基于DSP技术的MP3播放器的研究与设计

时间:2022-12-25 04:06:14 作者:蚊叽 综合材料 收藏本文 下载本文

“蚊叽”通过精心收集,向本站投稿了10篇基于DSP技术的MP3播放器的研究与设计,以下是小编帮大家整理后的基于DSP技术的MP3播放器的研究与设计,欢迎大家收藏分享。

篇1:基于DSP技术的MP3播放器的研究与设计

基于DSP技术的MP3播放器的研究与设计

摘要:随着数字编解码及压缩技术的发展,语音文件也朝着高压缩比、高保真的方向发展,从MP1、MP2到目前的MP3格式。本文设计了一种廉价基于DSP的MP3播放器,利用硬件存储语音文件,并能够从PC 机下载,从而可以随时更新MP3音乐。该MP3播放器同时附加了文本阅读的功能,可做到语音和文本的同步输出。

关键词: MP3播放器  DSP  编码

前言

现在市场上推出了各种型号的MP3随身听,它们采用先进的智能控制技术,利用先进的芯片,不仅实现了MP3格式语音的播放,而且集多种功能于一身。

但这些精巧的随身听价格较昂贵,因此本文根据要求设计了一种廉价MP3播放器,利用硬件存储语音文件,并能够从PC 机下载,从而可随时更新MP3音乐。该MP3播放器同时附加了文本阅读的功能,可做到语音和文本的同步输出。

MP3播放器系统构成

MP3播放器系统结构由图1所示,根据MP3播放器特点要求选择了TI公司的TMS320VC5402芯片,该DSP芯片优越的效价比既可充分胜任本设计的信号处理又能满足本设计要求的价廉目的。而主机选用功能较强的AT89C51芯片。

设计原理上,C5402芯片的信号处理部分和89C51的智能控制部分来分别完成电路设计,并相应制作两块PCB,可以明确设计思路,实物的大小也减半。

由图1,MP3播放器系统选用大容量的FLASH MEMORY作为主存储器硬件存储语音文件,DSP程序也存储在FLASH中,运行时再引导到DSP的高速RAM,从而省去DSP芯片部分的程序存储空间。利用串口通信电路可以实现由PC机下载语音文件功能,利用液晶显示屏LCD,还可以从PC机下载小说并在LCD上阅读。

DSP、MPU硬件设计

MP3播放器中,DSP芯片的Bootloader采用了HPI口方式。由于在硬件上HPI引脚与DSP的数据、地址总线引脚是相互独立的,同时HPI口内部又有控制机制,所以外部主机通过HPI口访问DSP内部RAM时不会影响DSP的正常运行。HPI利用DSP芯片上1000H地址开始的一块具有共享存储器功能的2K字RAM,来实现主机与从机间的数据交换。

DSP扩展了一片64K字高速静态RAM(CY7C1021V33-10),作为DSP芯片的片外RAM,用以适应各种音频处理算法对存储器容量的要求。

DSP芯片处理后的信号由D/A输出到耳机,我们就可听到MP3音乐。D/A变换由LM4545实现,它具有48K字转换速度,可直接和DSP芯片的输出相连。

而MPU主要完成三项功能,分别是LCD显示,控制DSP芯片的运行和文件的串口下载。89C51与29F040B的连接电路如图2所示。

MPU用来访问FLASH的地址线由P0口和P2.0~P2.5组成。这14根地址线既提供14位页内地址又提供5位的页码地址,P0口同时与两片74LS373相连,分别以P3.5和ALE作为这两个芯片的片选信号;第一片74LS373A输出信号的低5位作为5位页码地址与29F040B的A14~A18连接,第6位作为片选信号连接29F040B的CS,后两位则留作以后扩展用;第二片74LS373B的8位输出连接29F040B的A0~A7;89C51的`P2.0~P2.5直接连接29F040B的A8~A13,和74LS373B的8位输出共同构作14位的页内地址。

相应的寻址过程(假设访问地址1FFFFH)是:第一步,先将P3.5置1,打开74LS373A,再向 P0口写入所要寻址的页码地址,1FFFFH的页码为7H;第二步,再将P3.5置0,关闭74LS373A,向P0口和P2口写入14位页内地址,1FFFFH的页内地址为3FFFH。因为74LS373B由ALE片选,每次MPU访问外设时自动打开,所以这两步骤次序不能颠倒,否则访问的地址就出错。

软件设计

能够从PC机下载音乐是MP3播放器的特点,这一功能由MPU与PC机的串口通信来实现。而且设计所需的下载软件要求能够下载书籍文本,要求能够中文字符的串口通信。因此实现中文传输也是本设计的程序部分的关键。

图3是用VB实现MP3播放器的下载软件。

图3的文件下载软件,由Mscomm控件来实现。Setting设置为“9600,N,8,1”,89C51的串口寄存器SCON和PCON也做对应的设置。用Mscomm控件可以实现发送中文字符功能,具体方法如下:

(1)直接发送

直接发送即把中文字符等同于英文字符。如:MSComm1.output=“这是一行中文数据!”,但这种方法发送的中文数据不能太长,发送缓冲区和接收缓冲区的大小需设定为中文字符的两倍以上,否则会出现接收或发送缓冲区溢出之类的错误。这种方法可用于一般要求不太高的场合。

(2)间接发送

在发送端将汉字或字符转换为机器内码或区位码数据数组,然后将转换后的数据发送到串口,在接收端接收到数据后,按照相反的顺序将得到的数据转换为相应的汉字或字符,对于MPU这端要求能有较大容量的汉字表。在转换过程中,我们采用位运算,在取得汉字的内码后将高字节和低字节分开,求整数高、低字节的函数如下:

Public Function HiByte(a As Integer)

Dim b

b = a And &HFF00

b = b / 256

If b < 0 Then b = b + 256

HiByte = b

End Function

Public Func

tion LowByte(a As Integer)

Dim b

b = a And &HFF

LowByte = b

End Function

结语

该MP3播放器基于DSP技术,采用慢速大容量外存加高速小容量外存的组合方式,音乐文件先从慢速外存下载至高速外存再载入DSP的高速RAM,下载一部分处理一部分。采用与PC机的串口通信方式实现文件的下载速度较慢,也可利用USB接口进行高速的通信。另外系统中连接的电话线可充作电话的录音。

实践证明,这种方法设计的MP3播放器成本较低,同时附加文本阅读的功能做到语音和文本的同步输出,能满足特殊的需要。

篇2:基于ARM9的多功能硬盘MP3播放器的设计

基于ARM9的多功能硬盘MP3播放器的设计

很难给这个设计方案定义一个确切的名称,是硬盘MP3播放器,还是数码相机伴侣,还是是电子相框,甚至叫做移动硬盘?其实这几项功能这款设计方案都具备了。不过通常来说,作为MP3使用的频率更高一些,因此我们姑且还是将它称作多功能硬盘MP3播放器。

这款多功能MP3播放器的核心是三星公司的S3C2410芯片。该芯片是基于ARM920T而开发的一款面向消费类电子产品的多功能SOC。除具备一般嵌入式芯片所具有的总线,SDRAM控制器,3个串口等外设之外,S3C2410还具有TFT LCD控制器、USB Slave、USB Host、I2C总线控制器、SPI控制器、IIS音频接口、SD & MMC存储卡接口等丰富的扩展功能。芯片工作电压3.3/1.8V,最高运行速度可达200MHz。

这款设计最大的特点就是功能丰富。除了可以作为iPod那样的硬盘MP3播放器外,还可以作为数码相机伴侣、电子相框和移动硬盘。特别值得一提的是,在作为数码相机伴侣使用的时候,与现有的同类产品需要将卡从DC种取出再插入设备上众多插槽中的一个不同,该设计本身可以作为一个USB Host,并且支持USB Mass Storage Class,因此对于多数数码相机,只要用USB电缆将相机和播放器相连,就可以自动将相机内的所有照片拷贝到设备内置的硬盘之中。对于不是标准Mass Storage类的相机也没有关系,该设计可以配合任意一款读卡器进行使用,只要将读卡器连接到设备上再将卡插入读卡器就可以了。这种设计能大幅度缩小数码相机伴侣的体积,并且能够给使用带来极大的方便。

下图是简化的硬盘MP3播放器的硬件结构框图:

从图中可以看到,系统可以分为核心部分、硬盘控制、音频编解码、液晶控制以及触摸屏和键盘控制等几个部分。此外还有必不可少的电源管理等部分。硬盘可以采用2.5英寸或者1.8英寸的小型硬盘。音频编解码可以采用PHILIPS的UDA1344等芯片。LCD可以采用320X240的TFT液晶显示器,电源则宜用可充电锂电池。

再来看软件结构:

软件的`核心是Linux操作系统,一切功能都是基于Linux上完成的。首先需要设备驱动程序,包括USB、硬盘控制、音频控制、LCD等等。然后是文件系统。该设计采用的是通用的FAT32文件系统,在对Windows平台有很好的兼容性。基于QT的图形界面为用户提供了良好的GUI,配上触摸屏,可以形成一个很好的人机交互界面。最上层是应用层,例如MP3编码/解码,JPEG解码甚至MPEG4解码等等。

由于S3C2410以及Linux的功能都非常强大,因此除了实现上述功能,该款设计还可以有其它很多扩充功能,例如添加WLAN,GPS,GPRS以及照相模块等,以适应不同的应用需求。上述功能在产品研发过程中已经分别被我们很好地得以实现。

由于三星公司的S3C2410有很高的性价比,因此该款设计的产品生产成本并不高,其性价比非常优异。它的另外一个优点是功耗很小,根据我们测试,一块7.2V800mAh的电池可以听MP3长达10个小时以上。

我们将现在常见的一些产品做一个对比,如下表所示:

[1] [2]

篇3:DSP技术发展趋势的研究和探讨论文

DSP技术发展趋势的研究和探讨论文

一、引言

数字信号处理(Digital Signal Processing,即DSP),起源于上个世纪80年代,是一门涉及到许多学科并且广泛应用在很多领域的热门学科。它利用微型计算机、专用处理设备,以数字方式对信号的采集、变换、滤波、估值、增强、压缩、识别处理,得到人们需要的信号形式。它紧紧围绕着数字信号处理的理论、实现以及应用发展。

二、DSP技术

数字信号处理(DSP)的理论基础涉及的范围非常广泛。比如微积分、概率统计、随机过程、数值分析等数学基础是数字信号处理的基本工具,同时它与网络理论、信号与系统、控制理论、通信原理、故障诊断,传感器技术等密切相关,还有近些年来蓬勃发展的一些学科:人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

正是由于有这些理论发展的前提基础,和广泛的市场需求,DSP处理的器件也应运而生,在广泛应用在各个领域的同时得到迅速的发展。世界上第一个单片DSP芯片是1978年AMI公司发布的S2811,在这之后,1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个非常重要的里程碑。即使这两种芯片内部没有现代DSP芯片的单周期乘法器,但是他们为DSP的蓬勃、迅速发展奠定了很重要的基础。接着,1980年,日本NEC公司推出了第一个具有乘法器的商用DSP芯片,随后,美国德州仪器公司(TI公司)推出一系列DSPs产品,广泛地应用在信号处理的各个领域。

三、DSP技术的优点

和单片机比较而言,DSPs具有集成度高、CPU快速、存储器容量大,并内置了波特率发生器、FIFO缓冲器,可提供高速、同步串口、标准异步串口。一些dsp芯片内还集成了模数转换、采样/保持电路,PWM输出。DSP芯片采用改进的哈佛结构,内置高速硬件乘、加法器,多级流水线,使DSPs的数据运算大幅度提高。

据统计分析DSPs比传统的16位单片机单指令执行时间快8到10倍,一次乘加运算的时间快16到30倍。DSPs还提供了高度专业化的指令集,提高了FFT(快速傅里叶变换)、滤波器的运算速度。与此同时,DSPs提供JTAG接口和先进的开发手段,使得批量生产、测试更为方便。开发工具ccs可实现全空间透明仿真,软件开发具有汇编/链接C编译器、C源码调试器,有很强的可移植性。

总的来说,DSPs器件具有以下优点:

1、在一个指令周期内能够完成一次乘法、一次加法;

2、程序空间以及数据空间分开,能够同时访问指令和数据;

3、片内具有快速RAM,可通过独立的数据总线同时访问多片RAM;

4、具有循环、跳转的硬件支持;

5、快速的中断处理、I/O(输入输出)支持;

6、在单周期内可同时操作多个硬件地址产生器;

7、并行操作流畅;

8、支持流水线操作方便,使取指、译码和执行等操作可以同步、重叠进行。

同时,它还具有精度高,抗干扰能力强,稳定性好,功耗低以及编程方便,接口简单,电路集成方便等方面的优势。

四、DSP技术的发展趋势

随着数字化的进程快速提高,DSPs技术的地位不断突显,作为数字化处理的基础技术,实时处理数字信号都是由通用型或专业性的DSPs来完成的。正是因为DSPs这种强大的`实时处理能力,使得DSPs在声音信号处理、图像处理、模式识别方面不可或缺。随着数字时代的不断前行,它未来的发展趋势可以从以下两个方面来完善:

(一)与ARM(Advanced RISC Machines)相结合。ARM架构是面向低预算市场设计的一款RISC微处理器,以32位单片机的行业标准,提供一系列内核、体系扩展、微处理器以及系统芯片方案,四个功能模块可供生产厂商根据不同用户的要求来配置生产。ARM具有较强的事务管理功能,在控制方便具有很强的优势,而DSPs具有强大的数据处理能力和很高的运行速度。将两者结合起来可以更好的进行数字信号处理,以及实现相应的控制功能。

(二)与FPGA(Field Programmable Gate Array)结合使用。即与现场可编程门阵列巧妙的结合起来。FPGA是在PAL、GAL、PLD等可编程器件的基础发展起来的,是ASIC(即为专用集成电路)中集成度最高的一种电子设备。FPGA采用逻辑单元阵列(Logic Cell Arr/文秘站您的专属秘书,中国最强免费!/ay),包括可配置逻辑模块(Configurable Logic Block)、输出输入模块(Input Output Block)以及内部连线(Interconnect)三部分。通过对FPGA内部逻辑模块、I/O模块的配置,可以实现不同的逻辑状态。同时,FPAG还具有静态可重复编程、动态在系统重构的特性,这使得硬件的功能能够像软件一样通过编程来实现。它与DSP芯片集成,可以在很大程度上提高信号处理的速度,将会使得DSPs在无线通信、多媒体领域有更加广泛的应用。

篇4:TLC320AD50C与DSP接口设计

TLC320AD50C与DSP接口设计

摘 要: DSP(数字信号处理器)具有强大的数字信号处理能力,在其应用系统中,大多由ADC和DAC通道来完成对模拟信号的数字化处理。本文介绍了一种集成ADC和DAC于一体的TLC320AD50C模拟接口电路与TMS320VC5402定点DSP接口电路的硬件设计方法,并结合一个具体的软件实例说明主从模式下软件的实现方法。

关键词:TLC320D50C;DSP;主从模式

引  言

在许多应用系统中,为了应用DSP卓越的数字信号处理能力,我们必须先将模拟信号进行数字化(A/D转换),再对采样数据进行相应的算法处理,最后经过数字信号模拟化(D/A转换)后输出。在这些DSP应用系统中的关键问题是怎样十分容易和高效地实现这些转换,因此必然涉及到接口电路的设计。本文介绍一种单片内集成了ADC通道和DAC通道的模拟接口电路TLC320AD50C(以下简称AD50)与TMS320VC5402缓冲串口的接口的设计实现方法,然后,基于这种接口电路的硬件设计,通过软件编程实现语音信号的.采集与回放。

1  芯片简介

TMS320VC5402是TI公司生产的从属于TMS320C54x系列的一个工作灵活、高速、具有较高性价比、低功耗的16位定点通用DSP芯片。其主要特点包括:采用改进的哈佛结构,1条程序总线(PB),3条数据总线(CB、DB、EB)和4条地址总线(PAB,CAB,DAB,EAB),带有专用硬件逻辑CPU,片内存储器,片内外围专用的指令集,专用的汇编语言工具等。TMS320VC5402含4K字节的片内ROM和16K字节的双存取RAM,1个HPI(Host Port Interface)接口,2个多通道缓冲单口MCBSP(Multi-Channel Buffered Serial Port),单周期指令执行时间10ns,双电源(1.8V和3.3V)供电,带有符合IEEE1149.1标准的JTAG边界扫描仿真逻辑。

AD50是TI公司生产的一个16位、音频范围(采样频率为2K~22.05KHZ)、内含抗混叠滤波器和重构滤波器的模拟接口芯片,它有一个能与许多DSP芯片相连的同步串行通信接口。AD50C片内还包括一个定时器(调整采样率和帧同步延时)和控制器(调整编程放大增益,锁相环PLL,主从模式)。AD50有28脚的塑料SOP封装(带DW后缀)和48脚的塑料扁平封装(带PT后缀),体积较小,适应于便携设备。AD50的工作温度范围是0~70℃,单一5V电源供电或5V和3.3V联合供电,工作时的最大功耗为120 mW。

2  硬件设计

2.1 AD50的内部结构简图

图1最上面第一通道为模拟信号输入监控通道,第二通道为模拟信号转化为数字信号(A/D)通道,第三通道为数字信号转化为模拟信号(D/A)通道,最下面一路是AD50的工作频率和采样频率控制通道。本文所述的输入时钟(MCLK)为8.192MHz,A/D与D/A的采样频率为MCLK/(128*N)Hz(N为AD50C的第4个寄存器4~6位所设)。

2.2  AD50与DSP的引脚连接方式

AD50与TMS320VC5402是以SPI方式连接的。AD50工作在主机模式(M/S=1),提供SCLK(数据移位时钟)和FS(帧同步脉冲)。TMS320VC5402工作于SPI方式的从机模式,BCLKX1和BFSX1为输入引脚,在接数据和发数据时都是利用外界时钟和移位脉冲。

3  软件设计

3.1 软件编制过程

一旦完成了正确的硬件连接,接下来就可以进行软件编程调试了。要完成的工作包括:

(1)TMS320VC5402串口的初始化。首先将DSP串口1复位,再对串口1的16个寄存器进行编程,使DSP串口工作在以下状态:以SPI模式运行,每帧一段,每段一个字,每字16位,采样率发生器由DSP内部产生,帧同步脉冲低电平有效,并且帧同步信号和移位时钟信号由外部产生。DSP给AD50C编程用查询方式,接收A/D转换的D信号和发送D/A转换的D信号用DMA方式。

(2)AD50初始化。该初始化操作过程包括通过TMS320VC5402的同步串口发送两串16位数字信息到AD50。第一串为0000 0000 0000 0001B,最低有效位(bits0)说明下一个要传输的数据字属于二次通信(关于一次通信和二次通信的内容请参阅参考文献[3])。第二个数据值用来对AD50的4个数据寄存器的某一个进行配置。Bits15~11位为0,Bits10~8位为所选寄存器地址值,Bits7~0位为所选中寄存器的编程值。4个用户可编程寄存器的描述如下:R1中包含模拟输入通道选择,硬件 / 软件编程方式选择;R2进行单机 / 从机工作和电话模式(电话模式内容请参阅参考文献[3])选择;R3控制带从机个数选择;R4用来设置模拟信号可编程放大增益和A/D、D/A转换频率。其它两个寄存器R5、R6是厂家留着测试用的,用户不可以对其编程。我们在以下例程中对4个可编程寄存器编程,使AD50C工作在以下状态:选择INP/INM为工作模拟输入,15+1位ADC和15+1位DAC模式,不带从机,采样频率为10.67KHz,模拟信号输入和输出放大增益均为0dB。

(3)用户代码的编写。完成音频信号采集与回放代码的编制。本设计给AD50编程用查询方式,接收A/D转换的D信号和发送D/A转换的D信号用DMA方式。

3.2 软件具体实现

(1) 程序流程图:

(2)部分关键代码:

Ⅰ,  TMS320VC5402中断及串口初始化

……

stm #0002h, 48h

stm #0040h, 49h ; 设置DSP串口1工作在每帧一个字,每个字16位模式

……

stm #0006h, 48h

stm #0100h, 49h ; 设置CLKGDV=0,使串口1工作在最大频率

stm #0007h, 48h

stm #0a000h, 49h ;设置CLKSM=1,采样率发生器时钟由DSP内部产生

stm #000eh,48h

stm #0008h,49h ;设置FSXP=1,使帧同步脉冲低电平有效

stm #0080h,imr  ;DMA一通道中断使能

rsbx  intm  ;开放所有可屏蔽中断

……

Ⅱ, AD50初始化

ld #0001h,a ;D0=1,请求第二次交流

stlm a,43h  ;向TLC320AD50C写数据

aa: stm #0001h,48h

ldm 49h,a

and #0002h,a

bc aa,aeq  ;数据是否被TLC320AD50C接收

ld #0180h,a ;给TLC320AD50C的寄存器1编程,使其复位

stlm a,43h

bb:stm #0001h,48h

ldm 49h,a

and #0002h,a

bc bb,aeq  ;编程数据是否被TLC320AD50C接收

……

stm #0100h,a ;TLC320AD50C脱离复位并且设置寄存器1,使INP,INM为输入

……

stm #0200h,a ;设置TLC320AD50C寄存器2,使电话模式无效

……

stm #0460h,a ;设置TLC320AD50C寄存器4,使采样频率为10.667KHz

……

stm #0300h,a ;设置TLC320AD50C寄存器3,使带0个从机

……

Ⅲ, DMA1通道初始化

stm #05h, 55h ;选择DMA1通道

stm #0041h,56h ;设置串口1接收端为DMA事件的源地址

stm #027fh,56h ;设置DMA事件的目的地址

stm #3000h,56h ;设置直接传送数据个数

stm #5000h,56h ;设置串口1同步模式,一帧接收一个字

stm #404dh,56h ;设置DMA为多帧模式,源地址不调整目的地址按57h的值调整

stm #20h, 55h

stm #0001h,57h ;设置目的地址为自动加1调整

stm #0282h,54h ;设置通道1为高优先级并使能通道1

……

4 实验结果

下面图中图4和图6分别为TLC320AD50C与TMS320VC5402组成的数据采集系统对同一个实验对象的语音信号“您好”和“啊”的采集结果,图5和图7分别为WINDOWS 98附件中的录音机所录下的语音信号“您好”和“啊”用MATLAB仿真后的图形结果。

下面图8为AD50采样信号“啊”音的FFT  Magnitude, 图9为WINDOWS 98附件中的录音机录制信号“啊”音的FFT  Magnitude。

5 结束语

本文以TMS320VC5402与TLC320AD50C为例,详细介绍了AD50与DSP串口通信的硬件接口及软件实现。从实验结果我们可以发现TLC320AD50C可以对语音信号进行无失真采样,完全能满足后续语音信号处理的要求,并且与DSP接口简单,高性能,低功耗,已成为当前语音处理的主流产品。广泛适用于音频处理,语音增强,语音安全,回声抵消,VoIP等电话或语音应用中。

篇5:基于定点DSP的MP3间频编码算法研究及实现

基于定点DSP的MP3间频编码算法研究及实现

摘要:通过对心理声学模型的简化,并在子带滤波器和量化编码模块采用快速算法,大大降低了运算量,在一片100MIPS的定点DSP上实现了实时压缩。

关键词:音频编码 掩蔽阈值 心理声学模分析子带滤波器

MP3是MPEG-1国际标准中音频压缩层3的简称,单声道比特率一般取64kbps,在采样率44.1kHz的情况下,其压缩比可达12倍以上,被广泛应用于互联网等许多场合。由于解码比编码过程简单很多,MP3播放机或随身听已随处可见,但MP3编码在单片机定点DSP上实现,并要保证音质,则鲜有耳闻。考虑到心理声学模型在整个MP3音频编码算法中所占比例巨大,笔者从简化该模型入手,采用快速算法减少了带编码的运算量和数据量,尽可能少量化编码的迭代循环次数,从而在一片美国德州仪器公司的TMS320C549芯片上实现了MP3的实时压缩,用标准解码软件回放,主观评定,对于通常的音频能达到接近CD的音质。

(本网网收集整理)

1 MP3编码算法及处理

图1是MP3编码器的系统方框图。每声道以1152个采样值为一帧进行处理。首先,分析子带滤波器采用正交镜像滤波器组,将20kHz左右带宽的信号划分成相等带宽的32个子带。然后对子样值作MDCT以补偿子带滤波的不足,主要是为提高频率分辨率、消除由子带滤波引起的带间混迭。

同时采样值通过心理声学模型计算出各频带的掩蔽阈值。

失真控制循环和非归一化量化控制循环是量化编码循环过程,它通过量化减少各MDCT系数的精度,使编码比特数得以降低。不同系数采用不同的量化阶,从耳敏感的频率量化精度高,不敏感的频率量化精度低,量化误差则不会被人耳察觉。选择量化阶的依据就是心理声学模型计算出的掩蔽阀值。

最后将量化阶等信息以及霍夫曼码打包成比特流,供解码用。

那么为什么掩蔽阈值能反映人耳的听觉特点呢?

人耳的听觉特性涉及生理声学和心理声学方面的问题。例如人耳对不同频率的声音感觉不同就是生理方面的问题,其中对2kHz~4kHz的声音最敏感,且低频较高频敏感。敏感程度具体体现为静态掩蔽阈值,如图2虚线所示,表示在安静的情况下,各种频率的声音刚好被听到的音量。与人的心理知觉有关的有掩蔽效应等。掩蔽效应指一个声音的听觉感受受到另一个声音影响的现象,分为时间掩蔽(前向、后向掩蔽)和频率掩蔽(同时掩蔽)。例如,当一个较强的声音停止后,要过一会儿才能听到另一个较强的声音,这就是时间掩蔽效应。频率掩蔽是指一个声音对与其同时存在的临近频率的声音产生的影响,如图2实线所示。其中标志1的实线表示:当1kHz的掩蔽声音为60dB时,不同频率的声音刚好被听到的分贝值,可见越临近频率被掩蔽得越厉害,且低频更易掩蔽高频。

因此心理声学模型就先用FFT分析信号中包含的频率分量,将每个频率处受到其他所有频率分量掩蔽的值加起来,连线得到的曲线就是掩蔽阈值,是频率的函数。当某频率分量的能量处曲线下方时,不能被人耳感觉到,则该频率分量可用零比特编码;另一方面,选择量化阶时若能保证量化噪声低于掩蔽曲线,也不被人耳察觉,所以掩蔽值越大的频率分量量化阶可以越大。因此用掩蔽阈值作为量化编码的依据,就能够信证压缩后的声音质量。由于声音信号随时间改变,因此每帧信号都要计算两次心理声学模型,其中要用到大量的实验测试数据,运算量之在是可想而知的。

2 算法的简化和优化

2.1 分析子带滤波器的快速算法

分析子带滤波器的输入是32个采样值,输出是32个频率等间隔的子带样值。它首先将32个采样值放入一个长度512的先进先出(FIFO)缓存;对该缓存加窗;然后512个缓存中每8个值累加,转换成64个中间值;最后通过(1)或将64个中间值变换成32个采样值:

寻找快速算法的关键就是这最后一步。将系数设数组:

可以发现该数组具有如下的对称性:

c[16+n]=c[16-n],n=0,1,…,16    (3)

c[48+n]=-c[48-n],n=0,1,…,15    (4)

所以合并系数相等或相反的项,(1)式变成:

其中,

可见用(5)式代替(1)式可以减少一半的乘法运算。又发现(5)式和标准的IDCT非常相似,可以将Lee提出的快速IDCT算法稍加改动推导(5)式的快速算法。所以又将32点变换分解成以下的两个16点变换:

其中,

最终的子带样值是如下的蝶形组合:

X[K]=Xe[k]+(1/cos[(2k+1)π/64]Xo[k],k=0,1,…,15 (11)

X[31-k]=Xe[k]-(1/cos[(2k+1)π/64])Xo[k],k=0,1,…,15 (12)

直接计算(1)式需要64×32次乘法和63×32次加法,采用快速算法需16×16×2+16×2次乘法和15×16×2+16×2+31+15次加法,运算量原来的1/4,而且数据表格所占用的存储空间也减少为原来的1/8左右。

2.2 心理声学模型的简化

根据试验观察发现每帧的掩蔽阈值曲线大致相同,所以考虑采用静态声学心理模型,具体做法是:首先对某一具有代表性的音频帧,根据心理声学模型计算出掩蔽阈值曲线,在压缩其它音频源时,不再计算每帧的心理声学模型,而是认为每帧信号与上述被分析过的代表帧具有相同的掩蔽特性。这样,虽然不是很准确,但通常情况下,误差不会太大,不易被人耳察觉,省去心理学模型需的巨大运算量和存储空间。实践证明编码效果令人满意,而且对于要求不是很高的应用场合,可以认为掩蔽阈值是频率的常数函数,每个频带采用相同的量化阶,也听不出声音质量的明显下降。

2.3 量化编码迭代循环的简化

量化编码迭代是两重循环过程,图3是外迭代循环流图,迭代的目的是在可用比特数的限制之内,以各频带的掩蔽值为依据,确定全局增益(体现了全局量化阶)和各频带的.缩放因子(体现了局部量化阶)。内循环逐步增加量化器步长,即全局增益,直到MDCT系数量化后可被可用比特进行霍夫曼编码,即通过增加全局量化阶以降低编码比特数;外循环依据掩蔽阈值检测各缩放因子带的失真,若超过允许失真,则扩大该带的MDCT系数,即增大该带的缩放因子,以降低局部失真;最后一次迭代的结果作为最终的霍夫曼码。每一次循环都要用当前量化阶量化并霍夫曼编码一次,运算量相当大。从外循环可以看出掩蔽阈值最终决定缩放因子,为了能省去外控代循环,将代表帧的缩放因子作成表格,供每帧采用。

由于上述三个模块是最主要并且运算量最大的模块,通过对它们的简化和优化,程序大小和运算量可得到极大的减少。

3 用定点DSP实现MP3压缩算法

为了实现MP3的实时编码,必须采用高速DSP芯片。采用美国德州仪器(TI)公司的主流定点DSP芯片TMS320C549,其运算速度100MIPS,调试开发的环境是TI公司的第三方Spectrum Digital公司的EVM评估板,板上除了TMS320C549自带32K字片上内存外,还有128K字片外内存,数模转换采用TI的TLC320AD55,与PC机通过JTAG口实现数据与程序的加载和调试。

由于评估板与主机的接口速度太慢,即使能做到实时压缩,将比特流传给PC机存盘的速度也会跟不上。因此笔者采用的办法是:将原始PCM音频数据从PC机的硬盘文件加载到板上的片外内存,压缩后的数据传给PC机存盘,再加载后续文件,压缩存盘,直到整个音频文件全部压缩完,最后用C语言程序将各数据块拼成MP3文件,用软件解码程序回放。是否能达到实时要求只能通过测试每帧运行的指令数判断。

在运用快速算法计算子带分析滤波器时,考虑到DSP芯片的特点,每分解一次,要作一次加(10)式的加法,势必降低精度,另外(11)和(12)式的系数动态范围太大,精度也会受到影响,因此,只分解到16点DCT运算。

采用静态心理声学模型,心理声学模型和量化编码外循环所需的运算量就为零。代表帧的心理声学模型和缩放因子采用C语言或MATLAB语言编程计算,或者将网上下载MP3文件中的缩放因子信息破译出来加以利用,子带分析滤波器之后的MDCT全部采用长块。表1是静态缩放因子比特数和缩放因子的一种设置方案。

表1 缩放因子数据表格

缩放因子带01234567891011121314151617181920缩放因子比特数333333333333333333333缩放因子110011453753030107503

另外在内循环中,首先初步选择一个全局增益使最大量化值小于码表可编码的最大值,标准推荐的作法是全局增益从小开始,每循环一次量化后,比较最大量化值,并调整一次全局增益,直到满足要求为止。本程序省去了这一循环,事先根据最大谱线值计算出应有的全局增益,作成数据表格,程序中只需根据最大谱线值查表即可。初始化全局增益确定后,要分区、量化、编码并计算编码比特数,如果比特数太大或太小都还要调整全局增益。对这一迭代循环过程,采用折半搜索的办法实现,也就是说第一次循环时全局增益取上述初始化值的一半,若编码比特数超出要求,则再取一半作为新的全局增益,否则增大一半,如此不断循环直到无法折半为止。这种折半搜索的方法比逐一搜索要快很多。

采用了这些简化、优化措施以及编程技巧,整个编码程序运算量仅需74MIPS左右,片上存储空间占用27K字左右。用标准的MP3回放软件解码,通过主观测评,音质接收CD。

由于本系统对心理声学模型进行了大量的简化,对于一般的音乐,这种简化带来的声音质量的下降并不明显,尤其是在要求不高的应用场合完全可行。但是当应用到某些编码难度较高的音频信号,例如响板时,声音质量下降较明显。因此如果采用更高运算速度的DSP,可在该编码系统中加入一个完备的或简化的动态心理声学模型,编码质量可进一步提高,至于简化的动态心理声学模型还有待进一步摸索。

篇6:基于DSP的磁控电抗器控制器的研究与设计

基于DSP的磁控电抗器控制器的研究与设计

磁控电抗器(magnetically controlled reactors)全称是磁阀式可控电抗器,简称MCR,是一种容量可调的并联电抗器,主要用于电力系统的无功补偿。

摘要:电力系统常采用并联电容器-电抗器组等无源设备进行无功补偿并兼作滤波。但由于负载经常处于变化之中, 采用固定容量补偿方式常常不能满足要求。目前无功补偿领域中磁控电抗器应用逐渐广泛推广,这样其控制系统显得尤为重要。通过利用DSP和CPLD结合设计的磁控电抗器控制器,可以实现磁控电抗器感性无功的平滑调节,从而实现动态无功补偿的目的。

关键词:DSP;磁控电抗器;CPLD

引言

磁控电抗器控制器作为磁控电抗器调试、运行中的一个必要部件,在项目开发对前其安全可靠性做全面的考虑,结合电网运行的实际情况,分析得到应输入输出的信号信息包括:(1)采集电网电压、电流,计算电网有功功率、无功功率和功率因数及相关开关信息;(2)根据参数设定和实际检测值自动闭环调节磁控电抗器移相触发脉冲信号;(3)手动、开环调节磁控电抗器移相触发脉冲信号;(4)控制液晶触摸屏,实现人机界面;(5)与变电站综保设备通信,实现远程控制。

一、控制系统原理

基于磁控电抗器的无功电压综合补偿控制器原理,采集电压、电流信号,计算系统的有功功率及无功功率,快速跟踪电压及无功功率的变化,动态地调节投入的补偿电抗器容量,平衡无功及电压。也就是说,控制器能自动检测系统的电流、电压,并能根据检测量自动调整晶闸管移相触发角的大小,进而改变磁控电抗器输出的感性容量。这样,磁控电抗器就可以根据电压和所需的无功,自动调节投入的补偿电抗。控制系统原理图如图1所示。

二、硬件电路设计

控制器硬件部分由8个独立模块组成,模块间由母板连接。控制器前部为液晶触摸屏,后部为各模块的输入输出接口。控制器硬件框图如图2所示:

(1)电量采集模块1、2。电量采集模块功能是将输入的电压、电流信号变换为-5~+5V正弦波信号、0~+12V方波信号。

(2)CPU模块。A/D转换部分是将-5~+5V正弦波信号变换为-2.5~+2.5V正弦波信号,送入AD转换芯片转换为数字量,再送入DSP芯片;输入输出部分是将CPLD芯片发出的触发信号进行隔离、功率放大,将输入的开关信号进行隔离再送入CPLD芯片;通信部分将DSP芯片收发的串行通信信号进行隔离和电平变换,连接至输出RS232端口与上位机通讯、与液晶屏通信端口通讯。

(3)光纤输出模块。光纤输出模块功能是将晶闸管移相触发脉冲信号转换为光信号输出。

(4)开关量输入输出模块。开关量输入模块是将输入开关量通过继电器隔离后,转换为0~3.3V信号;开关量输出模块是将输出开关量通过继电器隔离后,转换为机械触点信号。

(5)工作电源模块。工作电源模块是将输入的AC 220V电源(含地线)转换为+5V、±12V、+24V工作电源。

(6)触摸式液晶屏。触摸式液晶屏可显示和触控,完成系统运行状态显示和控制参数修改任务。

三、软件系统设计

本系统 的程序分为DSP软件程 序和CPLD硬件程序两部分,这两部分程序结合起来共同完成了MCR控制 器的控制功能。

系统设计的 思路是DSP完成采样、计算、控制、人机交互的工作,CPLD实现逻辑和时 序电路。图3为程 序系统设 计示意图。其控制过程为:(1)交流采样 的系统 参数接入DSP中,判断系统支行状态,由CPLD发出相应的触发信号;(2)通过 计算得出 每相MCR的控制角;

(3)DSP通过 总线发送控 制角到CPLD;(4)CPLD根据同步电压信号,生成六路晶 闸管触发信号;(5)DSP实现了通信、时钟、键盘、显示等功能;CPLD实现了锁相 倍频、键盘处理、开关量处理 等功能。

这里的数据采集、处理、控制算法等程序功能都在相应的中断处理程序得到实现。所以主程序主要是用来进行系统初始化和非实时事务的处理,具体包括以下几个功能:进行系统初始化、完成通讯报文处理、完成人机交互数据处理。

3.1 控制原理及主要控制算法

本次设计的控制器采取了电压无功综合考虑的控制策略,即用户可以只调无功或只调电压,也可以电压无功综合调节。其交流采样算法流程如图4所示。

同步倍频信号输入到AD模块的ADSOC控制口时,通过软件设置,使同步倍频信号每一次上升沿触发一次AD转换,AD转换结束后自动触发AD中断服务程序,中断服务程序的流程图如图5所示。每采集一个周期的数据,执行一次瞬时无功计算程序,计算出电网的电流、电压、无功功率、有功功率、功率因数、视在功率,再取平均值,与设定值比较,其差值来控制触发角,使检测到的无功逼近设定值。程序里使用的'一些子程序,如定点数正弦运算、定点数开平方、定点数余弦运算等,可以在DSP定点函数库中得到。

3.2 系统软件设计

本次设计中主要的数据采集、处理、控制算法等程序功能都在相应的中断处理程序完成,主程序主要是用来进行系统初始化和非实时事务的处理,即完成系统初始化、通讯、人机交互数据处理等功能。

控制器开机后,主程序首先进行DSP的初始化,然后进入程序主循环,在主循环里,主要完成液晶屏显示、键盘操作、通信等任务。

DSP主程序流程如图6所示。

四、结语

本文通过对磁控电抗器的硬件与软件设计的阐述,可以实现对磁控电抗器感性容量的平滑调节,达到无功补偿的目的。本系统采用DSP与CPLD相结合的控制方式,大大提高了运行效率,保证了设备运行速度,可以全自动在系统中运行,有效控制触发导通角,进而输出系统所需的无功补偿量。

参考文献:

[1]韩琳.基于可控电抗器的无功电压综合补偿[D]. 武汉大学硕士学位论文.

[2]高元楷.电力系统无功电压调整与控制[M]. 电力工程师手册 电气卷(上). 中国电力出版社.

[3]胡铭,陈珩.有源滤波技术及其应用[J]. 电力系统自动化.

[4]张皎,赵刚,汤广福.超高压大容量静止无功补偿器(SVC)装置研制[J].四川电力技术.

[5]彭军.静止无功补偿器研究现状及发展[J].四川电力技术.

[6]四铭兴,励庆孚.磁饱和式和变压器式可控并联电抗器[J].高电压技术.

[7]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].机械工业出版社.

篇7:TLC320AC01与DSP的接口设计

TLC320AC01与DSP的接口设计

摘要:介绍一种集成了ADC和DAC通道的TLC320AC01模拟接口电路与TMS320VC5402定点DSP接口电路的硬件设计方法。该设计采用2片TLC320AC01芯片,可工作于主从模式。文中给出了一个软件实例以说明主从模式下软件的实现方法。

关键词:TLC320AC01 TMS320VC5402 DSP主从模式

在许多应用系统中,数字信号处理器(DSP)必须从多路模数转换器(ADC)通道获取信息,才能将经DSP处理后的数字信号传送到多路数模转换器(DAC)通道进行。关键问题是怎样在DSP系统中十分容易且高效地实现这些转换,而这必然涉及到接口电路的设计。为此,本文将介绍一种在单片内集成有ADC通道和DAC通道的模拟接口电路TLC320AC01与TMS320VC5402缓冲串口进行接口的设计方法,同时给出了通过对这种接口电路的硬件进行软件编程来实现模拟信号的采集与回放的程序代码。

1 芯片介绍

TMS320VC5402是TI公司生产的TMS320VC54x系列中的一个操作灵活、高速、具有较高性价比、低功耗的16位定点通用DSP芯片。它的主要特点包括:改进的哈佛结构(1条程序存储器总线,3条数据存储器总线和4条地址总线)、带有专用硬件逻辑CPU和片内存储器以及片内外围专用的指令集、具有专用的汇编语言工具等。TMS320VC5402内含4k字的片内Rom和16k字的双存取RAM、1个HPI(Host Port Interface)接口、2个多通道缓冲串口MCBSP(Multi-Channel Buffered Serial Port),它的单周期指令执行时间为10ns、双电源(1.8V和3.3V)供电,此外,该DSP同时还带有符合IEEE1149.1标准的JTAG边界扫描仿真逻辑。

TLC320AC01是TI公司生产的14位、音频(大约12kHz带宽)、内含抗混叠滤波器和重构滤波器的模拟接口电路,它同时带有一个能与许多DSP芯片相连的同步串行数字接口。其内部电路的'配置和性能参数的设定(比如采样频率、滤波器带宽和增益高调整等)都可以通过对它内部的8个数据寄存器写入控制信息来实现。其ADC通道与DAC通道可同步操作,数据是以二进制补码格式进行传输的。它有3种基本的操作模式:单机模式、主从模式、线性编解码模式。在单机模式下,TLC320AC01可生成移位时钟和帧同步信号以用于单机的数据传输;在主从模式下,1个TLC320AC01将作为主机生成主移位时钟和帧同步信号,另外的模拟接口电路为从机;在线性编解码操作模式下,移位时钟和帧同步信号由外部电路生成,定时信号可以由任何一种编解码电路产生。TLC320AC01的典型应用包括调制解调器、语音处理、工业过程控制、光谱分析、作为DSP的模拟接口电路进行数据采集处理以及各种记录仪等。TLC320AC01的工作温度范围是0~70℃,采用28脚塑料J型针封装(带FN后缀)和64脚塑料扁平封装(带PM后缀),体积较小,适用于便携设备。它采用单5V电源供电时,工作时的最大功耗为110mW。

2 硬件连接

该接口的硬件连接电路原理如图1所示。图中,TMS320VC5402与2片TLC320AC01的主时钟必须来源于同一外部时钟源。本采用10MHz的有源晶振作主时钟源,以消除噪声并保持DSP芯片与TLC320AC01接口电路的协调工作。

主模式时,TLC320AC01的M/S端接高电平;从模式时,TLC320AC01的M/S接地。

3 软件设计

3.1 软件编制过程

在完成了正确的硬件连接后,接下来就可以进地软件编程调试了。该过程要完成的工作主要包括以下几方面:

(1)两个通道的区分

TLC320AC01的运行模式是主从模式:一个TLC320AC01是主,另一个是从。硬件上可通过设置M/S的高低电平分配主从模式的TLC320AC01,而软件上则通过检测从TLC320AC01所接收的信息字中的最低有效位来分析主与从。主信息字的最低有效位是0,而所有从信息字的最低有效位均是1。主从模式下,TLC320AC01与TMS320VC5402的缓冲串口通信轮流进行。(本网网收集整理)

(2)初始化

初始化操作过程包括通过TMS320VC5402的同步串口发送两串16位的数字信息到TLC320AC01。第一串为0000 0000 0000 0011B,其中14个最高有效位(bits 15~2)定义输出采样值为0,而2个最低有效位(bits1~0)用于说明下一个要传输的数据字是否属于二次通信(关于一次通信和二次通信的内容请参阅TLC320AC01的数据手册)。第二串数据值用来对TLC320AC01的9个数据寄存器的某一个进行配置。其中Bit15、14用来控制Modem中的相移,这里设置为0;bit13为0表示这个数据值将写到TLC320AC01的某个寄存器;bit12~8用于要配置的寄存器地址;bit7~0为要写到寄存器的值。9个寄存器的描述如下:R0在大多数应用时设为0,R1用于设置采样频率,R2用于设置低通滤波器的截止频率,R3用于进行相移

控制,R4用于进行模拟输入输出的增益控制,R5用于使能高通滤波器,R6用于控制操作模式,R7可用来控制从模式的串行通信,R8则用于控制生成的帧同步脉冲数。

(3)用户代码的编写

该过程主要完成音频信号的采集与回放代码的编制。本设计采用中断方式,包括发送中断和接收中断。

3.2 部分关键代码

(1)初始化

初始化代码TMS320VC5402的初始化和TLC320AC01的初始化。TMS320VC5402的初始化代码如下:

SSBX INTM ;使所有中断无效

ORM #0834h,PMST ;设备处理器方式状态寄存器PMST

STM #02492h,SWWSR ;所有外围两个等待状态

RSBX OVM ;使OVM=0

RSBX FRCT ;使FRCT=0,允许整数乘

STM #010h,IMR ;多通道缓冲串口接收中断使能

RSBX INTM ;使能所有非屏蔽中断

下面是TLC320VC01的初始化程序代码:

SSBX SXM ;设置符号扩展模式

LD #PR1,DP ;以下三句设置TLC320AC01内部数据

LD PR1,A ;寄存器R1的值,其余寄存器的设置与此同

CALL AC01_2ND

……

RET

AC01_2ND;

RSBX INTM ;使中断有效

STH A,DXR10

STL A,DXR10

STL #0,DXR10 ;确保字被发送

SSBX INTM ;使中断无效

RET

(2)接收中断服务程序

这段程序包括通道的区分,方法是使主TLC320AC01首选写入,主TLC320AC01的LSB是0,从TLC320AC01的LSB是1。发送中断与此相同。具体程序如下:

SBPREC:BITF DRR10,#1

BC loop1,TC

LD DRR10,A

AND #0fffch,A

STL A,DXR10

B loop2

Loop1:LD DRR10,A

AND # 0fffch,A

STL A,DXR10

RETE

Loop2:RETE

4 结束语

利用本文介绍的硬件设计方法和软件编程可以完成模拟信号的采集与回放,从而实现诸如数据采集、处理和存储等功能,并可对采集的数据进行频谱分析,因而可广泛应用于频谱分析仪、数字记录仪以及调制解调器等。

篇8:基于DSP的移动机器人的设计与实现

基于DSP的移动机器人的设计与实现

摘要:智能交通系统是21世纪城市交通的发展方向,移动机器人作为智能车辆控制系统实验平台的一个主要部分,对智能交通系统的关键技术的研究具有十分重要的意义。介绍了面向智能交通系统的SJTNC-1移动机器人的组成和结构,并详细叙述了基于数字信号处理器TMS320LF2407A的控制系统的设计和实现。

关键词:智能交通系统 移动机器人 数字信号处理器

智能交通系统(ITS)的概念是美国智能交通学会于1990年提出的,它将先进的信息技术、通信技术、自动控制技术、电子技术及计算机处理技术综合运用于整个运输管理系统中,通过对交通信息的采集、传输和处理,对交通运输进行协调和管理,建立起实时、准确、高效的综合交通运输管理体系,从而提高了交通效率和安全了,实现性交通运输服务和管理的智能化。

(本网网收集整理)

智能车辆的导航与定位、自动驾驶与控制和车辆的预警防碰等智能交通系统关键技术的研究,近年来受到国内外越来越广泛的关注,也取得了丰硕的成果。但真正的实验研究还是很少,基本上只进行了仿真试验。鉴于理论上的模拟和实际应用情况可能相差甚远,选择了具有智能性、易扩展性和移动性等优点的车型移动机器人作为ITS关键技术的研究平台中的主要部分――车辆模拟器。

本文所阐述的移动机器人SJTNC-1,就是面向ITS提出的。考虑到关键技术研究中需进行大量的计算,如模糊控制、卡尔曼滤波和路径导引等,并且系统对数据的实时性要求很高,所以采用数字信号处理器(DSP)作为移动机器人主控CPU。

1 TMS320LF2407A简介

TMS320LF2407A(以下简称F2407)是TI公司在TMS320系列DSP的基础上,专为数字电机控制而设计的。除了具有一般DSP的改进的哈佛结构、多总线结构和流水线结构等优点外,它还采用高性能静态CMOS技术,电压从5V降为3.3V,减少了功耗。并且指令执行速度提高到40MIPS,几乎所有指令都可以在25ns的单周期内完成。如此高的运算速度使其可以通过采用高级控制算法如模糊控制、卡尔曼滤波以及状态控制等来提高系统的性能。而且,它具有电机控制应用所必需的.外设,如:32K片内FLASH、2K单访问RAM、串行外设接口(SPl)、串行通信接口(SCl)、两个事件管理模块、16通道双10位A/D转换器和CAN控制器模块。

2 移动机器人的运动机构

考虑到该移动机器人是面向ITS的,所以采用的是车型结构(四轮结构)。前两轮通过减速比为8:1的齿轮减速机构与转向电机进行连接,实现移动机器人的转向功能;后两轮通过减速比为6:1的齿轮减速机构与驱动电机进行连接,实现移动机器人的驱动。电机的选型可根据实际情况选择小型步进电机或小型直流电机。这里选用的是瑞土Minimotor公司生产的直流电机,这种电机具有体积小、转矩大等特点。

3 移动机器人控制系统

控制系统以控制器F2407为核心,由无线通信、电机驱动、速度传感器、数字罗盘、差分GPS(DGPS)接收机和4转1串口通信模块等组成,如图1所示。无线通信模块根据自行约定的通信协议接收上位机的规划好的路径信息,整个控制系统通过控制驱动电机和转向电机使移动机器人跟踪该路径行驶。电机采用PWM调速方式,其中驱动电机采用双闭环(速度和电流)PID控制策略,而转向电机则通过把数字罗盘的航向信息作为转向的反馈量进行PID控制。整个控制系统把DGPS接收机的位置信息作为系统的位置反馈信息,用以完成整个系统的位置闭环控制。

图3

3.1 无线通信模块

MC35是德国西门子公司生产的可二次开发的支持GPRS的双频GSM模块,可以通过标准串口与PC机相连。本系统用MC35作为移动机器人与上位机的通信模块。它具有GPRS技术带来的一切优点,如一直在线和提供高速价廉的数据传送服务等。该产品的特性如下:

・支持双频:EGSM900/GSM1800

・支持GPRS Class8协议

・支持数据、语音、短消息和传真服务

・采用电路交换方式,最大传送速率为14.4kbps

・支持的电压范围:8V~30V

・采用标准工业接口

・体积:65mmx74mmx33mm

・重量:130g

3.2 驱动模块

驱动电机和转向电机的驱动原理相同,都采用脉宽调制(PWM)方式进行调速,PWM信号由F2407产生。驱动电路采用H全桥方式,由4个达林顿管(2个TIPl32和2个TIPl37)、4个IN4001二极管及与非门组成。电路原理图如图2所示。 当PWM2、PWM4为低电平而PWMl、PWM3为高电平时,T1、T4饱和导通,T2、T3截止,电流从T1→电机→T4,电机正转;反之,当PWMl、PWM3为低电平而PWM2、PWM4为高电平时,T2、T3饱和导通,T1、T4截止,电流从T2→电机→T3,电机反转。

图4

为防止T1、T3或T2、T4同时导通,形成短路而击穿器件,要用一对无重叠的PWM输出去正确地开启和关断这两对管子。在一个管子关断和另一个管子开启之间加入死区时间,这样就使得一个管子开启前,另一个管子已完全关断。F2407具有死区控制单元是其一大特色,从而可用软件确保功率电路上下桥臂开关元件的开通区间没有重叠,简化了硬件电路设计,提高了可靠性。

3.3 4转1串口通信模块

由于DGPS接收机、磁罗盘、里程计和MC35通信模块都采用RS-232异步串行通信,而F2407只有一个串行口,所以必须将4个串口数据通过转换处理来完成与F2407的串口通信。为此研制了基于分时复用方法的4转1串口通信模块。当F2407需要某个传感器(或无线通信模块)的数据时,就通过电路选通该传感器占用F2407串口进行通信;当需要另外传感器或无线通信模块数据时,则关断上次传感器的选通,同时选通该次传感器或无线通信模块。4转1串口通信模块由3-8译码器74LSl38、三态输出的四总线缓冲门74LSl25和电平转换器MAX232等组成,其电路原理图如图3所示。

3.4 定位传感器

3.4.1 DGPS接收机

CPS(全球定位系统)是基于卫星的无线电导航系统,它提供一种廉价实用的可在全球范围内确定位置、速度和时间的工具。CPS由24颗卫星(21颗工作星、3颗备份星)组成星座,星座分布在与地球赤道面倾角为55°的6个轨道面上,其运行周期为11小时58分,轨道半径为20200km,各轨道面夹角,为60°。每颗卫星向地球发射L频段的特高连续波,调制两种伪随机码(军用高精度保密P码和民用C/A码)。这样的分布特点保证了用户在地球上任何地点、任何时间至少可以连续地收到4颗以上卫星的导航信号,从而联立解算出接收机的三维坐标以及接收机和GPS间的时间偏移。三维坐标采用ECEF笛卡儿坐标系或大地坐标系如WGS84。

虽然美国政府于5月取消了民用C/A码的可选择性保护,但民用导航型GPS接收机的单点实时定位精度只能达到25m左右,不能满足系统的定位导航要求。而采用实时差分GPS(DGPS),其定位精度可以达到2~5m,该精度已能满足系统定位和导航的要求。

为此研发了单基站DGPS(SRDGPS)系统,其结构框图如图4所示。基准站由ALLSTAR BASE GPS接收机、天线和MDS无线电发射台、天线组成,流动站由SUPERSTAR GPS接收机、天线和MDX无线电接收台、天线组成。其中基准站安装在上海交大徐家汇校区教学一楼楼顶,该基准站能覆盖方圆30公里的范围,流动站安装在车载单元上。

3.4.2 数字罗盘和车速传感器

采用HoneyWell公司的HMR 3300数字罗盘作为移动机器人的方向检测传感器。其主要技术指标为:(1)1度航向精度,0.1度分辨率;(2)0.5度重复性;(3)±60度倾斜俯仰范围;(4)15Hz响应时间;(5)-40+85度工作温度;(6)6~15V直流电压。

同时采用用于大众汽车公司桑塔纳2000型轿车的霍尔车速传感器作为移动机器人的车速传感器。其工作原理是以霍尔传感器为变换元件,将机械旋转量转化为电脉冲信号输出。主要技术指标为:(1)输出波形为矩形脉冲,占空比为50%;(2)每旋转一周产生6个脉冲;(3)额定电压为12V。

4 电源模块

电源模块需分别给各传感器、DSP芯片、其它芯片和电机供电。其中,磁罗盘、码盘和DGPS接收机使用12V直流电压,DSP芯片使用3.3V直流电压,其它芯片使用5V直流电压,还有电机电源使用12V直流电压。所以,采用1节12V的直流蓄电池(4AH),直流5V通过ST半导体公司的L7805和扩流用的功率管实现,DSP芯片用3.3V电源采用ON半导体公司的1SMB5913BT3实现。F2407正常工作时,所有电源管脚都为3.3V;写入FLASH存储器时,VCCP引脚为5V供电;复位时,复位电路会产生一个10μs宽度的持续低电平使芯片复位。

5 控制器程序结构

DSP程序由五大功能模块组成,分别为系统初始化模块、串口通信模块、路径引导模块、驱动电机控制模块和转向电机控制模块。TI公司提供了用于C语言开发的CC和CCS平台。该平台包括了ANSIC优化编译器,从而可以在源程序级进行开发调试。这种方式大大提高了软件的开发速度和可读性,方便了软件的修改和移植。但在某些情况下,代码的

效率还是无法与手工编写的汇编代码的效率相比。此外,用C语言实现芯片的某些硬件控制也不如汇编程序方便,有些甚至无法用语言实现。为了充分利用芯片的资源,更好地发挥C语言和汇编语言进行软件开发的各自优点,采用混合编程方法将两者有机结合起来,兼顾两者的优点,避免其弊端。系统的框架如图5所示。下面对关键的几大模块进行简要的阐述。

5.1 串口通信模块

该模块程序采用串口中断方式实现,主程序主要由系统初始化、串口初始化、串口中断设置和等待中断组成。而中断子程序分为发送子程序和接收子程序。本文给出发送子程序流程图。主程序及发送子程序流程图如图6所示。

5.2 路径引导模块

该模块在移动机器人行驶中为其提供实时的速度和转向指令,从而引导它沿着上位机给定的路径行驶。主要包括行驶指令的产生和规划路径的跟踪两个环节。

根据预瞄跟随理论及驾驶员的开车行为特性,智能行驶和驾驶员操纵行为是内在一致的。通过研究有驾驶员操纵行为,发现主要根据两个因素决定车辆的前进速度,这两个因素分别是道路的弯曲程度和机器人相对参考路径上的方向偏差。

移动机器人的前进速度的控制不需要连续变化,可设置为三档,分别对应高、中和低三个速度。由此确定的前进速度跟踪规则为:

・当方向偏差小于10度时,路径基本为直线,前进速度设为高速;

・当方向偏差小于90度时,路径弯曲较严重,前进速度设为低速;

・其它情况时,前进速度为中速。

5.3 驱动电机和转向电机控制模块

驱动电机模块采取PID控制策略,将车速传感器检测的信号作为电机的反馈信号,进行PID控制,取得了很好的控制效果。转向控制模块的控制策略与驱动电机的类似,只是其反馈的信号为数字罗盘的方向信号。PID控制算式为:

△u(k)=Kp[e(k)-e(k-1)]+Ki・e(k)+

Kd[e(k)-2e(k-1)+e(k-2)]

u(k)=(k-1)+△u(k)

式中,u(k)为控制的输出;e(k)为k时刻的偏差;Kp、Ki、Kd分别为PID控制算法的比例系数、积分常数和微分常数。

篇9:星载高性能DSP加固设计方法研究

星载高性能DSP加固设计方法研究

分析了高性能数字信号处理器程序存储区的位翻转、数据存储区的位翻转、外设控制寄存器的.功能中断、中断控制寄存器的单粒子功能中断、程序Cache的位翻转、JATAG逻辑的功能中断等原因引起的失效模式,给出了软件设计中的几个有效的加固方法.这些方法应用于某卫星通信载荷设计中,试验证明,这些方法可以有效地对付由单粒子翻转和单粒子功能中断等辐射效应引起的DSP故障或者失效.

作 者:邢克飞 杨俊 周永彬 季金明 XING Ke-fei YANG Jun ZHOU Yong-bin JI Jin-ming  作者单位:邢克飞,杨俊,周永彬,XING Ke-fei,YANG Jun,ZHOU Yong-bin(国防科技大学机电工程与自动化学院,长沙,410073)

季金明,JI Jin-ming(上海航天电子有限公司五三九厂,上海,201800)

刊 名:电子器件  ISTIC英文刊名:CHINESE JOURNAL OF ELECTRON DEVICES 年,卷(期):2007 30(1) 分类号:V4 关键词:单粒子翻转   单粒子功能中断   数字信号处理器   辐射加固设计  

篇10:研究技术VS研究设计交互设计

首先,在这里我只做个简略介绍,如果有兴趣,网上有很多相关资料,或者我们一起探讨,所以请大家先有个心理准备,

其次,我要表达一下为什么想写这个内容。主要是随着科技的进步,我们能够使用的研究设备越来越多,但是研究设备变得越来越精密,越来越复杂,却不一定能够为你的研究带来相应的收益,所以明白每种设备的优势和局限,将可以更好的设计出契合设备特点的实验,得到更加科学准确的数据支持来你的结论。

本篇的顺序将是从时间线上由远及近的介绍几种常见的研究手段,并就我所了解的部分分别讨论一下各种研究手段常用的范围。然后我会介绍一个经典的研究设计,我希望给大家展现这样一种观点,那就是精妙的设计,再配合相应的研究手段,可以成就一个经典的实验,为后人借鉴,将设计的精髓贯穿下去。

1 研究技术

1.1 普通的行为实验技术

行为主义(Behaviorism)源于美国,以John B. Watson为代表人物,主要的观点就是刺激——反应,尽管后来B. F. Skinner提出了刺激——(操作——反应),但其核心观点只有一个。那就是一个刺激——产生一个行为。在实验中,这个行为一般是你规定其作出的。而一些不同行为间的差异(比如按键左键还是右键),一般用反应时做指标,就间接的反应了不同的心理活动。

下面,我们来描述一个最简单的实验,以便更好的说明问题。

假设有这样一个实验,要求被试(participant,也就是实验对象,以后方便简化我都称之为被试)盯着一块屏幕,屏幕上会随机呈现红色或者绿色的方块,被试手里有一个按键器,要求被试在看到红色方块的时候按左键,看到绿色方块的时候按右键。

如果得到的结果显示被试在按左键和按右键的反应时差异显著,是不是就反应了人在看到红色和看到绿色的时候其心理过程是不一致的呢?答案是不一定。

咳,好像我之前这些都白做了!

其实也不是的,我们先来说说这个实验设计的缺点。红色方块按左键,绿色方块按右键,可能按键的两个手指平时的灵活性就不一样,本身在反应时上就有差异,左撇子的左手就比右手灵活。所以一般我们在实验中会平衡按键,最简单的做法就是在一半的实验中红色方块按左键,绿色方块按右键,在另一半的实验里要求红色方块按右键,绿色方块按左键;接下来我们再仔细想想,也许这个心理过程本身不像我们想象的那么简单,也许并不是A——>B的关系,它可能是A——C——>B,也可能是A——C*E——>B这样的关系,那么这样得到的反应时差异是不是就不能完全说明这两种不同的反应卷入的心理活动不一样了?这就像基础教育和高等教育的差别,基础教育中你学到的一切都是确定的,

在大学中,你学到的大部分东西都是不确定的。(也就是说所有的一切你都可以去合理的质疑!这不是很好吗?!——简直是太好了!)

下面在来说说我们上面的实验都用到哪些设备。

很简单啦,一台PC机就能实现。简单的实验我们一般用E-Prime这样傻瓜式的软件,通过在时间轴上拖拽一些已经事先写好的程序模块就可以实现了。复杂点的用MatLAB也可以写出来了。需要对声音反应的就装喇叭,就这么简单。

图1 E-Prime实验流程示意图

1.2 眼动实验技术

其实呢,眼动实验也属于行为实验,以下我介绍的实验统统属于行为实验的范畴。

眼动实验技术是为了满足一些特殊需求的研究而产生的,顾名思义,就是为了记录眼睛的运动情况。总体来说呢,眼动实验主要分为两大类,那就是随便看和我要你看这两种。你要是问:“那我要你随便看算哪种?”的话,我会斜着眼睛,撇着嘴告诉你:“算随便看那一种!”q(s^t)r

我们学校的实验室用的是比较老的型号,不过这东西怎么说呢,够用就好。我们的头戴式EyeLinkII,更多的是用来做注意,或者阅读等基础研究。

眼动仪器的优点就不提了,直接说缺点:比如校准时间长(跟ERP比起来真是短死了),数据可能会丢失,设备可移动性不高,研究范围受局限。

眼动研究帮助我们了解人们是如何看世界的,已有的大量研究已经给我们提供了很多关于人眼在观看事物时所具有的特点,我们完全可以在产品设计伊始就加以应用,制作出更好,更科学,更符合人类认知习惯的产品来。我希望大家可以使用眼动仪做出更有趣和更有意义的东西来,而不仅仅只是用来验证已经被发现了的现象,在我看来这是对资源的极大浪费,要知道很多学校的心理学实验室甚至连眼动仪都配备不起。

图2 EyeLinkII眼动仪头戴部分

下期预告:

1.3 ERP脑电技术

1.4 TMS经颅磁刺激仪

老妈与MP3(散文)作文

三字经全文 mp3

在示波器上使用DSP滤波技术的探讨

技术与设计的关系说课稿

技术教学设计

诗朗诵背景音乐 mp3

三字经朗读mp3下载

三字经儿歌mp3

社会 语录 mp3

三字经全文朗读mp3

基于DSP技术的MP3播放器的研究与设计(精选10篇)

欢迎下载DOC格式的基于DSP技术的MP3播放器的研究与设计,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档