高一数学函数的表示法训练题练习题目

时间:2022-12-17 00:13:50 作者:我是你前世的娘 综合材料 收藏本文 下载本文

“我是你前世的娘”通过精心收集,向本站投稿了5篇高一数学函数的表示法训练题练习题目,这里小编给大家分享一些高一数学函数的表示法训练题练习题目,方便大家学习。

篇1:高一数学函数的表示法训练题练习题目

高一数学函数的表示法训练题练习题目

1.下列各图中,不能是函数f(x)图象的是

高一数学函数的表示法训练解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.

2.若f(1x)=11+x,则f(x)等于()

A.11+x(x-1) B.1+xx(x0)

C.x1+x(x0且x-1) D.1+x(x-1)

解析:选C.f(1x)=11+x=1x1+1x(x0),

f(t)=t1+t(t0且t-1),

f(x)=x1+x(x0且x-1).

3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=()

A.3x+2 B.3x-2

C.2x+3 D.2x-3

解析:选B.设f(x)=kx+b(k0),

∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,

k-b=5k+b=1,k=3b=-2,f(x)=3x-2.

4.已知f(2x)=x2-x-1,则f(x)=________.

解析:令2x=t,则x=t2,

f(t)=t22-t2-1,即f(x)=x24-x2-1.

答案:x24-x2-1

1.下列表格中的x与y能构成函数的是()

A.

x 非负数 非正数

y 1 -1

B.

x 奇数 0 偶数

y 1 0 -1

C.

x 有理数 无理数

y 1 -1

D.

x 自然数 整数 有理数

y 1 0 -1

解析:选C.A中,当x=0时,y=B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、有理数之间存在包含关系,如x=1N(Z,Q),故y的值不唯一,故A、B、D均不正确.

2.若f(1-2x)=1-x2x2(x0),那么f(12)等于()

A.1 B.3

C.15 D.30

解析:选C.法一:令1-2x=t,则x=1-t2(t1),

f(t)=4t-12-1,f(12)=16-1=15.

法二:令1-2x=12,得x=14,

f(12)=16-1=15.

3.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()

A.2x+1 B.2x-1

C.2x-3 D.2x+7

解析:选B.∵g(x+2)=2x+3=2(x+2)-1,

g(x)=2x-1.

4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的`时间,则下图中较符合此学生走法的是()

解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A、C,又一开始跑步,速度快,所以D符合.

5.如果二次函数的二次项系数为1且图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为()

A.f(x)=x2-1B.f(x)=-(x-1)2+1

C.f(x)=(x-1)2+1 D.f(x)=(x-1)2-1

篇2:函数的表示法训练题

有关函数的表示法训练题

1.下列各图中,不能是函数f(x)图象的是()

解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.

2.若f(1x)=11+x,则f(x)等于()

A.11+x(x≠-1)B.1+xx(x≠0)

C.x1+x(x≠0且x≠-1)D.1+x(x≠-1)

解析:选C.f(1x)=11+x=1x1+1x(x≠0),

∴f(t)=t1+t(t≠0且t≠-1),

∴f(x)=x1+x(x≠0且x≠-1).

3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=()

A.3x+2B.3x-2

C.2x+3D.2x-3

解析:选B.设f(x)=kx+b(k≠0),

∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,

∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.

4.已知f(2x)=x2-x-1,则f(x)=________.

解析:令2x=t,则x=t2,

∴f(t)=t22-t2-1,即f(x)=x24-x2-1.

答案:x24-x2-1

1.下列表格中的x与y能构成函数的是()

A.

x非负数非正数

y1-1

B.

x奇数0偶数

y10-1

C.

x有理数无理数

y1-1

D.

x自然数整数有理数

y10-1

解析:选C.A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、有理数之间存在包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A、B、D均不正确.

2.若f(1-2x)=1-x2x2(x≠0),那么f(12)等于()

A.1B.3

C.15D.30

解析:选C.法一:令1-2x=t,则x=1-t2(t≠1),

∴f(t)=4t-12-1,∴f(12)=16-1=15.

法二:令1-2x=12,得x=14,

∴f(12)=16-1=15.

3.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()

A.2x+1B.2x-1

C.2x-3D.2x+7

解析:选B.∵g(x+2)=2x+3=2(x+2)-1,

∴g(x)=2x-1.

4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是()

解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A、C,又一开始跑步,速度快,所以D符合.

5.如果二次函数的二次项系数为1且图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为()

A.f(x)=x2-1B.f(x)=-(x-1)2+1

C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1

解析:选D.设f(x)=(x-1)2+c,

由于点(0,0)在函数图象上,

∴f(0)=(0-1)2+c=0,

∴c=-1,∴f(x)=(x-1)2-1.

6.已知正方形的周长为x,它的外接圆的半径为y,则y关于x的`函数解析式为()

A.y=12x(x>0)B.y=24x(x>0)

C.y=28x(x>0)D.y=216x(x>0)

解析:选C.设正方形的边长为a,则4a=x,a=x4,其外接圆的直径刚好为正方形的一条对角线长.故2a=2y,所以y=22a=22×x4=28x.

7.已知f(x)=2x+3,且f(m)=6,则m等于________.

解析:2m+3=6,m=32.

答案:32

8.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[1f3]的值等于________.

解析:由题意,f(3)=1,

∴f[1f3]=f(1)=2.

答案:2

9.将函数y=f(x)的图象向左平移1个单位,再向上平移2个单位得函数y=x2的图象,则函数f(x)的解析式为__________________.

解析:将函数y=x2的图象向下平移2个单位,得函数y=x2-2的图象,再将函数y=x2-2的图象向右平移1个单位,得函数y=(x-1)2-2的图象,即函数y=f(x)的图象,故f(x)=x2-2x-1.

答案:f(x)=x2-2x-1

10.已知f(0)=1,f(a-b)=f(a)-b(2a-b+1),求f(x).

解:令a=0,则f(-b)=f(0)-b(-b+1)

=1+b(b-1)=b2-b+1.

再令-b=x,即得f(x)=x2+x+1.

11.已知f(x+1x)=x2+1x2+1x,求f(x).

解:∵x+1x=1+1x,x2+1x2=1+1x2,且x+1x≠1,

∴f(x+1x)=f(1+1x)=1+1x2+1x

=(1+1x)2-(1+1x)+1.

∴f(x)=x2-x+1(x≠1).

12.设二次函数f(x)满足f(2+x)=f(2-x),对于x∈R恒成立,且f(x)=0的两个实根的平方和为10,f(x)的图象过点(0,3),求f(x)的解析式.

解:∵f(2+x)=f(2-x),

∴f(x)的图象关于直线x=2对称.

于是,设f(x)=a(x-2)2+k(a≠0),

则由f(0)=3,可得k=3-4a,

∴f(x)=a(x-2)2+3-4a=ax2-4ax+3.

∵ax2-4ax+3=0的两实根的平方和为10,

∴10=x21+x22=(x1+x2)2-2x1x2=16-6a,

∴a=1.∴f(x)=x2-4x+3.

篇3:高一数学函数与方程同步练习题目

高一数学函数与方程同步练习题目

一、知识点专练

函数与方程同步练习1.函数 的零点所在的大致区间是( )

A.(1,2) B.(2,3) C.(e,3) D.(e,+)

2.下面对函数 零点的认识正确的是( )

A.函数的零点是指函数图像与 轴的交点 B.函数的零点是指函数图像与 轴的交点

C.函数的零点是指方程 的根 D.函数的零点是指 值为

3.定义在 上的奇函数 在 内有1005个零点,,则函数 的零点个数为( )

A.2009 B.2010 C.2011 D. 2012

4.对于函数 .若 , ,则函数 在区间 内( )

A.一定有零点 B.一定没有零点 C.可能有四个零点 D. 至多有三个零点

5.若函数 且 有两个零点,则实数 的取值范围是 .

利用二分法求方程近似解

1.下列函数的图象中,其中不能用二分法求其零点的有( )个

A.0 B.1 C.2 D. 3

2.方程根用二分法来求可谓是千呼万唤始出来、犹抱琵琶半遮面.若函数f(x)在区间(1,2)内有一个零点,用二分法求该函数的零点的近似值,使其具有5位有效数字,则至少需要将区间(1,2)等分( )

A.12次 B.13次 C.14次 D.16次

3.设 在 上存在 使 ,则实数 的取值范围是( )

A B C 或 D

4.用二分法求方程 在区间[2,3]内的实根,取区间中点 ,那么下一个有根区间是______________.

5.若函数 在区间 的零点按精确度为 求出的结果与精确到 求出的结果可以相等,则称函数 在区间 的零点为和谐零点.试判断函数 在区间 上,按 用二分法逐次计算,求出的零点是否为和谐零点. (参考数据f(1.25)=-0.984 ,f(1.375)=-0.260,f(1. 438)=0.165,f(1.4065)=-0.052)

二、考题连线

1. (2010安徽六安二中高一期末考试)实数 是图象连续不断的函数 定义域中的三个数,且满足 ,则函数 在区间 上的零点个数为( )

A.2 B.质数 C.合数 D.至少是2

2. (2010陕西师大附中高一上学期期末考试)已知函数f(x)的图像是连续不断的,且有如下对应值表:

x 1 2 3 4 5

f(x) -4 -2 1 4 7

在下列区间中,函数f(x)必有零点的区间为( )

A.(1,2) B.(2,3) C .(3, 4) D. (4, 5)

3.(合肥市高三第一次质量监测)函数 的`零点个数为( )

A.0 B.1 C.2 D.3

4. (2010安徽蚌埠铁中高一单元测试)物理课上老师拿出长为1米的一根导线,此导线中有一处折断无法通电(表面看不出来),如何迅速查出故障所在?如果沿着线路一小段一小段查找,较为麻烦.想一想,怎样工作最合理?要把折断处的范围缩小到3~4厘米左右,要查多少次?

5.(2010广东信宜一中高一统考)定义域为R的函数 若关于 的函数 有5个不同的零点 求 的值.

参考答案

一、知识点专练

利用函数性质判定方程解的存在

1.B 且函数图像是连续不断的,所以函数在区间(2,3)上有零点.

2.C 函数的零点是指函数 对应方程 的根

3.C 定义在 上的奇函数 满足 ,图像自身关于原点对称,所以零点个数为2011.

4.C 当满足根的存在性定理时,能判定方程有根;当不满足根的存在性定理时,方程根有多种情况.

5. 有两不相等的实根,即函数 有两个不同交点,画图可知 满足条件,当 时函数图像只有一个交点.

利用二分法求方程近似解

1.C 二分法求方程零点要利用根的存在性定理,所以只有零点所在区间两个端点所对应函数 值异号,且函数图像在零点所在的区间内是连绵 不断的,故只有第②④个函数的零点可用二分法求解.

2.B 初始区间(1,2)长度为1,要使零点的近似值具有5位有效数字,则精确度要求是0.0001。将区间(1,2)经过n次等分后区间长度为 ,令 ,所以至少需要将区间(1,2)等分14次,选B.

3.C 在 上为连续函数,欲满足题意须 或 .

4. [2,2.5]由计算器可算得 , , , ,所以下一个有根区间是[2,2.5].

5.解:利用二分法可列下表,由表可知方程 的根在区间 内,按照按精确度为 精确,这个区间内的任何一个值都可是函数 在区间 上的零点. 按照按精确到 精确,这个区间内所有值都为 ,所以方程 的根为 ,两者不可以相等,所以此函数在区间 上按 计算,零点不是和谐零点

f(1)=-2 f(1.5)=0.625

f(1.25)=-0.984 f(1.375)=-0.260

f(1.438)=0.165 f(1.4065)=-0.052

二、考题连线

1.D 由根的存在性定理知函数 在区间 内至少有一个根,在区间 内至少有一个根,所以选D.

2.B 只有在区间(2,3)上满足根的存在性定理.

3.解析:D 当 时 函数有一个零点;当 时 令 可得

画出函数 在区间 上的图像,数形结合可知,函数图像有两个交点.故选D.

4.解:运用二分法的原理进行查找.

设导线的两端分别为点 ,他首先从中点 查,如果发现 段正常,断定折断处在 段;再到 段中点 查,若发现 段正常,可见折断处在 段,再到 段中点 来查,,这样每查一次就可以把待查的线路长度缩减一半,故经过5次查找,就可将折断处的范围缩小到3~4厘米左右.

5.解:若假定关于 的方程 不存在 的根,则使 的 的值也不为1,而显然方程 的根最多有两个,又 是关于 的二次函数,所以 的零点最多有四个,与已知不符,可见关于 的方程 必存在 的根,代入得 ,所以 .而方程 的解为 ,方程 的解为 ,所以 的五个不同的零点分别是 ,,所以 .

失分点分析:本题是分段函数的零点求值题,容易做错,不注意理解 与 的根的内部关系,这正是本题的难点所在.

篇4:高一数学轮函数与方程训练题

高一数学轮函数与方程训练题

1.函数f(x)=x-cos x在[0,+)内

A.没有零点 B.有且仅有一个零点

C.有且仅有两个零点 D.有无穷多个零点

解析:在同一直角坐标系中分别作出函数y=x和y=cos x的图象,如图,由于x1时,y=x1,y=cos x1,所以两图象只有一个交点,即方程x-cos x=0在[0,+)内只有一个根,所以f(x)=x-cos x在[0,+)内只有一个零点,所以选B.

答案:B

2.(2014吉林白山二模)已知函数f(x)=2mx2-x-1在区间(-2,2)上恰有一个零点,则m的取值范围是()

A.-38,18 B.-38,18

C.-38,18 D.-18,38

解析:当m=0时,函数f(x)=-x-1有一个零点x=-1,满足条件.当m0时,函数f(x)=2mx2-x-1在区间(-2,2)上恰有一个零点,需满足①f(-2)f(2)0,或

②f-2=0,-20,或③f2=0,02.

解①得-18

答案:D

3.已知函数f(x)满足f(x+1)=f(x-1),且f(x)是偶函数,当x[0,1]时,f(x)=x,若在区间[-1,3]上函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是________.

解析:由f(x+1)=f(x-1)得,

f(x+2)=f(x),则f(x)是周期为2的函数.

∵f(x)是偶函数,当x[0,1]时,f(x)=x,

当x[-1,0]时,f(x)=-x,

易得当x[1,2]时,f(x)=-x+2,

当x[2,3]时,f(x)=x-2.

在区间[-1,3]上函数g(x)=f(x)-kx-k有4个零点,即函数y=f(x)与y=kx+k的'图象在区间[-1,3]上有4个不同的交点.作出函数y=f(x)与y=kx+k的图象如图所示,结合图形易知k0,14].

答案:0,14]

4.(1)m为何值时,f(x)=x2+2mx+3m+4.①有且仅有一个零点;②有两个零点且均比-1大;

(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.

解:(1)①函数f(x)有且仅有一个零点方程f(x)=0有两个相等实根=0,即4m2-4(3m+4)=0,即m2-3m-4=0,m=4或m=-1.

②设f(x)有两个零点分别为x1,x2,

则x1+x2=-2m,x1x2=3m+4.

由题意,有=4m2-43m+40x1+1x2+10 x1+1+x2+10

m2-3m-403m+4-2m+10-2m+2m4或m-1,m-5,m1,

-5

(2)令f(x)=0,

得|4x-x2|+a=0,

即|4x-x2|=-a.

令g(x)=|4x-x2|,

h(x)=-a.

作出g(x)、h(x)的图象.

由图象可知,当04,即-4

故a的取值范围为(-4,0).

篇5:高一数学第一章函数及其表示教学计划

高一数学第一章函数及其表示教学计划

不论从事何种工作,如果要想做出高效、实效,务必先从自身的工作计划开始。有了计划,才不致于使自己思想迷茫。下文为您准备了高一数学第一章函数及其表示教学计划。

一、教材内容分析

函数是高中数学的重要内容,函数的表示法是“函数及其表示”这一节的主要内容之一。学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。

学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法。函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念。特别是在信息技术环境下,可以使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。

二、教学目标分析

根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识、能力和情感三个方面制订教学目标。

1.明确函数的三种表示方法(图象法、列表法、解析法),通过具体的实例,了解简单的分段函数及其应用。

2.通过解决实际问题的过程,在实际情境中能根据不同的需要选择恰当的方法表示函数,发展学生思维能力。

3.通过一些实际生活应用,让学生感受到学习函数表示的必要性;通过函数的解析式与图象的结合渗透数形结合思想。

三、教学问题诊断分析

(1)初中已经接触过函数的三种表示法:解析法、列表法和图象法.高中阶段重点是让学生在了解三种表示法各自优点的基础上,使学生会根据实际情境的需要选择恰当的表示方法。因此,教学中应该多给出一些具体问题,让学生在比较、选择函数模型表示方式的过程中,加深对函数概念的整体理解,而不再误以为函数都是可以写出解析式的。

(2)分段函数大量存在,但比较繁琐。一方面,要加强用分段函数模型刻画实际问题的实践,另一方面,还可以通过动画模拟,让学生体验到,分段函数的问题应该分段解决,然后再综合。这也为下一步研究分段函数的单调性等性质打下伏笔。

四、本节课的教法特点以及预期效果分析

(一).本节课的教法特点

根据教学内容,结合学生的具体情况,我采用了学生自主探究和教师启发引导相结合的教学方式。在整个的教学过程中让学生尽可能地动手、动脑,调动学生积极性,充分地参与学习的全过程。倡导学生主动参与、乐于探究、勤于动手,逐步培养学生能够利用函数来处理信息的能力。

(二).本节课预期效果

1.通过具体的实例,让学生体会函数三种表示法的优、缺点。

创造问题情景这种情景的创设以具体事例出发,印象深刻。所以在引入时先从函数的三要素入手,强调要素之一对应关系,然后给出三个具体实例:

(1) 炮弹发射时,距离地面的高度随时间变化的情况;

(2) 用图表的形式给出臭氧层空洞的面积与时间的关系;

(3) 恩格尔系数的变化情况。

指出每种对应分别以怎样的形式展现。引出函数的表示方法这一课题。因为我们这节课的重点是让学生在实际情景中,会根据不同的需要选择恰当的表示方法。会选择的前提是理解,这些完全靠学生的现实经验,让学生自己去发现各自的优劣。这为第一道例题打下基础。

例1通过具体例子,让学生用三种不同的表示方法来表示的同一个函数,进一步理解函数概念。把问题交给学生,学生独立完成,并自己检查发现问题,加深学生对三种表示法的深刻理解。学生思考函数表示法的规定。注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表。

由于这个函数的图象由一些离散的点组成,与以前学习过的一次函数、二次函数的图象是连续的曲线不同。通过本例,进一步让学生感受到,函数概念中的对应关系、定义域、值域是一个整体.函数y=5x不同于函数y=5x (x∈{1,2,3,4,5}),前者的图象是(连续的)直线,而后者是5个离散的.点。由此认识到:“函数图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等。” 并明确:如何判断一个图形是否是函数图象方法?

2.让学生会根据不同的实例选择恰当的方法表示函数

例2用表格法表示了函数。要“对这三位运动员的成绩做一个分析”不太方便,因此需要改变函数表示的方法,选择图象法比较恰当。教学中,先不必直接把图象法告诉学生,可以让学生说说自己是如何分析的,选择了什么样的方法来表示这三个函数.通过比较各种不同的表示方法,达成共识:用图象法比较好。培养学生根据实际需要选择恰当的函数表示法的能力。

学生经过观察、思考获得结论.比如总体水平(朱启南成绩好)、变化趋势(刘天佑的成绩在逐步提高)、与运动员的平均分的比较,等等。培养学生的观察能力、获取有用信息的能力。同时要求学生注意图中的虚线不是函数图象的组成部分,之所以用虚线连接散点,主要是为了区分这三个函数,直观感受三个函数的图象具有整体性,也便于分析成绩情况,加以比较。

3.通过具体的实例,了解分段函数及其表示

生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税税额等等。通过例3的教学,让学生了解分段函数及其表示。为了便于学生理解,给出了实际情况的模拟。可以使函数在数与形两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合的数学思想方法。

二年级数学练习题目

数学反比例函数单元综合测试题目

小升初数学考前训练题

基于表格法化简逻辑函数

四年级数学认识方程的练习题目

数学教案设计:函数

东郭先生和狼练习题目

应届毕业生面试题目-数学趣题解析

雷电电流的脉冲函数表示

高一作文训练

高一数学函数的表示法训练题练习题目(整理5篇)

欢迎下载DOC格式的高一数学函数的表示法训练题练习题目,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档