家里,一看钟才9点整。假定李叔叔上班和下班在路上用的时间相同,那么他家的钟停了多少时间?(上发条所用的时间忽略不计)

10.某次数学考试五道题,全班52人参加,共做对181道,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的.人数一样多,那么做对4道的人数有多少人?

11.A、B、C、D、E是从小到大排列的五个不同整数,用其中每两个数相加,可以得到十个和,这十个和中不相同的有八个:分别是17、22、25、28、31、33、36与39。求这五个整数的平均数。

12.商店购进甲、乙、丙三种不同的糖果,所付的钱数相等。已知甲、乙、丙三种糖果每千克的购进价格分别为8.8元、12元和13.2元,如果把这三种糖果混合在一起成为什锦糖,那么这种什锦糖每千克的成本是多少元?

13.爸爸把钓来的一条大鲤鱼分成前、中、后三段,中段的重量恰好比前、后两段重量的和少1千克,后段重量等于中段重量的一半与前段重量的和。只知道前段重2千克,你能算出这条鲤鱼的重量吗?

14.A、B、C、D、E五人在一次满分为100分的考试中,得分都是大于91的整数。如果A、B、C的平均分为95分,B、C、D的平均分为94分;A是第一名;E是第三名得96分;那么D的得分是多少?

小学奥数应用题练习四答案

1.解:设吃了x天 3x=2x+7x=7 2×7+7=21(个)

2.解:设第一次不及格x人,则及格(3x+4)人 3x+4+5=6(x-5)

x=13 13×3+4+13=56(人)

3.(4-2)×2+4=8(台)(假设每个班都分2台,则多8台) 12-

(6-4)=10(台)(假设每个班都分4台,则少10台)(8+10)÷(4-2)=9(班) 4×2+2×(9-2)+4=26(台)

4.解:设蜘蛛x只,则蜻蜓和蝉共(18-x)只, 8x+6(18-x)=118 x=5(蜘) 18-5=13(只)(蜻+蝉)设蜻蜓y只,则蝉(13-y)只2y+(13-y)=20 y=7(蜻)13-7=6(只)(蝉)

5.(31-1)÷3=10(岁)1+10=11(岁)(小)11+10=21(岁)(大)

6.(35+27+25)×2÷4=43.5(35×2-43.5)÷2=13.25(27×2-43.5)÷2=5.25(25×2-43.5)÷2=3.25

7.9.4-7.6=1.8(元)(1乙、1丙)

7.6-4.8=2.8(元)(1乙、2丙)

2.8-1.8=1(元)(1丙)

1.8元-1=0.8(元)(1乙)

4.8÷2-1-0.8=0.6(元)(1甲)

8.从后向前列表计算:

9.四人四年应增加:4×4=16(岁),但73-58=15(岁),说明弟弟3岁。3+2=5(岁)(姐)(73-3-5+3)÷2=34(岁)(父)34-3=31(岁)(母)

10.(160+120)÷2=140(分钟)160-140=20(分钟)停了2小时20分

11.52-7-6=39(人) 181-1×7-5×6=144(道)(2+3)÷2=2.5(道)(144-2.5×39)÷(4-2.5)=31(人)

12.A+B=17,A+C=22,C+E=36,D+E=39 A+E+2C=22+36=58;A+E=58-2C A+E为偶数 A+E=28 58-2C=28 C=15(17+39+15)÷5=14.2

13.提示:先设相同费用,应是88、120、132的公倍数设相同费用为132元;132×3÷(132÷8.8+132÷12+132÷13.2)=11(元)

14.[(1+1×2)×2-1]÷(2×1-1)=5(kg)2+5-1=6(kg)2+6+5=13(kg)

15.如果B是第二名(或并列第一名),由于E是第三名,得了96分,所以A、B得分都不少于97分。因为A、B、C的平均分是95分,那么C最多得91分,与题目条件矛盾,所以B不是第二名,同样C也不是第二名。由此可见第二名只能是D。B、C、D的平均分比A、B、C平均分少1分,所以A比D多3分,A最多100分,如A100分,则D97分,(如A99分,D96分,又与题目条件矛盾)

篇7:六年级应用题以及答案

1.通讯员以每小时6千米的速度到某地去,返回时因绕另一条路而多走3千米,回程时他每小时行7千米,仍比去时多用10分钟,问往返各是多少千米?

2.两个集镇之间的公路除了上坡就是下坡,没有水平路段,客车上坡的速度保持为15千米,下坡的速度保持为每小时30千米,现知道客车在两地之间往返一次,需在路上行驶4个小时,求两地之间的距离。

答案

第一题

3千米需要的'时间是3÷7=3/7小时,用3/7-10/60=11/42小时的时间相当于去的时候的1-6/7=1/7,所以,去时的时间是11/42÷1/7=11/6小时。所以去的时候的路程是11/6×6=11千米,返回就是11+3=14千米。

第二题

去时的下坡是返回的上坡,去时的上坡是返回上的下坡。所以所有的上坡路和下坡路相等。上坡和下坡的速度比是15:30=1:2。下坡用去的时间是4÷(1+2)=4/3小时,所以上坡路长4/3×30=40千米。故两地之间的距离是40千米。

设:两地之间的距离为x;

在两地之间往返一次,上坡的路程等于下坡的路程等于x。

x/15+x/30=4

x(1/15+1/30)=4

x/10=4

x=40(千米)

两地之间的距离为40千米

篇8:六年级应用题以及答案

李口和向阳两个学校的学生到烈士墓去,所去人数都是10的倍数,租14座的中巴一共要72辆,如果改租19座的中巴,李口比向阳多用车7辆,两校参加扫墓的学生各多少人?

解析:充分利用10的倍数。

两个学校共有人数比14×72=1008人少,比14×71=994人多,即共有1000人。

改租19座的中巴后,可以乘坐1000÷19=52辆……12人,即53辆车。

所以李口学校租车(53+7)÷2=30辆车,向阳学校租车30-7=23辆。

所以李口学校有学生30×19=570人,向阳学校有学生1000-570=430人。

验证一下:

如果李口少10人,还是30辆车,向阳学校有学生430+10=440人

440÷19=23辆……3人,需要24辆车,相差30-24=6辆,不符合要求。

两校参加扫墓的学生共有:14×72=1008(人)

因去的人数是10的倍数,车辆不能超员,所以学生总数1000人;

设:李口学生数为x,则向阳学生数为1000-x

李口租19座的中巴数=x/19

向阳租19座的中巴数=(1000-x)/19

x/19-(1000-x)/19=7

2x-1000=7×19

2x=1133

李口学生数为x=570(人)

向阳学生数为1000-x=430(人)

篇9:六年级应用题以及答案

有一项工程,由三个工程队每天轮流做。原计划按甲、乙、丙次序轮做,恰好整天完工;如果按乙、丙、甲次序轮流做,比原计划多用0.5天;如果按丙、甲、乙次序轮流做,比原计划多用1/3天,已知甲单独做13天完工,且3个工程队的效率各不相同,那么这项工程由甲、乙、丙三个队合作要几天?

答案:

根据条件可以作如下分析:有两种情况分析。

第一种情况:

①甲乙丙;甲乙丙;……;甲乙丙;甲

②乙丙甲;乙丙甲;……;乙丙甲;乙丙(1/2)

③丙甲乙;丙甲乙;……;丙甲乙;丙甲(1/3)

三个工程队的工作效率的关系是:

甲=乙+丙×1/2=丙+甲×1/3

可以得到:丙=乙=甲×2/3,所以不符合条件。

第二种情况:

①甲乙丙;甲乙丙;……;甲乙丙;甲乙丙

②乙丙甲;乙丙甲;……;乙丙甲;乙丙甲(1/2)甲(1/2)

③丙甲乙;丙甲乙;……;丙甲乙;丙甲乙(1/3)乙(2/3)

可以得到:丙=甲×1/2,乙=甲×1/2÷2/3=甲×3/4

所以三个工程队合作的时间是13÷(1+1/2+3/4)=52/9天。

篇10:和差问题应用题及答案

和差问题应用题及答案

例1 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克呢?

分析这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克)。

解法1:①第二筐重多少千克?

(150-8)÷2=71(千克)

②第一筐重多少千克?

71+8=79(千克)

或150-71=79(千克)

解法2:①第一筐重多少千克?

(150+8)÷2=79(千克)

②第二筐重多少千克?

79-8=71(千克)

或150-79=71(千克)

答:第一筐重79千克,第二筐重71千克。

练习:三年级图书比四年级图书多50本,并且三年级图书数是四年级的3倍,三年级和四年级各有图书多少本?

例2 今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?

分析题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁)。不论过多少年,两人的年龄差是保持不变的。所以,当两人年龄和为58岁时他们年龄差仍是28岁。根据和差问题的解题思路就能解此题。

解:①爸爸的年龄:

[58+(35-7)]÷2

=[58+28]÷2

=86÷2

=43(岁)

②小强的年龄:

58-43=15(岁)

答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。

练习:果园里栽的梨树比苹果树多240棵,梨树的棵数比苹果树的5倍多20棵。果园里有苹果树和梨树各多少棵?

例3 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?

分析解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我们。可是,条件中给出了两科的平均成绩是94分,这就可以求得这两科的总成绩。

解:①语文和数学成绩之和是多少分?

94×2=188(分)

②数学得多少分?

(188+8)÷2=196÷2=98(分)

③语文得多少分?

(188-8)÷2=180÷2=90(分)

或98-8=90(分)

答:小明期末考试语文得90分,数学得98分。

练习:两堆石子相差16粒,如果混在一起,那么可以重新分成数量都是28粒的三堆。求原来两堆石子各有多少粒?

例4 甲乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人?

分析这样想:甲、乙两校学生人数的和是864人,根据由甲校调入乙校32人,这样甲校比乙校还多48人可以知道,甲校比乙校多32×2+48=112(人)。112是两校人数差。

解:①乙校原有的学生:

(864-32×2-48)÷2=376(人)

②甲校原有学生:

864-376=488(人)

答:甲校原有学生488人,乙校原有学生376人。

小结:从以上4个例题可以看出题目给的条件虽然不同,但是解题思路和解题方法是一致的。和差问题的一般解题规律是:

(和+差)÷2=较大数较大数-差=较小数

或(和-差)÷2=较小数较小数+差=较大数

也可以求出一个数后,用和减去这个数得到另一个数。

下面我们用和差问题的思路来解答一个数学问题。

练习:红红与兰兰共有61本书,红红给了兰兰5本书,兰兰自己又新买了3本书,红红现在比兰兰少2本书。问:两人原来各有几本书?

例5 在每两个数字之间填上适当的加或减符号使算式成立。

1 2 3 4 5 6 7 8 9=5

分析这样想:从1至9这几个数字相加是不会得到5的,只能从一部分数字相加再减去一部分字后差是5,也就是说1到9的`和是45,而两部分的差是5,先要求出这两部分数字,利用和差问题的方法便可以求出。

(45-5)÷2=20,20+5=25

可求出其中几个数的和是25,而另外几个数的和是20。在组成和是25的几个数前面添上“+”号,而在组成和是20的几个数前面添上“-”号,此题就算出来了。

例如:5+6+9=20可得到。

1+2+3+4-5-6+7+8-9=5

又如:5+7+8=20可得到。

1+2+3+4-5+6-7-8+9=5

又如:3+4+6+7=20可得到。

1+2-3-4+5-6-7+8+9=5

练习、小红在计算两个数的和时,把其中一个加数个位上的0漏掉了,结果算出的和是37。已知正确答案为91,求这两个数的差(大减小)是多少?

篇11:归总问题应用题及答案

关于归总问题应用题及答案

1.  要修一条公路,原计划每天修450米,80天完成。现在要求提前20天完成,平均每天应多修多少米?

分析:要求平均每天多修多少米,必须知道实际每天修多少米,要求实际每天修多少米,又要先求出这条公路的总长和实际修多少天。

解:450×80÷(80-20)-450

=450×80÷60-450

=36000÷60-450

=600-450

=150(米)

答:平均每天应多修150米.

2.  农具厂生产一批农具,原计划每天生产120件,28天可以完成任务,实际每天多生产了20件,这样可以提前几天完成任务?

分析:要求提前几天完成任务,先要求出实际生产了多少天,要求实际生产了多少天,又要求出这批农具一共有多少件。

解:28-120×28÷(120+20)

=28-120×28÷140

=28-3360÷140

=28-24

=4(天)

答:可以提前4天完成任务.

3.  面粉厂用汽车装运一批面粉,原计划用每辆装24袋的汽车9辆15次可以运完,现在改用每辆装30袋的汽车6辆来运,几次可以运完?

分析:要求几次可以运完,先要求出运的这批面粉共有多少袋。

解:24×9×15÷30÷6

=216×15÷30÷6

=3240÷30÷6

=18(次)

答:18次可以运完.

4.  修一条公路,原计划每天工作7.5小时,8个人6天可以修完,实际增加了2个工人,准备4天完成,这样每天要工作几小时?

分析:要求每天工作几小时,先要求出这条公路的总工作量,即由1个工人来做共需要多少小时,再求最后问题。

解:7.5×8×6÷4÷(8+2)

=7.5×8×6÷4÷10

=60×6÷4÷10

=360÷4÷10

=9(小时)

答:每天要工作9小时.

5.  一项工程,预计30人15天可以完成任务。工作4天后,又增加3人。如果每人工作效率相同,这样可以提前几天完成任务?

分析:要求提前几天完成任务,必须知道实际工作的天数。要求实际工作天数,又要先求工作4天后,余下的工作需要几天完成,求余下的工作量应用总工作量(15×30)减去4天的工作量(4×30).

解:15-〔(15×30-4×30)÷(30+3)+4〕

=15-〔(450-120)÷33+4〕

=15-〔330÷33+4〕

=15-〔10+4〕

=15-14

=1(天)

答:可以提前1天完成任务.

6.  一个工地上有120名工人,食堂为这些工人准备了30天的粮食。实际工作5天后,由于工期紧张,又调来30名工人,食堂原来准备的粮食只够吃几天?

分析:先要求出准备的'粮食共有多少,也就是1人能吃多少天,再求出5天后余下的粮食够用多少天。

解:(30×120-5×120)÷(120+30)+5

=(3600-600)÷150+5

=3000÷150+5

=20+5

=25(天)

答:食堂原来准备的粮食只够吃25天.

7.  一项工程原计划8个人每天工作6小时,10天可以完成。现在为了加快工作进度,增加2人,每天工作时间增加2小时,这样可以提前几天完成这项工程?

分析:要求可以提前几天完成,要先求现在这项工程需要多少天。要求现在完成这项工程需要多少天,又要先求这项工程的总工作量是多少。

解:10-6×10×8÷(8+2)÷(6+2)

=10-6×10×8÷10÷8

=10-60×8÷10÷8

=10-480÷10÷8

=10-48÷8

=10-6

=4(天)

答:可以提前4天完成这项工程.

行船问题应用题及答案

差倍问题应用题及答案

六年级工程问题应用题教学反思

《应用题练习》教学反思

应用题带答案

面积应用题及答案

四年应用题及答案

两步计算应用题练习数学教案

应用题练习课教学设计

小学六年级数学应用题30道及答案

路程问题六年级应用题练习及参考答案(共11篇)

欢迎下载DOC格式的路程问题六年级应用题练习及参考答案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档