三年级应用题100道及答案

时间:2023-04-03 03:42:12 作者:JO 综合材料 收藏本文 下载本文

【导语】“JO”通过精心收集,向本站投稿了12篇三年级应用题100道及答案,下面小编给大家整理后的三年级应用题100道及答案,希望大家喜欢!

篇1:五年级应用题100道答案

五年级应用题100道答案

五年级应用题100道答案

1、解放军某部进行军事训练,要行军502千米,开始每天走60千米,走了3天后,余下的路程每天多走20、5千米,需要几天走完?

2、甲袋大米重68千克,从甲袋倒出15千克到乙袋后,甲袋还比乙袋重5千克。求乙袋原有大米多少千克?

3、某钢厂一座炼炉前3天每天炼钢830吨,后5天每天炼钢850吨。求平均每天炼钢多少吨?

4、摩托车驾驶员以每小时20千米的速度行了60千米,回来时每小时行30千米。往返全程的平均速度是多少?

5、某机床厂第一车间的职工,用18台车床2小时生产机器零件720件,20台这样的车床3小时生产机器零件多少件?

6、用30千克黄豆可做出120千克豆腐,照这样计算,要做600千克豆腐,需要黄豆多少千克?

7、一列快车和一列普通客车从甲乙两个城市同时相对开出,快车每小时行90千米,普通客车每小时行48千米,经过2、5小时后,两列火车在途中相遇。求甲乙两城市间的铁路长多少千米?

8、两地相距28千米,甲乙两辆汽车同时分别从两地同一方向开车。甲车每小时行25千米,乙车每小时行32千米,甲车在前,乙车在后,几小时以后乙车能追上甲车?

9、把一张长90厘米,宽20厘米的长方形的纸裁成若干张同样大小的正方形纸,要求正方形的边长最大,而且不浪费纸。可以裁多少张正方形?

10、园林局为了绿化公路,在一段公路的两边每隔4米栽一棵树,一共栽树74棵,现在要改成每隔6米栽一棵树。那么,不移栽的树有多少棵?

11、甲有14、8元,乙有15、2元,俩人要合买一个足球,一个足球的价钱是他俩人钱数总和的2倍,一个足球多少元,他们还差多少元?

12、一台机器3小时耕地15公顷,照这样计算,要耕75公顷地,用5台机器需要多少小时?

13、商店有14箱鸭蛋,卖出去250千克后,还剩4箱零20千克,每箱鸭蛋有多少千克?

14、光明小学为山区同学捐书,四年级捐240本,五年级捐的是 四年级的2倍,六年级比五年级多捐120本,平均每个年级捐多少本?

15、粮店运进大米、面粉各20袋,每袋大米90千克,每袋面粉25千克,运进的大米比面粉多多少千克?(用两种方法解答)

16、两根绳共长48、4米,从第一根上剪去6、4米后,第二根比第一根剩下的2倍还多6米、两根绳原来各长多少米?

17、四、五年级的学生采集树种,四年级采集树种18、6千克,四年级比五年级少采集2、5千克,两个年级一共采集多少千克树种?

18、一个车间原来每月用电2450千瓦o时,开展节约活动后,原来一年的用电量,现在可多用2个月,这个车间平均每月节约用电多少千瓦o时?

19、同学们参加植树劳动,四年级共有96人,每人栽3棵树,五年级有87人,每人栽4棵树,五年级比四年级多栽树多少棵?

20、第一小组6个同学数学测验的成绩分别是:86、79、98、100、89、94,算一算他们的平均分是多少?

21、一辆汽车3小时行了135千米,一架飞机飞行的速度是汽车的28倍还少60千米,这架

飞机每小时行多少千米?

22 一个服装厂5天生产西服850套,照这样计算,一个月生产西服多少套?(一个月按30天计算)

23、商店运来8筐苹果和12筐梨,每筐苹果38千克,每筐梨42千克,商店共运来水果多少千克?

24、一块长方形地,长是宽的4倍,若长减少5米,宽增加2米,则面积比原来长方形增加35平方米,求原来的长方形的面积。

25、修一条公路,计划每天修1、2千米,比实际少修0、2千米,结果提前5天修完,这条路全长多少米?

26、飞机的速度是每小时1044千米,是火车速度的14、5倍,而火车的速度又是汽车速度的1、6被倍,那么汽车每小时是多少千米?

27、1、2与0、4的和乘以6的积去除4、8,商是多少

28、一只鲸的体重比一只大象的体重的37、5倍多12吨、已知鲸的体重是162吨,大象的体重是多少吨?

29、有甲、乙两个书架、已知甲书架有540本书,比乙书架的3倍少30本、乙书架有多少本书?

30、甲、乙两人做零件、甲做了240个,比乙做的2倍还多40个、乙做了多少个?

31、培英小学有学生350人,比红星小学的学生的3倍少19人、红星小学有学生多少人?

32、水果店运来橘子340千克,比运来苹果的3倍少80千克、运来苹果多少千克?

33、买4枝钢笔比买5枝圆珠笔要多花2、2元,每枝圆珠笔的价钱是0、6元,每枝钢笔是多少元?

34、甲乙两地相距360千米,一辆货车从甲地开往乙地1、5小时后,一辆客车从乙地往甲地开出,货车每小时行40千米,客车每小时行42千米,客车行驶几小时后两车才能相遇?

35、商店运回苹果和桔子共250千克,苹果的千克数是桔子的1、5倍,运回的苹果和桔子各多少

千克?

36、某工程队修一条路,原计划每天修4、2千米,20天修完,实际每天多修1、8千米,实际多少天修完?

37、化工厂生产一批原料,如果每天生产432千克,需要25天完成、实际每天多生产了108千克,实际几天完成?

38、什么数比2、5的4倍还多2、1?

39、100比什么数的10倍多99?

40、甲乙两地相距560千米,一辆汽车从甲地开往乙地,每小时行48千米,另一辆汽车从乙地开往甲地,每小时行32千米、两车从两地相对开出5小时后,两车相距多少千米?

41、一个长方形的周长为9、8厘米,已知长比宽多0、5厘米。这个长方形的长、宽、面积各是多少?1、运送29、5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2、5吨的货车运。还要运几次才能完?

42、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

43、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

44、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

45、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87、1分;六(2)班有42人,平均成绩是多少分?

46、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

47、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

48、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?

49、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?

50、一块三角形地的面积是840平方米,底是140米,高是多少米?

51、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2、4米,每件儿童衣服用布多少米?

52、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

53、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

54、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0、5元,苹果和梨每千克各多少元?

55、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?

56、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。

57、两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?

58、某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?、x的5倍减去2、5除5的商,差得38,求x、

59、一个数加上25等于110与75的差,这个数是多少?

60、5与9的积减去一个数的3倍是2、1,求这个数、

61、水果店运来30筐苹果和25筐梨,苹果一共比梨重25千克、已知每筐苹果重30千克,每筐梨重多少千克?

62、少儿书店运进15种故事书,每种30本,卖出一些后,还剩120本、卖出多少本故事书?

63、一个正方形与一个三角形的面积相等,已知正方形的边长是6分米,三角形的底是9分米、三角形的高是多少分米?

64、甲、乙两个小组6天加工1680个零件,甲组每天加工144个,乙组每天加工多少个零件?

65、养禽场共养鸡、鸭3000只,鸡的只数是鸭的3倍、鸡、鸭各有多少只

66、一段公路原计划20天修完,实际每天比原计划多修45米,提前5天完成任务,原计划每天修路多少米?

67、一个等腰三角形底角是顶角的2倍,底角是多少度?

68、同学们玩猜数游戏。小玲说:“用我想的数乘9再加上6、15等于15、87。”你知道小玲心里想的数是多少吗?

69、妈妈:我比小敏大28岁,爸爸:我和小敏今年的年龄相加是 60岁,小敏:妈妈的年龄是我的3倍。请问小敏今年多大了?爸爸、妈妈的年龄你多少岁?

70、某小学三、四、五年级共种树585棵,四年级棵数是五年级的1/5,三年级种树是五年级的3/4,三个年级各种树多少棵?2、某年七月分的降雨天比晴天少8/11,阴天数是晴天的3/22,这个月雨天有多少天?3、某校五年级共有学生152人,选出男生的1/11和5名女生一起参加数学竞赛,剩下的同学正好相等,这个班有男女同学各多少人?4、有两根铁丝长44米,若把第一根截去1/5,第二根接上2、8米则两根相等,两根原来各长多少米?

71、某人从家骑自行车到火车站,如果每小时行15千米,那么可以比火车开车时间提前15分钟到达,如果每小时行9千米,则要比开车时间晚15分钟到达,现在打算比开车时间早10分钟到达,每小时应行多少千米?

72、食堂买来面粉和大米,面粉的重量是大米的两倍,每天吃15千克大米,20千克面粉,几天后大米全部吃完,面粉还剩80千克,这个食堂买来大米和面粉各多少千克?

73、甲车行驶10小时,乙车行驶7小时,甲车比乙车多行驶276千米、如果两车的速度相同,求这两列车的速度、

74、陈和张骑自行车从同一地点同时向相反方向骑、0、5小时后相距12、5千米、陈每小时行驶12千米,张每小时行多少千米?(方)

75、家具厂卖出书柜个数是五X柜的五分之一,卖出的书柜比五X柜少120个,卖出书柜和五X柜各多少?(方)

76、做一个容织是60平方分米的长方体铁皮箱,底面的长是4分米,宽是3分米,高是多少?(方)

77、师傅加工零件80个,比徒弟加工的2陪少10个、徒弟加工多少个?(方)

78、徒弟加工零件45个,比师傅的二分之一多5个、师傅加工多少个?(方)

79、某小学三、四、五年级共种树585棵,四年级棵数是五年级的.1/5,三年级种树是五年级的3/4,三个年级各种树多少棵?2、某年七月分的降雨天比晴天少8/11,阴天数是晴天的3/22,这个月雨天有多少天?3、某校五年级共有学生152人,选出男生的1/11和5名女生一起参加数学竞赛,剩下的同学正好相等,这个班有男女同学各多少人?4、有两根铁丝长44米,若把第一根截去1/5,第二根接上2、8米则两根相等,两根原来各长多少米?

80、某人从家骑自行车到火车站,如果每小时行15千米,那么可以比火车开车时间提前15分钟到达,如果每小时行9千米,则要比开车时间晚15分钟到达,现在打算比开车时间早10分钟到达,每小时应行多少千米?

81、食堂买来面粉和大米,面粉的重量是大米的两倍,每天吃15千克大米,20千克面粉,几天后大米全部吃完,面粉还剩80千克,这个食堂买来大米和面粉各多少千克?

82、甲车行驶10小时,乙车行驶7小时,甲车比乙车多行驶276千米、如果两车的速度相同,求这两列车的速度、

83、陈和张骑自行车从同一地点同时向相反方向骑、0、5小时后相距12、5千米、陈每小时行驶12千米,张每小时行多少千米?

84、家具厂卖出书柜个数是五X柜的五分之一,卖出的书柜比五X柜少120个,卖出书柜和五X柜各多少?

85、做一个容织是60平方分米的长方体铁皮箱,底面的长是4分米,宽是3分米,高是多少?

86、师傅加工零件80个,比徒弟加工的2陪少10个、徒弟加工多少个?

87、徒弟加工零件45个,比师傅的二分之一多5个、师傅加工多少个?(方)

88、“六一”艺术节快到了,学校舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人。合唱队有多少人?

89、“六一”艺术节快到了,学校合唱队有84人,合唱队的人数比舞蹈队的3倍多15人。舞蹈队有多少人?

90、学校图书馆里科技书的本数比文艺书的2倍多47本。科技书有495本,文艺书有多少本?

91、地球绕太阳一周要用365天,比水星绕太阳一周所用时间的4倍多13天。水星绕太阳一周要用多少天?

92、学校“科学兴趣”小组今年养兔25只,比去年养的只数的3倍少8只。去年养兔多少只?

93、笑笑和妈妈在超市买了1包饼干和4听饮料共用去11、4元。已知1包饼干3、6元,1听饮料多少元?

94、淘气在文具店买了一付羽毛球拍和4个羽毛球共用去40元。已知一付羽毛球拍的价钱是32元,每个羽毛球的价钱是多少元?

95、淘气在文具店买了2付羽毛球拍和4个羽毛球共用去72元。已知一付羽毛球拍的价钱是32元,每个羽毛球的价钱是多少元?

96、小明买4支铅笔,付给营业员0、5元,找回0、1元。每支多少铅笔元?

97、建筑工地运来5车水泥,用去13吨后还剩7吨,每车水泥多少吨?

98、图书小组原来有一批故事书,借给3个班,每班8本,还剩35本。原来有多少本故事书?

99、四年级做了3种颜色的花,每种25朵,布置教室用去一些以后还剩28朵。布置教室用去多少朵花?

100、“六一”儿童节,四年级在服装厂用240米花布做了一批连衣裙,每件用布2、5米,还剩65米。这批连衣裙有多少件?

篇2:31道应用题及答案

31道应用题及答案

31道应用题及答案

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

解题思路:

由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

答题:

解:一把椅子的价钱:

288÷(10-1)=32(元)

一张桌子的价钱:

32×10=320(元)

答:一张桌子320元,一把椅子32元。

2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

解题思路:

可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:

解:45+5×3=45+15=60(千克)

答:3箱梨重60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

解题思路:

根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

答题:

解:4×2÷4=8÷4=2(千米)

答:甲每小时比乙快2千米。

4.李俊和张强付同样多的钱买了同一种铅笔,李俊要了13支,张强要了7支,李俊又给张强0.6元钱。每支铅笔多少钱?

解题思路:

根据两人付同样多的钱买同一种铅笔和李俊要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李俊要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:

解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)

答:每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米(交换乘客的时间略去不计)?

解题思路:

根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

答题:

解:下午2点是14时。

往返用的时间:14-8=6(时)

两地间路程:(40+45)×6÷2=85×6÷2=255(千米)

答:两地相距255千米。

6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

解题思路:

第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。

答题:

解:第一组追赶第二组的路程:

3.5-(4.5-?3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:

2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

答:第一组2.5小时能追上第二小组。

7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

解题思路:

根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

答题:

解:乙仓存粮:

(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)

甲仓存粮:

14×4-5=56-5=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

解题思路:

根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

答题:

解:乙每天修的米数:

(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)

甲乙两队每天共修的米数:

40×2+10=80+10=90(米)

答:两队每天修90米。

9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

解题思路:

已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

答题:

解:每把椅子的价钱:

(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)

每张桌子的价钱:

25+30=55(元)

答:每张桌子55元,每把椅子25元。

10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

解题思路:

根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

答题:

解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)

答:甲乙两地相距560千米。

11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

解题思路:

根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。

答题:

解:(20×250-4400)÷(10+20)=600÷120=5(箱)

答:损坏了5箱。

12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

解题思路:

因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。

答题:

解:4×2÷(12-4)=4×2÷8 =1(时)

答:第二中队1小时能追上第一中队。

13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

解题思路:

由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。

答题:

解:原计划烧煤天数:

(1500+1000)÷(1500-1000)=2500÷500=5(天)

这堆煤的重量:

1500×(5-1)=1500×4=6000(千克)

答:这堆煤有6000千克。

14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?

解题思路:

小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。

答题:

解:每本练习本比每支铅笔贵的钱数:

0.45÷(8-5)=0.45÷3=0.15(元)

8个练习本比8支铅笔贵的钱数:

0.15×8=1.2(元)

每支铅笔的价钱:

(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

答:每支铅笔0.2元。

15.根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

解题思路:

根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

答题:

解:卡车的数量:

360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)

客车的数量:

360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)

答:可用卡车12辆,客车9辆。

16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

解题思路:

根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。

答题:

解:已修的天数:

(720×3-1200)÷80=960÷80=12(天)

公路全长:

(720+80)×12+1200=800×12+1200=9600+1200=10800(米)

答:这条公路全长10800米。

17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

解题思路:

根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

答题:

解:12个纸箱相当木箱的个数:

2×(12÷3)=2×4=8(个)

一个木箱装鞋的双数:

1800÷(8+4)=18000÷12=150(双)

一个纸箱装鞋的双数:

150×2÷3=100(双)

答:每个纸箱可装鞋100双,每个木箱可装鞋150双

18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

解题思路:

由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。

答题:

解:水泥用完的天数:

120÷(30×2-40)=120÷20=6(天)

水泥的总袋数:

30×6=180(袋)

沙子的总袋数:

180×2=360(袋)

答:运进水泥180袋,沙子360袋。

19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

解题思路:

根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

答题:

解:每个茶杯的价钱:

90÷(4×5+10)=3(元)

每个保温瓶的'价钱:

3×4=12(元)

答:每个保温瓶12元,每个茶杯3元。

20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

解题思路:

已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。

答题:

解:第一个加数:

572÷(10+1)=52

第二个加数:

52×10=520

答:这两个加数分别是52和520。

21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?

解题思路:

由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

答题:

解:9-(16-9)=9-7=2(千克)

答:桶重2千克。

22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

解题思路:

由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

答题:

解:(10-5.5)×2=9(千克)

答:原来有油9千克。

23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

解题思路:

由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

答题:

解:(22-10)÷(5-2)=12÷3=4(千克)

答:桶里原有水4千克。

24.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

解题思路:

从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

答题:

解:小华有书的本数:

(36-5×2)÷2=13(本)

小红有书的本数:

13+5×2=23(本)

答:原来小红有23本,小华有13本。

25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

解题思路:

由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

答题:

解:15×5÷(5-2)=25(千克)

答:原来每桶油重25千克。

26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

解题思路:

把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。

答题:

解:9÷(3-1)×(5-1)=18(分)

答:锯成5段需要18分钟。

27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

解题思路:

女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

答题:

解:35÷(2-1)=35(人)

女工原有:

35+17=52(人)

男工原有:

52+35=87(人)

答:原有男工87人,女工52人。

28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

解题思路:

由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

答题:

解:12×5÷(5+1)=10(千米)

答:返回时平均每小时行10千米。

29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

解题思路:

由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

答题:

解:18÷(5+4)=2(小时)

8×2=16(千米)

答:狗跑了16千米。

30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

解题思路:

由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

答题:

解:总个数:

(21+20+19)÷2=30(个)

白球:30-21=9(个)

红球:30-20=10(个)

黄球:30-19=11(个)

答:白球有9个,红球有10个,黄球有11个。

31.在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?

解题思路:

根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。

答题:

解:(33-18)÷(5-2)=5(米)

18-5×2=8(米)

答:一根粗钢管长8米,一根细钢管长5米。

篇3:30道解应用题及答案

30道解应用题及答案

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

思路分析:

由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

参考答案:

解:一把椅子的价钱:

288÷(10-1)=32(元)

一张桌子的价钱:

32×10=320(元)

所以一张桌子320元,一把椅子32元。

2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

思路分析:

可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

参考答案:

解:45+5×3=45+15=60(千克)

所以3箱梨重60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

思路分析:

根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

参考答案:

解:4×2÷4=8÷4=2(千米)

所以甲每小时比乙快2千米。

4.小李和张强付同样多的钱买了同一种铅笔,小李要了13支,张强要了7支,小李又给张强0.6元钱。每支铅笔多少钱?

思路分析:

根据两人付同样多的钱买同一种铅笔和小李要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而小李要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

参考答案:

解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)

所以每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米(交换乘客的时间略去不计)?

思路分析:

根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

参考答案:

解:下午2点是14时。

往返用的时间:14-8=6(时)

两地间路程:(40+45)×6÷2=85×6÷2=255(千米)

所以两地相距255千米。

6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

思路分析:

第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。

参考答案:

解:第一组追赶第二组的路程:

3.5-(4.5-?3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:

2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

所以第一组2.5小时能追上第二小组。

7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

思路分析:

根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

参考答案:

解:乙仓存粮:

(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)

甲仓存粮:

14×4-5=56-5=51(吨)

所以甲仓存粮51吨,乙仓存粮14吨。

8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

思路分析:

根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

参考答案:

解:乙每天修的米数:

(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)

甲乙两队每天共修的米数:

40×2+10=80+10=90(米)

所以两队每天修90米。

9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

思路分析:

已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

参考答案:

解:每把椅子的价钱:

(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)

每张桌子的价钱:

25+30=55(元)

所以每张桌子55元,每把椅子25元。

10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

思路分析:

根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

参考答案:

解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)

所以甲乙两地相距560千米。

11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

思路分析:

根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。

参考答案:

解:(20×250-4400)÷(10+20)=600÷120=5(箱)

所以损坏了5箱。

12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

思路分析:

因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。

参考答案:

解:4×2÷(12-4)=4×2÷8 =1(时)

所以第二中队1小时能追上第一中队。

13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

思路分析:

由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。

参考答案:

解:原计划烧煤天数:

(1500+1000)÷(1500-1000)=2500÷500=5(天)

这堆煤的重量:

1500×(5-1)=1500×4=6000(千克)

所以这堆煤有6000千克。

14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?

思路分析:

小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。

参考答案:

解:每本练习本比每支铅笔贵的钱数:

0.45÷(8-5)=0.45÷3=0.15(元)

8个练习本比8支铅笔贵的钱数:

0.15×8=1.2(元)

每支铅笔的价钱:

(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

所以每支铅笔0.2元。

15.根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的`人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

思路分析:

根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

参考答案:

解:卡车的数量:

360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)

客车的数量:

360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)

所以可用卡车12辆,客车9辆。

16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

思路分析:

根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。

参考答案:

解:已修的天数:

(720×3-1200)÷80=960÷80=12(天)

公路全长:

(720+80)×12+1200=800×12+1200=9600+1200=10800(米)

所以这条公路全长10800米。

17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

思路分析:

根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

参考答案:

解:12个纸箱相当木箱的个数:

2×(12÷3)=2×4=8(个)

一个木箱装鞋的双数:

1800÷(8+4)=18000÷12=150(双)

一个纸箱装鞋的双数:

150×2÷3=100(双)

所以每个纸箱可装鞋100双,每个木箱可装鞋150双

18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

思路分析:

由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。

参考答案:

解:水泥用完的天数:

120÷(30×2-40)=120÷20=6(天)

水泥的总袋数:

30×6=180(袋)

沙子的总袋数:

180×2=360(袋)

所以运进水泥180袋,沙子360袋。

19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

思路分析:

根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

参考答案:

解:每个茶杯的价钱:

90÷(4×5+10)=3(元)

每个保温瓶的价钱:

3×4=12(元)

所以每个保温瓶12元,每个茶杯3元。

20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

思路分析:

已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。

参考答案:

解:第一个加数:

572÷(10+1)=52

第二个加数:

52×10=520

所以这两个加数分别是52和520。

21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?

思路分析:

由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

参考答案:

解:9-(16-9)=9-7=2(千克)

所以桶重2千克。

22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

思路分析:

由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

参考答案:

解:(10-5.5)×2=9(千克)

所以原来有油9千克。

23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

思路分析:

由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

参考答案:

解:(22-10)÷(5-2)=12÷3=4(千克)

所以桶里原有水4千克。

24.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

思路分析:

从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

参考答案:

解:小华有书的本数:

(36-5×2)÷2=13(本)

小红有书的本数:

13+5×2=23(本)

所以原来小红有23本,小华有13本。

25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

思路分析:

由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

参考答案:

解:15×5÷(5-2)=25(千克)

所以原来每桶油重25千克。

26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

思路分析:

把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。

参考答案:

解:9÷(3-1)×(5-1)=18(分)

所以锯成5段需要18分钟。

27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

思路分析:

女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

参考答案:

解:35÷(2-1)=35(人)

女工原有:

35+17=52(人)

男工原有:

52+35=87(人)

所以原有男工87人,女工52人。

28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

思路分析:

由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

参考答案:

解:12×5÷(5+1)=10(千米)

所以返回时平均每小时行10千米。

29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

思路分析:

由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

参考答案:

解:18÷(5+4)=2(小时)

8×2=16(千米)

所以狗跑了16千米。

30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

思路分析:

由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

参考答案:

解:总个数:

(21+20+19)÷2=30(个)

白球:30-21=9(个)

红球:30-20=10(个)

黄球:30-19=11(个)

所以白球有9个,红球有10个,黄球有11个。

篇4:20道应用题带答案

20道应用题带答案

1.牧场养了900头肉牛.奶牛比肉牛多25%,奶牛有多少头?

900×(1+25%)

=900×125%

=900×125/100

=1125(头)

2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?

8除4/5=10(km/)

4/5除8=0.1(kg)

3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?

30÷1/2=60千米

1÷60=1/60小时

4.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?

原价是

200÷2/11=2200元

现价是

2200-200=2000元

5.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?

4/5*5/8=(4*5)/(5*8)=1/2(米)

4/5-1/2=8/10-5/10=3/10(米)

6.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?

第一天卖出水果总重量的3/5,则,第二天卖了2/5,

3/5-2/5=1/5,第一天比第二天多的,

30÷1/5=150千克,

算式是,

1-3/5=2/5

3/5-2/5=1/5

30÷1/5=150千克

7.甲、乙两厂去年分别完成计划任务的112%和110%,共生产食品4000吨,比原来两厂计划之和超产400吨,甲厂原来的生产任务是多少吨?

设甲厂原来的生产任务是x

112%x+110%(3600-x)=4000

1.12x+3960-1.1x=4000

0.02x=40

x=2000

答:甲厂原来的生产任务是2000吨.

8.植树节,初三年级170名学生去参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女各有多少人?

解:设男生X人,女生(170-X)人

3X=7(170-X)

X=119

170-X=51

答:男生是119人,女生是51人.

9.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的`中点,这条路全长多少米?

4+5=9

设这条路全长x米:

(5/9-4/9)x=25

1/9x=25

x=225

这条路全长225米

10.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?

9除以(5分之2-7分之1)

=9除以35分之9

=35(页)

答:这见稿件有35页.

11.某校有学生465人,其中女生的2/3比男生的4/5少20人.男·女各个多少?

女生的3分之2比男生的5分之4少20人

女生比男生的(4/5)/(2/3)=6/5少20/(2/3)=30人

男生有

(465+30)/(1+6/5)=225(人)

女生有

465-225=240(人)

12.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.

甲:乙=2:3=8:12

乙:丙=4:5=12:15

甲:乙:丙=8:12:15

甲:丙=8:15

13.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?

62-24=38(只)

3/5红=2/3黄

9红=10黄 红:黄=10:9

38/(10+9)=2

红:2*10=20

黄:20*9=18

14.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块.两人原来各有多少钱?书多少钱?

设丽丽有x元钱 家家有y元钱 得出:

3/5x=2/3y

2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)

解2元一次方程得x=50 y=45 即丽丽50元 家家45元 书30元一本

15.饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?

去年养猪:(1987+245)/3=744

今年比去年多养猪:1987-744=1243

16.伟今年16岁,爷爷今年61岁.几年前爷爷的年龄正好是小伟年龄的6倍?

今年 爷爷和孙子差45岁 几年前也差45岁 几年前爷爷是孙子岁数的六倍 那么爷爷岁数就比孙子大5倍

45/5=9 所以那一年孙子九岁 爷爷54岁 减一下 就是7年前了.

17.寒假期间,李芳和3位好朋友去逛书店,她们4人来到书店的文具书柜,看到一种笔记本原价2.80元,假期八折优惠,同时还有“买三送一”的活动.她们每人购买了一本,怎样购买更合算?

买3本送1本

花2.8*3/4=2.1

一人一本每个人花2.1元.

18.甲有存款520元,乙有存款240元,两人取出同样多的钱后,甲余下的是乙余下的5倍.两人共取出多少元?

两人差520-240=280元

取出钱后,乙应该是280÷(5-1)=70元

所以,乙取出240-70=170元

总共就取出170+170=340元.

19.王老汉为了与签定购销合同,需要对自己鱼塘中的鱼的总重量进行估计,他第一次老出100条,重量为184千克,并将每条鱼作上记号,放入水中,当它们完全混合于鱼群之后,又捞出200条,重量为416千克.且带有记号的鱼有20条,问他的鱼塘中估计有鱼多少条?共重多少千克?

200/20*100=1000条

184/100=1.84千克

416-1.84*20=379.2千克

(379.2+184)/(100+200-20)≈2.0114千克

1000*2.0114=2011.4千克

答:鱼塘里估计有1000条鱼,共2011.4千克.

20.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.

这个班的男生和女生各有多少人..

因为人数为整数,

所以班级人数能被5+6=11整除

所以班级人数为44人

男生有

44÷(5+6)×5=20人

女生有

44-20=24人

篇5:三年级应用题附答案

三年级应用题附答案

1. 用一根2米长的木料锯成同样长的四根用来做凳腿这个凳子的高大约是多少?【书本第6页第6题】

2米 = 20分米

20÷4 = 5(分米)

答:这个凳子的高大约是5分米

2. 妈妈带小明坐长途汽车去看奶奶途中要走308千米他们早上8时出发汽车平均每小时行80千米中午12时能到达吗?(书本第10页第6题)

12时 - 8时 =4(小时)

80×4 = 320 (千米)

308千米<320千米

答:中午12时能到达

3. 在一辆载重2吨的货车上装3台600千克的机器超载了吗?(书本第12页第2题)

2吨 = 2000千克

600×3 = 1800(千克)

答:没有超重

4. 有5台机器分别重600千克、400千克、800千克、1000千克、700千克用两辆载重2吨的货车运这些机器怎样装车能一次运走?(书本第13页第3题)

2吨=200千克

一台装:

600+400+800=1800(千克)

另一台装:

1000+700 = 1700(千克)

答:一台装1800千克

另一台装1700千克就可以一次性运走

5、一个地球仪85元一个书包48元买一个地球仪和一个书包一共要多少钱  (书本第17页第2题)

85+48= 133(元)

答:买一个地球仪和一个书包一共要133元

【人教版】

6、有公鸡59只母鸡77只小鸡85只

(1)公鸡和母鸡一共有多少只?(书本第17页第3题)

59+77 = 136(只)

答:公鸡和母鸡一共有136只.

(2)你还能提出什么数学问题

①问题:公鸡、母鸡和小鸡一共有多少只?

59+77+85 = 221(只)

答:公鸡、母鸡和小鸡一共有221只.

②问题:公鸡比小鸡少多少只?

85-59 = 26(只)

答:公鸡比小鸡少26只.

③问题:公鸡和母鸡一共比小鸡多多少只?

59+77-85

=136-85

= 51(只)

答:公鸡和母鸡一共比小鸡多51只.

7、京广中心大厦高209米它比中央电视塔约矮196米你知道中央电视塔有多高吗?(书本第19页第4题)

209+196 = 405(米)

答:中央电视塔有405米

8、从昆明到丽江有517千米我们已经走了348千米到丽江还有多远?(书本第23页)

517 - 348 = 169(千米)

答:到丽江还有169千米

9、副食店运来410千克鸡蛋上午卖出152千克下午卖出174千克

还剩多少千克?(书本第125页第2题)

410-152-174 = 258 - 174 = 84(千克)

分步式(方法2):

卖出的: 152+174 = 326(千克)

剩下: 410-326 = 84(千克)

答:还剩84千克

10、科技园上午有游客852人中午有265人离去下午又来了403位游客这时园内有多少游客?全天园内来了多少游客?(书本第25页第3题)

(1)852-265 = 587(人)

587+403 = 990(人)

(2)852+403 = 1255(人)

答:这时园内有990名游客;全天园内来了1255名游客

11、小明家、小红家和学校在同一条路上小红家到学校有312米小明家到学校只有155米小明家到小红家有多远?(他们两家和学校的位置可能有几种情况?)(书本第26页第6题)

两种情况:

第一种是在学校的同一侧:

312-155 = 157(米)

第二种情况:在学校的两侧:

312+155 = 467(米)

答:小明家到小红家有有两种情况

在学校同侧时是157米

在学校两侧时是467米

12、一套运动服135元一双运动鞋48元妈妈给了售货员200元应找回多少元?(书本第27、28页)

用了的钱:135+48 = 183(元)

找回:200- 183 = 17(元)

【或:200-135-48 = 17(元)】

答:应找回17元

13、客轮上原有205人有79人下船有128人上船再开船时客轮上有多少人?(书本第30页第6题)

205-79 =126(人)

126+128 = 254(人)

答:再开船时客轮上有254人

14、用900个鸡蛋孵小鸡上午孵出了337只小鸡下午比上午多孵出118只

(书本第33页第2题)

(1)下午孵出了多少只小鸡?

337+118=455(只)

(2)这一天共孵出了多少只小鸡?

337+455 = 792(只)

(3)还剩下多少个鸡蛋

900-792 = 108(只)

15、一个长方形花坛的.长是5米宽是3米这个花坛的周长是多少米?

(5+3)×2  公式:(长+宽)×2=长方形周长

=8×2

=16(米)

答:这个花坛的周长是16米

16、一块方形手帕的边长是2分米用90厘米长的绸带能围一圈吗

2分米=20厘米

20×4 = 80(厘米)【正方形周长=边长×4】

80厘米<90厘米

答:用90厘米长的绸带能围一圈

或    2×4 = 8(分米) 90厘米=9分米

8分米<9分米

答:能围一圈

17、用2个边长为1厘米的正方形拼成一个长方形这个长方形的周长是多少

长:2厘米   宽:1厘米

(2+1)×2

=3×2

=6(厘米)

答:这个长方形的周长是6厘米

18、一块长方形菜地长6米宽3米四周围上篱笆篱笆长多少米?如果一面靠墙篱笆至少多少米?

(1)  (6+3)×2   (2)18-6 = 12(米)

=9×2           【长方形周长-长】

=18(米)

答:篱笆长18米;如果一面靠墙

篱笆至少12米.

19、有29片扇叶每台电扇装3片这些扇叶够装几台电扇?

29÷ 3 = 9(台)......2(片)

答; 这些扇叶够装9台电扇

20、一个正八边形的边长是3厘米用一条彩带围一圈后还多出来2厘米这条彩带有多长?

3×4 = 12(厘米)【边长×4=正方形周长】

12+2 = 14(厘米)

答:这条彩带共14米长

21、有32人跳绳6人一组可以分成几组还多几人

32÷6 = 5(组)......2(人)

答:可以分成5组还多2人

22、矿泉水每瓶3元有20元最多可以买多少瓶还剩多少元

20÷3 = 6(瓶)......2(元)

答:最多可以买6瓶还剩2元

23、一根绳子长19米剪8米做一根长跳绳剩下的每2米做一根短跳绳可以做多少根短跳绳?还剩多少米

19-8 = 11(米)  11÷2 =  5(根)......1(米)

答:可以做5根短跳绳还剩1米

篇6:三年级应用题上册答案

三年级应用题上册答案

应用题是数学的基本知识点,下面请看三年级应用题上册与答案!一起来做练习题吧!

三年级应用题上册答案

1、一个人到商店买东西,第一次用去全部钱的一半,第二次用去剩下钱的一半还多40元,最后还剩60元,这个人原来有多少钱?

2、纺织厂二车间共有职工98人,其中男职工比女职工多6人,男、女职工各有多少人?

3、夏天来了,白天变长,黑夜变短.有一天,白天比黑夜长4小时,问这一天,白天、黑夜各几小时?

4、华日小学的五年级有学生145人,六年级的学生是五年级的3倍少90人,六年级一共多少人?

5、如果把第二个已知条件改成“六年级的.学生人数是五年级的3倍多90人”该如何解答?

答案

1、分析:根据“最后还剩60元”和“第二次用去剩下钱一半还多40元”可以求出剩下多少元,60+40=100(元),100×2=200(元)再根据第一次用去全部钱的一半,就可以求出原来有多少钱,200×=400(元).

解:剩下多少元?60+40=100(元)100×2=200(元)

原来有多少钱?200×=400(元)

答:原来有400元钱.

2、分析一:根据已知“二车间共有职工98人”和“男职工比女职工多6人”两个条件,知道两数和与两数差,就可以根据公式(大数-小数)÷2=小数求出女工人数,(98-6)÷2=46(人),再求男生人数98-46=52(人)或46+6=52(人).

解:女工人数:(98-6)÷2=46(人)

男生人数98-46=52(人)或46+6=52(人)

答:男生52人,女生46人.

分析二:根据已知“二车间共有职工98人”和“男职工比女职工多6人”两个条件,知道两数和与两数差,就可以根据公式(大数+小数)÷2=大数求出男工人数,(98+6)÷2=52(人),再求女生人数98-52=46(人)或52-6=46(人).

解:女工人数:(98+6)÷2=52(人)

男生人数98-52=46(人)或52-6=46(人)

答:男生52人,女生46人.

3、分析:把“白天”看做大数,“黑夜”看做小数,因为白天比黑夜多4小时,也就是大数-小数=4,题目中把大数与小数的和,也就是白天的小时数与黑夜的小时数的和是“隐藏起来”.一日等于24小时,就是白天的小时数与黑夜的小时数之和,因此,有下面的两个算式:

白天的小时数-黑夜的小时数=4小时  白天的小时数+黑夜的小时数=24小时

解:

方法一:24+4=28(小时)  28÷2=14(小时)  14-4=10(小时)或24-14=10(小时)

答:白天14小时,黑夜10小时.

方法二:24-4=20(小时) 20÷2=10(小时) 10+4=14(小时)或24-14=10(小时)

答:白天14小时,黑夜10小时.

4、145×3=435(本) 435-90=345(本)  答:六年级一共345人.

5、145×3=435(本)  435+90=525(本)  答:六年级一共525人.

篇7:三年级下应用题和答案

三年级下应用题和答案

1.马路的每边相隔7米有一棵国槐,小军乘无轨电车3分看到马路的一边有国槐151棵,无轨电车每小时行多少千米?

答:21千米.先求出无轨电车3分行驶的路程,再求每分行驶的路程,最后求每小时行的路程.

7×(151-1)÷3×60÷1000

=7×150÷3×60÷1000

=21(千米)

或7×(151-1)×(60÷3)÷1000

=7×150×20÷1000

=21(千米)

2.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?

答:248棵.(1000÷8-1)×2=124×2=248(棵)

3.一个圆形池塘,它的`周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?

答:150÷3=50(棵).

4.一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米的速度通过81米长的隧道,需要几分钟?

答:火车的总长度为:5×20+1×(20-1)=119(米),火车所行的总路程:119+81=200(米),所需要的时间:200÷20=10(分钟)

答:需要10分钟.

5.一根木料截成5段要16分钟,如果每截一次的时间相等,那么截7段要几分钟?

答:每截一次需要:16÷(5-1)=4(分钟),截成7段要4×(7-1)=24(分钟).

6.从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?

答:每一层楼梯的台阶数为:48÷(4-1)=16(级),从1楼到6楼共走:6-1=5(段)楼梯,16×5=80(级)台阶.

篇8:三年级应用题带答案

三年级应用题带答案

学习好应用题我们才能掌握由应用题延展开来的更深内容。下面来看看三年级应用题带答案吧!

三年级应用题带答案

1. 用一根2米长的木料,锯成同样长的四根,

用来做凳腿,这个凳子的高大约是多少?【书本第6页第6题】 2米 = 20分米

20÷4 = 5(分米)

答:这个凳子的高大约是5分米。

2. 妈妈带小明坐长途汽车去看奶奶,途中要走

308千米。他们早上8时出发,汽车平均每小时行80千米,中午12时能到达吗?(书本第10页第6题)

12时 - 8时 =4(小时)

80×4 = 320 (千米) 308千米<320千米

答:中午12时能到达。

3. 在一辆载重2吨的货车上,装3台600千克

的机器,超载了吗?(书本第12页第2题) 2吨 = 2000千克

600×3 = 1800(千克)

答:没有超重。

4. 有5台机器,分别重600千克、400千克、

800千克、1000千克、700千克,用两辆载重2吨的.货车运这些机器,怎样装车能一次运走?(书本第13页第3题)

2吨=200千克 一台装:

600+400+800=1800(千克) 另一台装:

1000+700 = 1700(千克)

答:一台装1800千克,另一台装1700千克就可以一次性运走。

5、一个地球仪85元,一个书包48元,买一个地球仪和一个书包一共要多少钱? (书本第17页第2题)

85+48= 133(元)

答:买一个地球仪和一个书包一

共要133元。

6、有公鸡59只,母鸡77只,小鸡85只, (1)公鸡和母鸡一共有多少只?(书本第17页第3题)

59+77 = 136(只)

答:公鸡和母鸡一共有136只.

(2)你还能提出什么数学问题?

①问题:公鸡、母鸡和小鸡一共有多少只? 59+77+85 = 221(只)

答:公鸡、母鸡和小鸡一共有221只.

②问题:公鸡比小鸡少多少只? 85-59 = 26(只)

答:公鸡比小鸡少26只.

③问题:公鸡和母鸡一共比小鸡多多少只?

59+77-85 =136-85 = 51(只)

答:公鸡和母鸡一共比小鸡多51只.

7、京广中心大厦高209矮196米,你知道中央电视塔有多高吗?(书本第19页第4题)

209+196 = 405(米)

答:中央电视塔有405米。

8、从昆明到丽江有517千米,我们已经走了348千米,到丽江还有多远?(书本第23页) 517 - 348 = 169(千米)

答:到丽江还有169千米。

9、副食店运来410千克鸡蛋,上午卖出152千克,下午卖出174千克,还剩多少千克?(书本第125页第2题)

410-152-174 = 258 - 174 = 84(千克) 分步式(方法2):

卖出的: 152+174 = 326(千克)

剩下: 410-326 = 84(千克) 答:还剩84千克。

10、科技园上午有游客852人,中午有265人离去。下午又来了403位游客,这时园内有多少游客?全天园内来了多少游客?(书本第25页第3题)

(1)852-265 = 587(人) 587+403 = 990(人)

(2)852+403 = 1255(人)

答:这时园内有990名游客;全天园内来了1255名游客。

11、小明家、小红家和学校在同一条路上。小红家到学校有312米。小明家到学校只有155米。小明家到小红家有多远?(他们两家和学校的位置可能有几种情况?)(书本第26页第6题)

两种情况:

第一种是在学校的同一侧: 312-155 = 157(米)

第二种情况:在学校的两侧: 312+155 = 467(米)

答:小明家到小红家有有两种情况,在学校同侧时是157米,在学校两侧时是467米。

12、一套运动服135元,一双运动鞋48元,妈妈给了售货员200元,应找回多少元?(书本第27、28页)

用了的钱:135+48 = 183(元) 找回:200- 183 = 17(元)

【或:200-135-48 = 17(元)】

答:应找回17元。

13、客轮上原有205人,有79人下船,有128人上船,再开船时客轮上有多少人?(书本第30页第6题)

205-79 =126(人) 126+128 = 254(人)

答:再开船时客轮上有254人。

14、用900个鸡蛋孵小鸡,上午孵出了337只小鸡,下午比上午多孵出118只。(书本第33页第2题)

(1)下午孵出了多少只小鸡? 337+118=455(只)

(2)这一天共孵出了多少只小鸡? 337+455 = 792(只) (3)还剩下多少个鸡蛋?

900-792 = 108(只)

15、一个长方形花坛的长是5米,宽是3米。这个花坛的周长是多少米?

(5+3)×2 公式:(长+宽)×2=长方形周长 =8×2

=16(米)

答:这个花坛的周长是16米。

16、一块方形手帕的边长是2分米,用90厘米长的绸带能围一圈吗?

2分米=20厘米 20×4 = 80(厘米)【正方形周长=边长×4】 80厘米<90厘米

答:用90厘米长的绸带能围一圈。 或 2×4 = 8(分米) 90厘米=9分米

8分米<9分米

答:能围一圈。

17、用2个边长为1厘米的正方形拼成一个长方形。这个长方形的周长是多少?

长:2厘米 宽:1厘米 (2+1)×2 =3×2

=6(厘米)

答:这个长方形的周长是6厘米。

18、一块长方形菜地,长6米,宽3米。四周围上篱笆,篱笆长多少米?如果一面靠墙,篱笆至少多少米?

(1) (6+3)×2 (2)18-6 = 12(米) =9×2 【长方形周长-长】 =18(米)

答:篱笆长18米;如果一面靠墙,篱笆至少12米.

19、有29片扇叶,每台电扇装3片。这些扇叶够装几台电扇?

29÷ 3 = 9(台)2(片) 答; 这些扇叶够装9台电扇。

20、一个正八边形的边长是3厘米,用一条彩带围一圈后,还多出来2厘米,这条彩带有多长?

3×4 = 12(厘米)【边长×4=正方形周长】 12+2 = 14(厘米)

答:这条彩带共14米长。

21、有32人跳绳,6人一组。可以分成几组,还多几人?

32÷6 = 5(组)2(人)

答:可以分成5组,还多2人。

22、矿泉水每瓶3元,有20元,最多可以买多少瓶,还剩多少元?

20÷3 = 6(瓶)2(元)

答:最多可以买6瓶,还剩2元。

23、一根绳子长19米,剪8米做一根长跳绳,剩下的每2米做一根短跳绳。可以做多少根短跳绳?还剩多少米? 19-8 = 11(米) 11÷2 = 5(根)1(米) 答:可以做5根短跳绳,还剩1米。

24、四月份有30天。【书本56页第3题】 (1)四月份有几个星期,还多几天? 30÷7 = 4(个)2(天)

(2)如果四月份有5个星期六和星期日,那么4月1日是星期几?

答:星期六。

篇9:25道应用题

25道应用题

1..某商店有一套运动服,按标价的8折出售仍可获利20元,已知这套运动服的成本价为100元,问这套运动服的标价是多少元?

考点:一元一次方程的应用.专题:销售问题.分析:设这套运动服的标价是x元.

此题中的等量关系:按标价的8折出售仍可获利20元,即标价的8折-成本价=20元.解答:解:设这套运动服的标价是x元.

根据题意得:0.8x-100=20,

解得:x=150.

答:这套运动服的标价为150元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.

2.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?

考点:一元一次方程的应用.专题:行程问题.分析:本题首先依据题意得出等量关系即甲地到乙地的路程是不变的,进而列出方程为10( 2960-x)=18( 2560-x),从而解出方程并作答.解答:解:设平路所用时间为x小时, 29分= 2960小时,25分= 2560,

则依据题意得:10( 2960-x)=18( 2560-x),

解得:x= 13,

则甲地到乙地的路程是15× 13+10×( 2960-13)=6.5km,

答:从甲地到乙地的路程是6.5km.点评:本题主要考查一元一次方程的应用,解题的关键是熟练掌握列方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出方程

3.北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?

考点:一元一次方程的应用.专题:应用题.分析:等量关系为:居民家庭用水=生产运营用水的3倍+0.6.解答:解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.

依题意,得5.8-x=3x+0.6,

解得:x=1.3,

∴5.8-x=5.8-1.3=4.5.

答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.点评:解题关键是弄清题意,找到合适的等量关系.本题也可根据“生产运营用水和居民家庭用水的总和为5.8亿立方米”来列等量关系.

4.小华将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入银行,若存款的年利率又下调到原来的一半,这样到期后可得本息和63元,求第一次存款的年利率(不计利息税).

考点:一元一次方程的应用.专题:应用题;增长率问题.分析:要求存款的年利率先设出未知数,再通过等量关系就是两年的本金加上利息减去够买学习用品的钱等于最后的本息之和.解答:解:设第一次存款的年利率为x,则第二次存款的年利率为 x2,第一次的本息和为(100+100×x)元.

由题意,得(100+100×x-50)× x2+50+100x=63,

解得x=0.1或x= -135(舍去).

答:第一次存款的年利率为10%.点评:解题的关键要理解题的大意,特别是第二次到期的本息为50+100x,很多同学都会忽略100x,根据题目给出的条件

5.北京奥运会,中国运动员获得金、银、铜牌共100枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚.问金、银、铜牌各多少枚?

考点:一元一次方程的应用.分析:可设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,根据获得金、银、铜牌共100枚列出方程求解即可.解答:解:设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,(1分)

依题意得x+(x+7)+x+(x+7)+2=100(3分)

解得x=21,(5分)

所以x+7=21+7=28;21+28+2=51

答:金、银、铜牌分别为51枚、21枚、28枚.(6分)点评:考查一元一次方程的应用;得到各个奖牌数的等量关系是解决本题的易错点.

6.天骄超市和金帝超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度,在天骄超市累计购买500元商品后,发给天骄会员卡,再购买的商品按原价85%收费;在金帝超市购买300元的商品后,发给金帝会员卡,再购买的商品按原价90%收费,讨论顾客怎样选择商店购物能获得更大优惠?

考点:一元一次方程的应用;一元一次不等式的应用.分析:根据题意可以分别对两家超市列出花费和购物金额x的关系式,然后比较两者大小,即可得出结论.解答:解:设顾客所花购物款为x元.

①当0≤x≤300时,顾客在两家超市购物都一样.

②当300<x≤500时,顾客在金帝超市购物能得更大优惠.

当x>500时,假设顾客在金帝超市购物能得更大优惠则300+0.9(x-300)<500+0.85(x-500)解得x<900.

③所以当500<x<900时,顾客在金帝超市购物能得更大优惠.同样可得:

④当x=900时,顾客在两家超市购物都一样.

⑤当x>900时,顾客在天骄超市购物能得更大优惠.点评:本题主要考查对于一元一次方程的应用以及一元一次不等式的掌握.

7.小王去新华书店买书,书店规定花20元办优惠卡后购书可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,问小王购买这些书的原价是多少?

考点:一元一次方程的应用.专题:应用题;经济问题.分析:办卡费用加上打折后的书款应该等于书的原价加上节省下来的10元,由此数量关系可列方程进行解答.解答:解:设书的原价为x元,

由题可得:20+0.85x=x-10,

解得:x=200.

答:小王购买这些书的原价是200元.点评:解题关键是要读懂题目的意思,把实际问题转化成数学问题,然后根据题目给出的条件,找出合适的等量关系,列出方程组,再求解

8.A、B两城铁路长240千米,为使行驶时间减少20分,需要提速10千米/时,但在现有条件下安全行驶限速100千米/时,问能否实现提速目标.

考点:一元一次方程的应用.专题:行程问题.分析:在提速前和提速后,行走的路程并没有发生变化,由此可列方程解答.解答:解法一

解:设提速前速度为每小时x千米,则需时间为 240x小时,

依题意得:(x+10)( 240x- 2060)=240,

解得:x1=-90(舍去),x2=80,

因为80<100,所以能实现提速目标.

解法二

解:设提提速后行驶为x千米/时,根据题意,得 240x-10- 240x= 2060去分母. 整理得x2-10x-7200=0.

解之得:x1=90,x2=-80

经检验,x1=90,x2=-80都是原方程的根.

但速度为负数不合题意,所以只取x=90.

由于x=90<100.所以能实现提速目标.

9.水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,某城市制定了居民每月每户用水标准8m3,超标部分加价收费,某户居民连续两个月的用水和水费分别是12m3,22元;10m3,16.2元,试求该市居民标准内用水每立方米收费是多少?超标部分每立方米收费是多少?

考点:一元一次方程的应用.专题:应用题;经济问题.分析:标准内用水收费加上超标部分收费就是本月总费用,由此可列方程组进行求解.解答:解:设标准内用水每立方米收费是x元,超标部分每立方米收费是y元.

由题可得:8x+(12-8)y=22;8x+(10-8)y=16.2,

解得:x=1.3,y=2.9.

故该城市居民标准内用水每立方米收费1.3元,超标部分每立方米收费2.9元.

10.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?

考点:一元一次方程的应用.专题:应用题;工程问题.分析:本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.解答:解:设严重缺水城市有x座,

依题意得:(4x-50)+x+2x=664.

解得:x=102.

答:严重缺水城市有102座.

11.目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:广州市教育统计手册).

(1)求目前广州市在校的小学生人数和初中生人数;

(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?

考点:一元一次方程的应用.专题:工程问题.分析:(1)本题可设目前广州市在校的初中生人数为x万,因广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人,那么小学生人数为:(2x+14)万,所以可列方程x+2x+14=128,解方程即可;

(2)在(1)的基础上利用“广州市政府的拨款=小学生人数×500+中学生人数×1000”即可求出答案.解答:解:(1)设初中生人数为x万,那么小学生人数为(2x+14)万,

则x+2x+14=128

解得x=38

答:初中生人数为38万人,小学生人数为90万人.

(2)500×900 000+1000×380 000=830 000 000元,即8.3亿元.

答:广州市政府要为此拨款8.3亿元.

12.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下.如果买50支,比按原价购买可以便宜6元,那么每支铅笔的原价是多少元?

考点:一元一次方程的应用.专题:应用题;经济问题.分析:等量关系为:原价×50×(1-80%)=6.由此可列出方程.解答:解:设每支铅笔的原价为x元,

依题意得:50x(1-0.8)=6,

解得:x=0.6.

答:故每支铅笔的原价是0.6元.

13.初三某班的一个综合实验活动小组去A,B两个车站调查前年和去年“春运”期间的客流

第一文库网

量情况,如图是调查后小明与其它两位同学进行交流的情景,根据他们的对话,请你分别求出A,B两个车站去年“春运”期间的客流量.

考点:一元一次方程的应用.专题:阅读型.分析:所增加的百分比乘以基数即为增加的实际人数,由此可列方程进行解答.解答:解:设A站前年“春运”期间的客流量为x,则B站为(20-x),

由题意知:0.2x+0.1(20-x)=22.5-20,

解得:x=5

∴A站去年客流量为:1.2×5=6(万人)

∴B站人数为:22.5-6=16.5(万人)

答:A站去年“春运”期间的客流量为6万人,B站为16.5万人.

14.阅读下面对话:

小红妈:“售货员,请帮我买些梨.”

售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.” 小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”

对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.

试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.

考点:一元一次方程的应用.专题:阅读型.分析:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.根据苹果的重量比梨轻2.5千克这个等量关系列方程求解.解答:解:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.

则有: 30x=301.5x+2.5,

解得:x=4,

1.5x=6.

答:梨和苹果的单价分别为4元/千克和6元/千克.

15.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场?

考点:一元一次方程的应用.专题:应用题;比赛问题.分析:球队赢球后得分加上输球得分应该等于总得分,即可列方程解应用题.解答:解:设球队赢了x场,则输了(16-x)场,

由题可得:2x+(16-x)×1=28

解得:x=12,

答:球队赢了12场,输了4场.

16.联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.

(1)如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?

(2)如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?

考点:一元一次方程的应用.专题:应用题.分析:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第二次参加球类运到的人数,再根据题意列方程求解.

(2)在第二次参加球类运到的基础上,根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第三次参加球类运到的人数,根据题意列不等式求解.解答:解:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.

第二次参加球类活动的学生为x?(1-20%)+(400-x)?30%

由题意得:x=x?(1-20%)+(400-x)?30%

解之得:x=240

(2)∵第二次参加球类活动的学生为x?(1-20%)+(400-x)?30%= x2+120, ∴第三次参加球类活动的学生为:( x2+120)(?1-20%)+[400-( x2+120)]?30%= x4+180,

∴由 x4+180≥200得x≥80,

又当x=80时,第二次、第三次参加球类活动与田径类活动的人数均为整数. 答:(1)第一次参加球类活动的学生应有240名;(2)第一次参加球类活动的学生最少有80名.

17.学校综合实践活动小组的同学们乘车到天池山农科所进行社会调查,可供租用的车辆有两种:第一种可乘8人,第二种可乘4人.若只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满.

(1)参加本次社会调查的学生共多少名?

(2)已知:第一种车租金为300元/天,第二种车租金为200元/天.要使每个同学都有座位,并且租车费最少,应该怎样租车.

考点:一元一次方程的应用.专题:应用题.分析:(1)要注意关键语“只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满”,根据两种坐法的不同来列出方程求解;

(2)要考虑到不同的租车方案,然后逐个比较,找出最佳方案.解答:解:(1)设参加本次社会调查的同学共x人,则4( x+48+3)=x,

解之得:x=28

答:参加本次社会调查的学生共28人.

(2)其租车方案为

①第一种车4辆,第二种车0辆;

②第一种车3辆,第二种车1辆;

③第一种车2辆,第二种车3辆;

④第一种车1辆,第二种车5辆;

⑤第一张车0辆,第二种车7辆.

比较后知:租第一种车3辆,第二种车1辆时费用最少,

其费用为1100元.

18.某小店老板从面包厂购进面包的.价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?

考点:一元一次方程的应用.专题:经济问题.分析:由题意得,他进的包子数量应在50-80之间;等量关系为:(20×进货量+10×50)×每个的利润-(进货量-50)×10×每个赔的钱=600;据此列出方程解可得答案.解答:解:设这个数量是x个.

由题意得:(20x+500)×(1-0.6)-(x-50)×10×(0.6-0.2)=600, 解得:x=50.

故这个数量是50个.

19.小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.

考点:一元一次方程的应用.专题:应用题;经济问题.分析:本题的关键语“随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元”,

即随身听的单价=书包单价×4-8.依此等量关系列方程求解.解答:解:设随身听单价为x元,则书包的单价为(452-x)元,

列方程得:x=4(452-x)-8,

解得:x=360.

当x=360时,452-x=92.

20.(1)一种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?

(2)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么该厂

六、七两月产量平均增长的百分率是多少?

考点:一元一次方程的应用;一元二次方程的应用.专题:增长率问题;经济问题.分析:(1)设此商品按x折销售,根据商品进价和标价及利润间关系可得方程;

(2)设该厂六,七两月产量平均增长的百分率为x,根据产量的减少和增加可列方程求解.解答:解:(1)设此商品按x折销售.

600x=400(1+5%),

可求得x=0.7.

(2)设该厂六,七两月产量平均增长的百分率为x.

5月产量为500(1-10%)=450,则6月是450(1+x),7月为450(1+x)(1+x)=648.则:

(1+x)2= 648除以450=1.44,

1+x=1.2,

x=20%.

21.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价-进货价).问该文具每件的进货价是多少元?

考点:一元一次方程的应用.专题:销售问题.分析:等量关系为:售价的7折-进价=利润0.2,细化为:(进价+2)×7折-进价=利润0.2,依此等量关系列方程求解即可.解答:解:设该文具每件的进货价是x元,

依题意得:70%?(x+2)-x=0.2

解得:x=4

答:该文具每件的进货价为4元.

近年来,宜宾市教育技术装备水平迅速提高,特别是以计算机为核心的现代化装备取得了突破性发展,中小学每百人计算机拥有量在全省处于领先位置,全市中小学装备领先的总台数由的1040台直线上升到的11600台,若1997到20每年比上一年增加的计算机台数都相同,按此速度继续增加,到宜宾市中小学装备计算机的总台数是多少?考点:一元一次方程的应用.专题:增长率问题.分析:应先根据的台数+4年一共增加的台数=2000

年的台数,求得每年的增长量,进而让11600加3年增加的台数即为20宜宾市中小学装备计算机的总台数.解答:解:设每年增加的计算机台数为x台, 则:1040+(2000-1996)x=11600,

解得x=2640,

∴2003年宜宾市中小学装备计算机的总台数为:11600+(2003-2000)×2640=19520(台).

答:2003年宜宾市中小学装备计算机的总台数是19520台.

23.某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本价应降低多少元?

考点:一元一次方程的应用.专题:应用题;经济问题.分析:此题文字叙述量大,要审清题目,找到等量关系:销售利润(销售利润=销售价-成本价)保持不变,设该产品每件的成本价应降低x元,则每件产品销售价为510(1-4%)元,销售了(1+10%)m件,新销售利润为[510(1-4%)-(400-x)]×(1+10%)m元,原销售利润为(510-400)m元,列方程即可解得.解答:解:设该产品每件的成本价应降低x元,则根据题意得

[510(1-4%)-(400-x)]×m(1+10%)=m(510-400),

解这个方程得x=10.4.

答:该产品每件的成本价应降低10.4元.

24.为了鼓舞中国国奥队在20奥运会上取得好成绩,曙光体育器材厂赠送给中国国奥队一批足球.若足球队每人领一个则少6个球,每二人领一个则余6个球,问这批足球共有多少个?

某队员领到足球后十分高兴,就仔细研究起足球上的黑白块(如图),结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?

考点:一元一次方程的应用.专题:应用题.分析:(1)根据题意可知本题中有两个不变的量,足球总数和总人数,要求的是足球数,所以第一问用总人数作为相等关系列方程即可;

(2)第二问可利用黑块与白块的数量比是3:5的关系列方程可求解.解答:解:(1)设有x个足球,

则有:x+6=2(x-6),

∴x=18;

所以这批足球共有18个;

(2)设白块有y块,

则3y=5×12,

∴y=20,

所以白块有20块.

25.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?

考点:一元一次方程的应用.专题:工程问题.分析:设该年级的男生有x人,那么女生有(170-x)人,所以男生平均一天能挖树坑3x个,女生女生平均一天能种树7(170-x)棵,然后根据每个树坑种上一棵树即可列出方程解决问题.解答:解:设该年级的男生有x人,那么女生有(170-x)人,

依题意得:3x=7(170-x),

解得:x=119,

170-x=51.

答:该年级的男生有119人,那么女生有51人.

26.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.

篇10:20道重点应用题带答案

20道重点应用题带答案

1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

4、xx和张强付同样多的钱买了同一种铅笔,xx要了13支,张强要了7支,xx又给张强0.6元钱。每支铅笔多少钱?

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)

6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

12、五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

13、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

14、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?

15、学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?

16、某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

17、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

18、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

19、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

20、两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

21、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?

22、一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

23、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

24、小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

25、有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

26、把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

27、一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

28、李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

29、甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

30、有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

31、在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?

32、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?

33、学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?

34、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?

35、学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?

36、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?

37、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?

38、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?

39、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?

40、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?

41、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?

42、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?

43、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?

44、妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?

45、甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?

46、盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?

47、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

48、父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?

49、王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?

50、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?

50道奥数思维题解答参考

1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)

一张桌子的价钱:32×10=320(元)

答:一张桌子320元,一把椅子32元。

2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45 5×3=45 15=60(千克)

答:3箱梨重60千克。

3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)

答:甲每小时比乙快2千米。

4、想:根据两人付同样多的.钱买同一种铅笔和xx要了13支,张强要了7支,可知每人应该得(13 7)÷2支,而xx要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13 7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)

答:每支铅笔0.2元。

5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时

往返用的时间:14-8=6(时)

两地间路程:(40 45)×6÷2=85×6÷2=255(千米)

答:两地相距255千米。

6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:3.5-(4.5- 3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

答:第一组2.5小时能追上第二小组。

7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4 1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:(32.5×2 5)÷(4 1)=(65 5)÷5=70÷5=14(吨)

甲仓存粮:14×4-5=56-5=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4 5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:(400-10×4)÷(4 5)=(400-40)÷9=360÷9=40(米)

甲乙两队每天共修的米数:

40×2 10=80 10=90(米)

答:两队每天修90米。

9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6 5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

解:每把椅子的价钱:(455-30×6)÷(6 5)=(455- 180)÷11=275÷11=25(元)

每张桌子的价钱:25+30=55(元)

答:每张桌子55元,每把椅子25元。

10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

解:(7 65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)

答:甲乙两地相距 560千米。

11、想:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100 20)元,就是损坏几箱。

解:(20×250-4400)÷(10 20)=600÷120=5(箱)

答:损坏了5箱。

12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。

解:4×2÷(12-4)=4×2÷8=1(时)

答:第二中队1小时能追上第一中队。

13、想:由已知条件可知道,前后烧煤总数量相差(1500 1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。

解:原计划烧煤天数:(1500 1000)÷(1500-1000)=2500÷500=5(天)

这堆煤的重量:1500×(5-1)=1500×4=6000(千克)

答:这堆煤有6000千克。

14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱 数,剩余的则是(5 8)支铅笔的钱数。进而可求出每支铅笔的价钱。

解:每本练习本比每支铅笔贵的钱数:0.45÷(8-5)=0.45÷3=0.15(元)

8个练习本比8支铅笔贵的钱数:0.15×8=1.2(元)

每支铅笔的价钱:(3.8-1.2)÷(5 8)=2.6÷13=0.2(元)

也可以用方程解:

设一枝铅笔X元,则一本练习本为 元。

8X -5×=3.8-0.45

64X 19-25X=30.4-3.6

39X=7.8

X=0.2

答:每支铅笔0.2元。

15、想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

解:卡车的数量:360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)

客车的数量:

360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)

答:可用卡车12辆,客车9辆。

16、想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。

解:已修的天数:

(720×3-1200)÷80=960÷80=12(天)

公路全长:

(720 80)×12+1200=800×12+1200=9600+1200=10800(米)

答:这条公路全长10800米。

17、想:根据已知条件,求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

解:12个纸箱相当木箱的个数:2×(12÷3)=2×4=8(个)

一个木箱装鞋的双数:1800÷(8 4)=18000÷12=150(双)

一个纸箱装鞋的双数:150×2÷3=100(双)

答:每个纸箱可装鞋100双,每个木箱可装鞋150双

18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。

解:水泥用完的天数:120÷(30×2-40)=120÷20=6(天)

水泥的总袋数:30×6=180(袋)

沙子的总袋数:180×2=360(袋)

答:运进水泥180袋,沙子360袋。

19、想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

解:每个茶杯的价钱: 90÷(4×5 10)=3(元)

每个保温瓶的价钱:3×4=12(元)

答:每个保温瓶12元,每个茶杯3元。

20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10 1)倍。

解:第一个加数:572÷(10 1)=52

第二个加数:52×10=520

答:这两个加数分别是52和520。

篇11:大班20道应用题带答案

大班20道应用题带答案

题目:

1、十一月份总共30天,过去了6天,还有几天?

( ) - ( ) = ( )

答:还有____天。

2、一年12个月,过去了10个月,还有几个月?

( ) - ( ) = ( )

答:还有____个月。

3、老白养了16只大山羊和11只小羊,老白一共有多少只羊?

( ) + ( ) = ( )

答:一共有____只羊。

4、爸爸养了6条红色金鱼,5条彩色金鱼,爸爸总共养了几条鱼?

( ) + ( ) = ( )

答:共____条鱼。

5、大五班有30个小朋友, 今天3个小朋友没来,大五班今天共来了多少个小朋友?

( ) - ( ) = ( )

答:共来了____个小朋友。

6、马队里有15匹马,先来了6匹,又来了9匹,总共有多少匹马?

( ) + ( ) + ( ) = ( )

答:共____匹马。

7、小林有18朵花,分给小白7朵,又分给小明5朵,小林还有几朵花?

( ) - ( ) - ( ) = ( )

答:小林还有____朵花。

8、阳阳有12个洋娃娃,爸爸又买了2个,妈妈买了3个,阳阳一共有几个洋娃娃?

( ) + ( ) + ( ) = ( )

答: 阳阳一共有____个洋娃娃。

9、小花的书架上有45本书,拿下来9本,又放回去3本,书架上现在有多少本书?

( ) - ( ) + ( ) = ( )

答:现在有____本书。

10、幼儿园大班有7个,中班有8个,小班有8个,幼儿园总共几个班?

( ) + ( ) + ( ) = ( )

答:总共____个班。

11、明明买了5本小人书,妈妈又买了2本小人书给明明,明明现在一共有几本小人书?

( ) + ( ) = ( )

答:明明现在一共有( )本小人书。

12、盘子里有11个草莓,小红一口气吃了6个草莓,现在盘子里还剩几个草莓?

( ) - ( ) = ( )

答:现在盘子里还剩( )个草莓。

13、贝贝有3个苹果,晶晶有6个苹果,他们一共有几个苹果?

( ) + ( ) = ( )

答:他们一共有( )个苹果。

14、小明买了11个棒棒糖,分给了小华4个,小明自己还剩几个?

( ) - ( ) = ( )

答:小明自己还剩( )个棒棒糖。

15、树上有5只小鸟,又飞来了2只,树上现在有几只小鸟?

( ) + ( ) = ( )

答:树上现在有( )只小鸟。

16、哥哥有2个气球,弟弟有3个气球,妹妹有3个气球,一共有几个气球?

( ) + ( ) + ( ) = ( )

答:一共有( )个气球。

17、盒子里有2颗蓝色糖,2颗绿色糖和5颗黄色糖,盒子里一共有几颗糖?

( ) + ( ) + ( ) = ( )

答:盒子里一共有( )颗糖。

18、盒子里一共有13颗糖,小明吃了2颗,小王吃了3颗,盒子里现在有几颗糖?

( ) - ( ) - ( ) = ( )

答:盒子里现在有( )颗糖。

19、黑板上有20道题,明明做了5道,圆圆做了6道,黑板上还有几道题?

( ) - ( ) - ( ) = ( )

答:黑板上还有( )道题。

20、冰箱里有16瓶水,妈妈放进去6瓶,爸爸拿走4瓶,冰箱里还有几瓶水?

( ) + ( ) - ( ) = ( )

答:冰箱里还有( )瓶水。

答案:

1、(30) - (6) = (14)

2、(12) - (10) = (2)

3、(16) + (11) = (27)

4、(6) + (5) = (11)

5、(30) - (3) = (27)

6、(15) + (6) + (9) = (30)

7、(18) - (7) - (5) = (6)

8、(12) + (2) + (3) = (17)

9、(45) - (9) + (3) = (39)

10、(7) + (8) + (8) = (23)

11、(5) + (2) = (7)

12、(11) - (6) = (5)

13、(3) + (6) = (9)

14、(11) - (4) = (7)

15、(5) + (2) = (7)

16、(2) + (3) + (3) = (8)

17、(2) + (2) + (5) = (9)

18、(13) - (2) - (3) = (8)

19、(20) - (5) - (6) = (9)

20、(16) + (6) - (4) = (18)

篇12:小学五年级数学应用题100道及答案

1、一堂数学课上,学生动手操作用了1/5小时,老师讲课用了3/10小时,其余的时间学生独立做作业,学生独立做作业用了多少时间?

把1堂课看做单位1,1-5分之1=5分之4,5分之4-10分之3=10分之8-10分之3=2分之1,答:2分之1学生写作业。

2、甲乙两人按不同的天数轮流值日,甲四天一次,乙六天一次,3月12日他们共同值日。问下一次同时值日是几月几日?

4×6÷2=12天,12+12=24天,答:在3月24日他们共同值日。

3、用两种花,月季花54枝,百合花36枝,将他们配成花束,要求每种花在每束中同样多,最多可以配成多少束花?每束花中月季与百合各方多少只?

54÷18=3枝,36÷18=2枝答:最多可以配成18束花,束花中月季3枝,百合2枝。

4、有一列数,1,1,2,3,5,8,13,21,34····从第三个数开始,每个数都是他前面2个数的和,那么在前2008个数中有多少个奇数?

2008÷3=669组,669×2+1=1338+1=1339个,答:前2008个数中有1339个奇数。

5、进化小学有男教师9人,比女教师少45人,女教师占教师总数的几分之几?

9+45=54(人),45÷54=83.3%

6、小明看了一本120页的故事书,已经看了2/5,还剩下几分之几没有看?

1-2\\5=3\\5

7、1/7化成小数后,小数点第100位数字是几?

1\\7=0.142857142857......第100位是8。(14285是循环小数)

8、在两只同样的玻璃杯中各放入白糖10千克,然后再甲杯中放100克开水,乙中放90克开水,哪一杯的糖水最甜?您能用学过的知识解释吗?

甲:100-10=90(千克),乙:90-10=80(千克)(水越少糖越浓、所以乙的糖水甜)

小学六年级数学应用题30道及答案

应用题及答案

三年级数学应用题及答案45题

应用题带答案

面积应用题及答案

解方程应用题答案

方程应用题及答案

四年应用题及答案

比例尺应用题及答案

小学三年级数学经典应用题

三年级应用题100道及答案(推荐12篇)

欢迎下载DOC格式的三年级应用题100道及答案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档