四年应用题及答案

时间:2023-08-02 03:45:53 作者:tearose 综合材料 收藏本文 下载本文

【导语】“tearose”通过精心收集,向本站投稿了10篇四年应用题及答案,下面是小编为大家整理后的四年应用题及答案,以供大家参考借鉴!

篇1:四年应用题及答案

四年应用题及答案

四年应用题及答案

1、一个滴水的水龙头一星期要白白流掉84千克水。照这样计算,一个月要流掉多少千克水?(一个月按30天计算。)

2、学校开展花香校园活动,四年级3个班,每班准备植树23棵,三年级5个班,每班准备植树12棵,两个年级共植树多少棵?

3、两块长方形蔬菜地,长都是48米,其中白菜地宽25米,黄瓜地宽12米。白菜地的面积比黄瓜地面积多多少平方米?

4、动物园的一只大象2天吃450千克食物,一只熊猫4天吃72千克食物。一只大象每日的食量比一只熊猫多多少千克?

5、停车场停有大货车45辆,客车的数量是货车的2倍,小汽车比大货车和客车的总和还多20辆,停车场有小汽车多少辆?

6、五星电器夫子庙分店的一些小家电商品单价如下表。

类 别 电饭煲 微波炉 抽油烟机

单价(元) 120 680 570

开业当天卖出电饭煲23个、微波炉46个和抽油烟机1个。

(1)电饭煲和抽油烟机当天营业额一共是多少元?

(2)微波炉当天营业额比电饭煲多多少元?

【答案解析】

1、分析和解答:首先算出一天用多少千克的水,一周七天,一周流掉84千克,也就是一天用:84÷7=12千克小精灵儿童网站

然后一个月按30天计算,也就是一个月流掉水的重量:30×12=360千克

答:一个月要流掉360千克水。

2、分析和解答:先算出四年级3个班总种植多少棵树:3×23=69棵,接着计算三年级5个班总种植多少棵树:5×12=60棵。然后两个年级共植树:60+69=129棵。

答:两个年级共植树129棵。

3、分析和解答:先算出白菜占地多少平方,25×48=1200平方米。再算出黄瓜占地多少平方,12×48=576平方米。

白菜地的面积减去黄瓜地的`面积,就是多出来的地。1200-576=624平方米。

答:白菜地的面积比黄瓜地面积多624平方米。

4、分析和解答:先算出大象一天食量多少,450÷2=225千克。再算出大象一天食量多少,72÷4=18千克。

然后算出一只大象每日的食量比一只熊猫多出多少千克:225-18=207千克。

答:一只大象每日的食量比一只熊猫多207千克。

5、分析和解答:先算出客车的数量:45×2=90辆。接着算小汽车的数量:45+90+20=155辆

答:停车场有小汽车155辆。

6、(1)分析和解答:电饭煲营业额是:23×120=2760元。抽油烟机营业额是:1×570=570元。

营业总额:2760+570=3330元。

答:电饭煲和抽油烟机当天营业额一共是3330元。

(2)分析和解答:微波炉营业额是:46×680=31280元。电饭煲营业额是:23×120=2760元。

微波炉当天营业额比电饭煲多:31280-2760=28520元。

篇2:四年级数应用题及答案

四年级数应用题及答案

应用题是我们需要学习的,各位同学们,我们看看下面的数学上的应用题吧!

四年级数应用题及答案

1、四年级数学应用题及答案:一个滴水的水龙头一星期要白白流掉84千克水。照这样计算,一个月要流掉多少千克水?(一个月按30天计算。)

2、学校开展花香校园活动,四年级3个班,每班准备植树23棵,三年级5个班,每班准备植树12棵,两个年级共植树多少棵?

3、两块长方形蔬菜地,长都是48米,其中白菜地宽25米,黄瓜地宽12米。白菜地的面积比黄瓜地面积多多少平方米?

4、动物园的一只大象2天吃450千克食物,一只熊猫4天吃72千克食物。一只大象每日的.食量比一只熊猫多多少千克?

5、停车场停有大货车45辆,客车的数量是货车的2倍,小汽车比大货车和客车的总和还多20辆,停车场有小汽车多少辆?

6、五星电器夫子庙分店的一些小家电商品单价如下表。

类别电饭煲微波炉抽油烟机

单价(元)120680570

开业当天卖出电饭煲23个、微波炉46个和抽油烟机1个。

(1)电饭煲和抽油烟机当天营业额一共是多少元?

(2)微波炉当天营业额比电饭煲多多少元?

【答案解析】

1、分析和解答:首先算出一天用多少千克的水,一周七天,一周流掉84千克,也就是一天用:84÷7=12千克小精灵儿童网站

然后一个月按30天计算,也就是一个月流掉水的重量:30×12=360千克

答:一个月要流掉360千克水。

2、分析和解答:先算出四年级3个班总种植多少棵树:3×23=69棵,接着计算三年级5个班总种植多少棵树:5×12=60棵。然后两个年级共植树:60+69=129棵。

答:两个年级共植树129棵。

3、分析和解答:先算出白菜占地多少平方,25×48=1200平方米。再算出黄瓜占地多少平方,12×48=576平方米。

白菜地的面积减去黄瓜地的面积,就是多出来的地。1200-576=624平方米。

答:白菜地的面积比黄瓜地面积多624平方米。

4、分析和解答:先算出大象一天食量多少,450÷2=225千克。再算出大象一天食量多少,72÷4=18千克。

然后算出一只大象每日的食量比一只熊猫多出多少千克:225-18=207千克。

答:一只大象每日的食量比一只熊猫多207千克。

5、分析和解答:先算出客车的数量:45×2=90辆。接着算小汽车的数量:45+90+20=155辆

答:停车场有小汽车155辆。

6、(1)分析和解答:电饭煲营业额是:23×120=2760元。抽油烟机营业额是:1×570=570元。

营业总额:2760+570=3330元。

答:电饭煲和抽油烟机当天营业额一共是3330元。

(2)分析和解答:微波炉营业额是:46×680=31280元。电饭煲营业额是:23×120=2760元。

微波炉当天营业额比电饭煲多:31280-2760=28520元。

篇3:四年下册应用题

1、工地每天有15台工作机器,24天能完成工程,实际每天工作18台机器,实际只要几天能完成工程?

列:答案

答:实际只要天能完成工程。

2、老师要为一、二班的学生每人买一本价格为12元的课外读物。已知一班有45人,二班有55人,两个班级一共需要多少元?

列:答案

答:两个班级一共需要元。

3、有400人去春游,每辆汽车坐40人,要几辆汽车才能做完?

列:答案

答:要辆汽车才能做完。

4、有450千克大米,每天吃90千克,最多能吃几天?

列:答案

答:最多能吃天。

5、学校阶梯教室每排有30个座位,六年级有4个班,每个班级有45人,可以坐满几排??

列:答案

答:可以坐满排。

6、王老师带800元买国外书籍,买了22本,剩下80元,每本书的价钱是多少?

列:答案

答:每本书的价钱是元。

7、小明骑电动车3小时行了174千米。照这样的速度,4小时可以行多少千米?

列:答案

答:可以行千米。

8、客车从四川到重庆用了3小时,客车每小时40千米,返回时只用了2小时,客车返回时平均每小时行了多少千米?

列:答案

答:客车返回时平均每小时行了千米。

篇4:四年下册应用题

1、四年级三班34个同学合影。定价是33元,给4张相片。另外再加印是每张2.3元。全班每人要一张,一共需付多少钱?平均每张相片多少钱?

2、一辆汽车从甲地到乙地共要行驶580千米,用了6小时。途中一部分公路是高速公路,另一部分是普通公路。已知汽车在高速公路上每小时行120千米,在普通公路上每小时行80千米。汽车在高速公路上行驶了多少千米?

3、小华家距学校2300米,每天步行上学,有一天他正以每分钟80米的速度前进着,一抬头看见路边的钟表发现要迟到,他马上改用每分钟150米的速度跑步前进,途中共用20分钟,准时到达了学校。小明是在离学校多远的'地方开始跑步的?

4、84千克黄豆可榨12千克油,照这样计算,如果要榨120千克油需要黄豆多少千克?

5、一根绳子分成三段,第一、二段长38.7米,第二、三段长 41.6米,第一、三段长39.7米.求三段绳子各长多少米?

6、三筐苹果共重110.5千克,如果从第一筐取出18.6千克,从第二筐取出23.5千克,从第三筐取出20.4千克,则三筐所剩的苹果重量相同,原来三筐苹果各有多少千克?

7、小明和小华都是早上7:30从家里出发去上学,小明每分钟走120米,小华每分钟走80米,小明到达学校5分钟后发现忘了钢笔,就回家拿钢笔,7:55分和小华在路上相遇。从学校到家多远?

8、一个学生的家离学校有3千米。他每天早晨骑车上学,以每小时15千米的速度行进,恰好准时到校。一天早晨,由于逆风,开始的1千米,他只能以每小时10千米的速度骑行。剩下的路程他应以什么速度骑行,才能准时到校?

篇5:简单应用题及答案

简单应用题大全及答案

1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块.两人原来各有多少钱?书多少钱?

设丽丽有x元钱 家家有y元钱 得出:

3/5x=2/3y

2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)

解2元一次方程得x=50 y=45 即丽丽50元 家家45元 书30元一本

2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?

8除4/5=10(km/)

4/5除8=0.1(kg)

3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?

30÷1/2=60千米 1÷60=1/60小时

4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?

原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23

求出x=28

5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?

62-24=38(只)

3/5红=2/3黄

9红=10黄 红:黄=10:9

38/(10+9)=2

红:2*10=20

黄:20*9=18

6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?

原有女生:36×4/9=16(人)

原有男生:36-16=20(人)

后有总人数:20÷(1-3/5)=50(人)

后有女生:50×3/5=30(人)

来女生人数:30-16=14(人)

7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?

2.16/(1+1/11)=1.98(立方米)

8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?

现在甲乙各有

560÷2=280吨

原来甲有

280÷(1-2/9)=360吨

原来乙有

560-360=200吨

9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?

原价是

200÷2/11=2200元

现价是

2200-200=2000元

10.一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?

全程的.

1-2/5=3/5

20+70=90千米

甲乙两地相距

90÷3/5=150千米

11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?

第一天看的占全书的

3/8-1/5=7/40

这本书共有

28÷7/40=160页

12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?

假设这批零件共有X个

1/28X=84-63

1/28X=19

X=532

所以这批零件共有532个.

13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?

15÷(7/10-1/2)=75(千克)

14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?

(106*5)/(1-(3/5))

=530/0.4

=1325(km)

15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?

男女生人数比是:4/5:3/2=8:15

男生人数:46/(8+15)*8=16人

女生人数46-16=30人

16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?

(1-1/3)/(1/5)=10/3

还要10/3个小时抄完

17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?

600/(60+75)=40/9(小时)

经过40/9小时两车可以相遇.

18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?

64×3/4=48千米

19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?

第一天卖出水果总重量的3/5,则,第二天卖了2/5,

3/5-2/5=1/5,第一天比第二天多的,

30÷1/5=150千克,

算式是,

1-3/5=2/5

3/5-2/5=1/5

30÷1/5=150千克

20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?

910*4/7=(910*4)/7=520 女生

910-520=390 男生

篇6:六年级应用题答案

六年级应用题答案

应用题:工程问题

有一项工程,由三个工程队每天轮流做。原计划按甲、乙、丙次序轮做,恰好整天完工;如果按乙、丙、甲次序轮流做,比原计划多用0.5天;如果按丙、甲、乙次序轮流做,比原计划多用1/3天,已知甲单独做13天完工,且3个工程队的效率各不相同,那么这项工程由甲、乙、丙三个队合作要几天?

答案:

根据条件可以作如下分析:有两种情况分析。

第一种情况:

①甲乙丙;甲乙丙;……;甲乙丙;甲

②乙丙甲;乙丙甲;……;乙丙甲;乙丙(1/2)

③丙甲乙;丙甲乙;……;丙甲乙;丙甲(1/3)

三个工程队的工作效率的关系是:

甲=乙+丙×1/2=丙+甲×1/3

可以得到:丙=乙=甲×2/3,所以不符合条件。

第二种情况:

①甲乙丙;甲乙丙;……;甲乙丙;甲乙丙

②乙丙甲;乙丙甲;……;乙丙甲;乙丙甲(1/2)甲(1/2)

③丙甲乙;丙甲乙;……;丙甲乙;丙甲乙(1/3)乙(2/3)

可以得到:丙=甲×1/2,乙=甲×1/2÷2/3=甲×3/4

所以三个工程队合作的时间是13÷(1+1/2+3/4)=52/9天。

应用题:路程问题

1.通讯员以每小时6千米的速度到某地去,返回时因绕另一条路而多走3千米,回程时他每小时行7千米,仍比去时多用10分钟,问往返各是多少千米?

2.两个集镇之间的公路除了上坡就是下坡,没有水平路段,客车上坡的.速度保持为15千米,下坡的速度保持为每小时30千米,现知道客车在两地之间往返一次,需在路上行驶4个小时,求两地之间的距离。

答案

第一题

3千米需要的时间是3÷7=3/7小时,用3/7-10/60=11/42小时的时间相当于去的时候的1-6/7=1/7,所以,去时的时间是11/42÷1/7=11/6小时。所以去的时候的路程是11/6×6=11千米,返回就是11+3=14千米。

第二题

去时的下坡是返回的上坡,去时的上坡是返回上的下坡。所以所有的上坡路和下坡路相等。上坡和下坡的速度比是15:30=1:2。下坡用去的时间是4÷(1+2)=4/3小时,所以上坡路长4/3×30=40千米。故两地之间的距离是40千米。

设:两地之间的距离为x;

在两地之间往返一次,上坡的路程等于下坡的路程等于x。

x/15+x/30=4

x(1/15+1/30)=4

x/10=4

x=40(千米)

两地之间的距离为40千米

应用题:人数问题

李口和向阳两个学校的学生到烈士墓去,所去人数都是10的倍数,租14座的中巴一共要72辆,如果改租19座的中巴,李口比向阳多用车7辆,两校参加扫墓的学生各多少人?

解析:充分利用10的倍数。

两个学校共有人数比14×72=1008人少,比14×71=994人多,即共有1000人。

改租19座的中巴后,可以乘坐1000÷19=52辆……12人,即53辆车。

所以李口学校租车(53+7)÷2=30辆车,向阳学校租车30-7=23辆。

所以李口学校有学生30×19=570人,向阳学校有学生1000-570=430人。

验证一下:

如果李口少10人,还是30辆车,向阳学校有学生430+10=440人

440÷19=23辆……3人,需要24辆车,相差30-24=6辆,不符合要求。

两校参加扫墓的学生共有:14×72=1008(人)

因去的人数是10的倍数,车辆不能超员,所以学生总数1000人;

设:李口学生数为x,则向阳学生数为1000-x

李口租19座的中巴数=x/19

向阳租19座的中巴数=(1000-x)/19

x/19-(1000-x)/19=7

2x-1000=7×19

2x=1133

李口学生数为x=570(人)

向阳学生数为1000-x=430(人)

篇7:百分率应用题及答案

百分率应用题及答案

百分率应用题及答案

1、有一台冰箱,原价2000元,降价后卖1600元,降了百分之几?

2、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?

3、有一台电视,原价1200元,降了300元,价格降了百分之几?

4、有一种消毒柜,原价2400元,涨价了400元,价格涨了百分之几、

5、光明小学去年有篮球24个,今年新买了6个,今天一共有篮球多少个?今年比去年增加了百分之几?

6、有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几

7、南山小学共占地8000平方米,其中绿地面积占65%,其余为教学楼和道路等,南山小学的绿地面积有多少平方米?教学楼和道路等有多少平方米?

8、商场搞打折促销,其中服装类打5折,文具类打8折。小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?

9、有一批种子的发芽率为98.5%,播种下3000粒种子,可能会有多少粒种子没发芽?

10、一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?

11、实验小学六年级的女生人数占全年级的48.75%,男生占全年级人数的百分之几?如果男生人数比女生人数多12人,那么实验小学六年级人数共有多少人?

12、蔬菜基地今年生产了2.4万吨蔬菜,比去年增产了2成,去年这个蔬菜基地的产量是多少万吨?

13、504班参加美术兴趣小组的有20人,比参加体育兴趣小组的人数多20%,参加体育兴趣小组的有多少人?

14、王叔叔把4000元存入银行,整存整存3年,年利率为3.15%,到期有利息多少元?要缴纳利息税多少元?王叔叔的本金加利息一共多少元?(现在的`利息税为5%)

15、小明家六月份用电180千瓦时,七月份比六月份多用了20%,每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕

16、林林爸爸的总工资收入13500元,比增加了240%,林林爸爸20的工资是多少元?

答案

1、

答:降了20%。

2、

答:涨了25%。

3、

答:价格降了25%。

4、

答:价格约涨了16.7%。

5、

答:今天一共有篮球30个,今年比去年增加了25%。

6、

答: 每张门票能节省16元,相当于降价了80%。

7、

答:南山小学的绿地面积有5200平方米,学楼和道路等有2800平方米。

8、

答:实际要付256元。

9、

答:可能会有450粒种子没发芽。

10、

答:今年产了3600千克苹果。

11、

答:男生占全年级人数的51.25%,实验小学六年级人数共有480人。

12、

答:去年这个蔬菜基地的产量是2万吨。

13、

答:504班参加体育兴趣小组的有16人。

14、

答:到期有利息378元,要缴纳利息税18.9元, 王叔叔的本金加利息一共4359.1元。 15、

答:小明家七月份的电费为多少元116

篇8:体积应用题及答案

一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60块,如下图.问这60块长方体表面积的和是多少平方米?

解答:6+(2+3+4)×2=24(平方米)

【小结】原来的正方体有六个外表面,每个面的面积是1×1=1(平方米),无论后来锯成多少块,这六个外表面的6平方米总是被计入后来的小木块的表面积的'.再考虑每锯一刀,就会得到两个1平方米的表面,1×2=2(平方米)

现在一共锯了:2+3+4=9(刀),

一共得到2×9=18(平方米)的表面.

因此,总的表面积为:6+(2+3+4)×2=24(平方米)。

这道题只要明白每锯一刀就会得到两个一平方米的表面,然后求出锯了多少刀,就可求出总的表面积。

篇9:体积应用题及答案

1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?

2、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?

3、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?

答案

1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?

解:总差为17+10=27(块);

分配之差为7-4=3(块);

所以有少先队员27÷3=9(人)

共有砖:4×9+17=53(块).

答:这个班少先队有9个人,要搬的砖共有53块。

考点:盈亏问题,一盈一亏

2、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?

解:第一次盈22人,第二次多出一个房间则是亏3+5=8(人);

总差为22+8=30(人);

两次分配之差为5人,

所以宿舍有30÷5=6(间),

新生共有3×6+22=40(人).

答:宿舍有6间,新生有40人。

考点:盈亏问题

注意点:空出一个房间,则是少了8人入住,则是亏8人

3、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?

解:其中两人分4个,其余每人分2个,则多出4个“转化为”全家每人都分2个,

多出4+2×(4-2)=8个;

一人分6个,其余每人分4个,则缺少12个“转化为”全家每人都分4个,

缺少12-(6-4)=10个;

由盈亏问题基本公式可知:全家的人数有(8+10)÷(4-2)=9(人)

买来橘子2×9+8=26(个)

篇10:分式方程应用题及答案

分式方程应用题及答案

一、A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程求解。

【提示】48/(x+4) +48/(x-4)=9

二、一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于,求这个分数.

【提示】设分子为x,则(x+1)/(x+6+1)=1/4

三、某工程,A工程队单独做40天完成,若B工程队单独做30天后,A、B两工程队再合作20天完成.

(1)求B工程队单独做需要多少天完成?

(2)将工程分两部分,A做其中一部分用了x天,B做另一部分用了y天,其中x、y均为正整数,且x<15,y<70,求x、y.

【提示】(1)设乙工程队单独做需要x天完成,则(1/40 +1/x)*20+ 30/x=1  ,得x=100

(2)依据题意得:x/40+y/100=1  并结合“x、y均为正整数,且x<15,y<70”建立不等式组试求x,y的值,其中x有14可取,得相应y值65。

四、小红、小明两组学生去距学校4.5千米的敬老院打扫卫生,小红组学生步行出发半小时后,小明组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的'1/3,求步行和骑自行车的速度各是多少?

【提示】设步行的速度是每小时x千米,则4.5/3x +0.5=4.5/x

五、某质检部门抽取甲、乙两个相同数量的产品进行质量检测,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂合格率比乙厂高5%,求抽取检验的产品数量及甲厂的合格率。

【提示】设抽取检验的产品数量为x,则(48/x -45/x)*100%=5%

六、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。问原来规定修好这条公路需多长时间?

【提示】设时间为x个月,列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=1

七、A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度。

【提示】设共交车速度为x,小汽车速度为3x,列方程得:80/(3x) +3=80/x +20/60

八、甲、乙两人各走14千米,甲比乙早半小时走完全程.已知甲与乙速度的比为8∶7,求两人的速度各是多少?

【提示】设甲的速度为8x km/h,乙的速度为7x km/h,则14/8x +0.5=14/7x

应用题及答案

应用题带答案

面积应用题及答案

解方程应用题答案

方程应用题及答案

比例尺应用题及答案

不等式组应用题及答案

平均数的应用题及答案

三年级应用题100道及答案

四年级数学应用题及答案

四年应用题及答案(整理10篇)

欢迎下载DOC格式的四年应用题及答案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档