“性感萝莉兵兵酱”通过精心收集,向本站投稿了7篇培养学生“说数学”,以下是小编整理后的培养学生“说数学”,欢迎阅读分享,希望对大家有帮助。
- 目录
篇1:培养学生“说数学”
培养学生“说数学”
提要:我国传统教育的影响使得学生失去了学好数学的积极性,在当前实施新教材教学过程中,作为知识的传递者,我们不得不反省教学方法的得当性。本文从发展学生提问、讨论、讲评、总结等说数学能力入手,提倡以学生为主体,鼓励学生去质疑、猜想、讨论,最大限度地开发学生的智力资源,发挥其潜能。
关键词:说数学 创新意识 合作精神 逻辑思维 能力 发言 兴趣
传统数学教学因受应试教育的影响,重视学生书面表达,轻视学生口头表达。课堂上教师讲概念,学生记概念;教师讲例题,学生模仿学习,乏味的教学方法,严重地挫伤了学生学习数学的积极性。学生被教师牵着鼻子走,连思维活动都常受到控制,课上出现机械、单一的问答,学生失去表现的意愿,形成低年级课堂热热闹闹,高年级课堂冷冷清清,毕业班课堂鸦雀无声的局面。这与当前要提高全体学生科学素质,培养学生具有创新精神和创新能力的教育极不适应。这些问题迫切需要教师改变旧的教育模式,改进教学方法,为学生营造有利于创新能力培养的.氛围和条件。国际21世纪教育委员会向联合国教科文组织(UNIESCO)提交的报告《教育--财富蕴藏其中》指出,培养“说数学” 能力是面向21世纪的四大教育支柱之一;同时,培养“说数学” 能力也是我国新一轮课程改革所要倡导的一种重要的学习技能。本文从发展学生提问、讨论、讲评、总结等说数学能力入手,提倡以学生为主体,鼓励学生去质疑、猜想、讨论,最大限度地开发学生的智力资源,发挥其潜能。
一、培养“说数学” 能力进而培养学生创新精神和创新能力
教育部在新修订初中数学教学大纲中增加了“逐步形成数学创新意识”这一教学目标,并将数学创新意识界定为“对自然和社会中数学现象具有好奇心,不断追求新知,独立思考,会从数学角度发现提出问题,并加以探索和解决。”这一教学目标的提出,要求教师在教学中应注意学生探索精神和创造能力的培养。
(1)培养“说数学” 能力,可以促进学生大胆质疑。俗话说:“学问学问,又学又问”,学问常常起源于疑问,在人们习以为常的小事中发现问题,是优秀科学家的品质。质疑态度在科学发展中上有着了不起的作用,质疑不止于发现问题,还要提出问题。一个问题的提出,它可以成为一个见解,一个研究项目,一个科研目标。发展学生说数学能力,教师必须创设问题情境,鼓励学生观察、思考,并提出质疑,再引起知识的迁移,问题的解决。
(2)培养“说数学” 能力,可促进学生非逻辑思维的发展。非逻辑思维包括直觉思维和形象思维。非逻辑思维能在一瞬间迅速解决问题,或解题思维中迅速定向认清解题方向或途径。
例如: F
C
D
A
已知:△ABC中,AB=3AC,
E
∠A的平分线交BC于D点,
B
过B作BE⊥AD。求证:AD=DE。
分析:由于题中,给出了角平分线与垂线的形象,学生凭直觉,会说这图象是等腰三角形模型的一部分,于是如图所示补全图形后,就容易想到过E作EG∥BC,交AF于G,则G为CF的中点,且CF=AF-AC=2/3AB,故C又为AG之中点,再由EG∥DC即可推至结论。
二、培养“说数学” 能力有利于确立学生主体地位
在“教师讲,学生听”的教学模式中,一切以教师为中心,学生的主体地位成了一句空话,学生只是知识的贮存器,导致许多学生对数学学习没有兴趣,产生学数学困难。重视并发展学生说数学能力,既能消除教育者与学生之间的心理障碍,便于双向交流,又能极大调动学生的参与性和创造性。那些调皮的学生喜欢提问、猜想、直接给出答案,尊重他们的发言,然后师生讨论分析,在这个过
[1] [2] [3] [4]
篇2:如何培养学生数学形象思维
在教学中要重视教具、学具的运用
教学中要运用学具、教具,给学生提供充分的观察和操作机会,让学生用多种感官去感知事物和现象。通 过比较、概括,反映出客观事物和现象的直观性的特征,就能获得正确表象。教具的演示和学具的应用要注意 多角度、不同方位和多样性。如角的认识,既要观察有锐角、直角的物体,也要观察有钝角的物体;要出示大 小不同的角的图形,也要出示位置不同的各种角的图形;既要出示静态中的角,也要演示动态中的角。学生观 察客观事物和现象越全面、深刻,获得的表象就越正确、丰富,形象思维水平就越高。
联系实际,培养学生空间观念
空间观念是物体的形状、大小、长短和相互位置关系的表象。要培养和发展学生空间观念,教学时一定要 联系实际。如要使学生获得长度单位1厘米长短的表象,学生要先用直尺量图钉、手指,1厘米大约是1只图钉长 ,食指的宽大约是1厘米;要使学生获得面积单位1平方厘米大小的表象,就让学生先用边长是1厘米的正方形量 一量大拇指的指面,大拇指的指面大小大约是1平方厘米。通过这样在实际中量一量,比一比,1厘米的长短, 1平方厘米的大小就在学生大脑中留下了表象,形成了空间观念。由此可见,培养和发展学生空间观念的过程,也是培养和发展学生形象思维能力的过程。
在教学中要重视数形结合
数是抽象的数学知识,形是具体实物、图形、模型、学具。数和形是紧密联系着的,学生只有先从形的方 面进行形象思维,通过观察、操作,进行比较、分析,在感性材料基础上进行抽象,才能获得数的知识。如10 以内数的认识,学生先要数小木棒:1根小木棒、2根小木棒、3根小木棒……10根小木棒,然后数课文实物图: 1只熊猫、2只小鹿、3只蝴蝶……10只小气球,通过数具体事物,在获得感性材料基础上,才能建立1、2、3……10的概念。在这样数形结合的教学中,也同时对学生进行了形象思维的训练,培养了学生形象思维能力。
3怎样发展学生的数学思维能力
组织游戏趣味型数学活动,发展学生思维的自主性
数学课上,如果老师动得多,那么学生可能就只是一个听众,静的机会多,失去了亲身经历的机会,学生的主体地位很难显现出来。教师应通过一系列的活动转化知识的呈现形式,做到贴近实际、贴近生活,培养学生思维的自主性。
例如:排队是学生天天都在经历的生活事例,通过排排坐游戏活动,可以使学生自主地了解基数和序数的知识。学习“人民币的认识”这一课,可以通过创设模拟的商场,让学生在组内进行买卖活动,在充满趣味性的自主活动中,学生不仅认识了人民币,而且也学会了简单的兑换。这样,学生在学习中有着更明显的自主性。学生实实在在地体会到生活中的数学,切实感受数学与自己学习生活的密切联系,使他们学会用数学的眼光去观察身边的事物。因此,自主参与活动是帮助学生积极思维,掌握知识的法宝。
组织知识拓宽型数学活动,发展学生思维的灵活性
小学数学新课程标准十分强调学生是数学学习的主体,注意让学生运用所学的知识,灵活地解决生活中的实际问题。诱发学生思维的源头就是课堂,在组织数学活动过程中,我们要激活学生的思维,鼓励学生标新立异,只有这样,才能真正学活知识,用活知识。 例如:教学“两位数减一位数的退位减法”时,我创设买玩具的活动情景,让学生用36元钱买一件价值8元的玩具,看看还剩多少元?学生通过活动、交流得出了几种不同的计算方法。有的小组认为可以先用10元减8元,再加上没用的26元得28元;有的小组认为可以先用36减6再减2得28元;还有的小组认为6减8不够减就用16减8得8,再加20得28元……
经过讨论,学生争着说在不同的情况下,可以用不同的计算方法。我让学生课后用自己想出的计算方法,看看什么时候你会选用什么样的方法。第二天学生兴高采烈地说:我有21元,买文具盒要用6元,我就用10元减去6元得4元,再加11元,就剩下15元了;我有32个珠子,送给弟弟8颗后还有24颗,因为12减8等于4再加20就是24颗了……学生通过在生活中去看、去想,在课堂上议一议、算一算,即拓宽了学生知识视野,又把数学课上获得的知识灵活运用到平时的生活实际中,让学生觉得学了数学非常有用,这样的数学活动,就培养了思维的灵活性。
篇3:如何培养学生数学形象思维
找准培养数学思维能力的突破口
数学思维的敏捷性主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,使学生掌握速算的要领。
为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用。如在概念教学中,使学生用等值语言叙述概念;数学公式教学中,要求学生掌握公式的各种变形等,都有利于培养思维的灵活性。
培养思维能力要同培养语言表达能力密切联系起来
人们的思维与语言是密不可分的。语言是思维的工具。心理学认为,借助语言人们把获得的感觉、知觉、表象加以概括,形成概念、判断,进行推理。通过语言表达还有助于调节自己的思维活动,使之逐步完善。在数学教学中,要发展学生思维能力,就要引导学生去分析、比较、综合、抽象、概括、判断、推理,而教师要了解学生这些思维活动的情况,也需要让学生用语言表达出来,然后对学生思维的过程给予肯定或纠正。
有经验的教师总是注意让学生用语言表达自己的计算过程和解题思路,结果学生思维能力有较快的提高。由于课堂教学时间有限,为了使学生都有用语言表达他们思维的训练机会,可以把指名发言、集体讨论和同桌两人对讲等不同方式结合起来。教师还应有意识有计划地注意帮助差生,鼓励差生发言,推动他们积极思维,以便促使他们的数学成绩和思维能力都取得较大的进步。
篇4:如何培养学生数学理解能力
一、缩句法
就这道题而言,题目本身意思简单又明确,学生尚且理不清,遇到更复杂的题目,学生更会一塌糊涂。数学的特点是简洁,所以我想从简洁、明确、条理清晰入手,学生能不能更好的来理解题意。要让这道题题目变得简洁,就要把多余的枝干都去掉,运用语文的缩句法来实现,这道题的题目就可以变为:原有34排,每排32个座位,现有42排,每排40个座位,增加了多少个座位?这样一来题目的意思就清晰多了,降低了学生理解的难度,出错率也会适当降低。
二、圈画法
像上面那个学生所做,算到最后其实他自己也不明白求的是什么?这时就可以采用圈画法,比如这道题,如果圈画的话,首先要圈的一定是“增加”,从这两个字入手,让学生思考:是谁和谁相比增加?在进一步求出原来的座位和现在的座位个数,最后求出最终问题。
三、图表法
在做这道题的调查时,我让一个孩子重新来做这道题,结果他仍然列出了42-34这个算式,我建议他画图试一下,结果这个孩子画出了非常清晰的图:
要求增加多少个座位?就是求黑笔标注的部分,这是他才发现如果用42-34也能求出答案,但是后续的步骤会很繁琐。
四、分析法
这里所说的分析法与解答应用题时所用的分析法、综合法不完全相同,解答应用题时的分析法指的是从条件出发,根据条件能够求出什么问题?再根据所求出的问题与最终问题之间的联系来寻找解题方法;而综合法指的是从问题出发,看解决这个问题,需要什么条件,再根据要用的条件从题目中寻找答案。比如上面这个孩子所用的42-34,其实就是用解决应用题的分析法来分析的,根据分析法,可以看题目中给出的条件能求出什么问题?题目中的34既可以和32组合,求出原有多少个座位?也可以和42组合,求出现在多了几排?这里所强调的分析是指根据这两个思路,分析到底哪一个思路才是正确解题的方向?很显然,问题最终求的是现在比原来多多少个座位?因此第一个方向是正确的。这里,学生往往在列出这两个算式以后就已经糊涂了,不知道自己求的是什么了,还可以分析一下这类题目,适合用分析法还是综合法?从前面学生的错误,可以看出,这样的题用从问题出发的综合法更不容易出错。
初中数学考试的5个小技巧
办法一:检查根本概念
根本概念、规律、公式是同窗们检查时最容易无视的,因而在解题时极易发作小错误而本人却检查数次也发现不了,所以,做完试卷第一步,在检查根本题时,我们要认真读题,回到概念的定义中去,有的放矢。
办法二:对称检验
对称的条件势必招致结论的对称,应用这种对称原理能够对答案停止快速检验。
办法三:不变量检验
某些数学问题在变化、变形过程中,其中有的量坚持不变,如图形的平移、旋转、翻折时,图形的外形、大小不变,根本量也不变。应用这种变化过程中的不变量,能够直接考证某些答案的正确性。
办法四:特殊情形检验
问题的特殊状况常常比普通状况更易处理,因而经过特殊值、惯例来检验答案是十分快捷的办法。
办法五:答案逆推法
置信这种办法很多学生都会,在求出标题的答案后,可将答案重新代回标题中,检验标题的条件能否还成立。但是这种办法一定要留意,要想想有没有可能存在多解的情形。
总而言之,要想进步检查的次数与效率,又想防止单调的反复,就需求一题多解去检验。
一道题,运用原来的办法去做,固然也能发现错误,但是人都是有惯性思想的,很容易就无视了一些小的错误。
假如在检查时,我们都尽量去想一些新的办法,那样,一来能够检查答案的对错,二来能够减少机械性反复产生的单调感,三来考虑新的解法也是锻炼思想的一种手腕,四来能将试卷中的题的作用发挥到最大,能够说是一举多得的好措施。
篇5:如何培养学生数学思维
训练学生的数学思维应有系统
散乱无序的思维是不能正确反映客观世界的整体性的。“所谓智力的发展不是别的,只是很好组织起来的知识体系”,要使数学知识在考虑数学知识本身的逻辑系统和学生认知规律的相互作用下,能上下、左右、前后各个方向整合成一个纵向不断分化,横向综合贯通,联系密切的知识网络,使数、形、式各部分知识纵横联系,相互促进,广中求深。实践证明,知识联系越紧密,智力背景就愈广阔,迁移能力也就越强,创造性思维就越有可能。一个多方向、多层次的整体结构,对知识的理解、掌握、储存、检索和应用愈有利。
但由于小学身心发展的自身规律决定了教师在教学中不可能将知识一下子整体传授给学生,而是在教学时具有一定的等级层次性、阶段性,不同的层次、不同的阶段反映不同的思维水平和不同的思维品质。如小学数学中整数计算的四次循环,分数、小数的两次循环。而三角形知识的两次教学等。教师在教学时应从整体的、系统的观点出发,明确每一层次、每一阶段对学生思维训练的要求,恰到好处地进行训练。
训练学生的数学思维要有方向
小学生学习数学的思维方向明显特点是单向直进,即顺着一个方向前进,对周围的其他因素“视而不见”。而皮亚杰认为思维水平的区分标志是“守恒”和“可逆性”。这里在所谓“守恒”就是当一个运算发生变化时,仍有某些因素保持不变,这不变的恒量称为守恒。而“可逆性”是指一种运算能用逆运算作补偿。学生要能进行“运算”,这个运算应当是具有可逆性的内化了的动作。
因此,教师在教学中既要注重定向集中思维,又要注重多向发散思维。前者是利用已有的信息积累和记忆模式,集中向一个目标进行分析推理,全力找到的合理的答案。后者是重组眼前或记忆系统中的信息,产生新的信息。解答者可以从不同角度,朝不同方向进行思索,探求多种答案。在对培养学生创造能力越来越强烈的今天,我们必须十分注重学生数学思维的方向性,要利用一切教材中的有利因素,训练学生一题多解、一题多变、一题多用的思维方法。
2数学教师如何培养学生的创新能力
教师要对学生创新能力的发展尽到培养和保护的责任
学生的创新意识和创新能力在早期是不成熟的,教师要允许他们在探索中出现这样那样的错误。关键是要弄清出现错误的原因,让他们以积极的态度承认错误改正错误,这本身也就是在培养他们的创新态度。教师要以辩证的观点和发展的眼光进行多元化的发展评价。从客观上保护学生思维的积极性,从而促进学生以积极的态度投入到学习中。在数学教学中,经常遇到学生“插嘴”,影响正常的讲课,教师要把这种现象理解为学生思维敏捷的表现,理解为学生的思路紧跟或超过讲解的速度的表现,理解为这是学生创新能力的萌芽而正面引导,不要理解为学生不遵守纪律,捣乱课堂。
否则,将会阻碍学生创新能力的产生和发展。作为一个创新型的教师,不管学生在课堂内外,不管回答问题或提出问题,不管是否超出讲授内容或怎样离奇,都要给予积极评价,明确的赞扬,增加学生的自信心,表达你对他们的关注和赞许。教师要树立良好的教风,不要让学生成为“小绵羊”,不能让学生完全按教师自己的设计轨道行走,要让学生积极发言,积极思维,敢于说出自己的看法,敢于发表与大家不同的见解。这样既可以使学生在学习过程中产生愉悦的情感体验,调节课堂气氛,调动学生学习和思维的积极性,又能使学生受到激励,师生间产生情感交流,相互感染,共同体验教学和学习成功的愉快和喜悦。
类比迁移法是培养思维能力的有效途径
1、运用类比迁移法启迪学生思维想象。教学两位除以一位数笔算时,我出示这样一个例题,63÷3时,由于学生会做6÷3或3÷3,我先用一张纸把63遮住一个数,让学生说出商,然后换遮一个数,又让学生说出商,这样启迪学生运用已有的知识来解决63÷3,这时学生对两位数除以一位数有了一定兴趣,教师此时顺水推舟,指点学生除到哪一位,商就写在哪一位上。引导学生仿照上述过程来解决二位数除以一位数的问题,学生通过比较模仿并展开联想,思维能力得到显著提高。
2、通过分析归纳,培养学生创新思维能力。教学平面图形面积计算公式后,我要求学生归纳一个能概括多个平面图形面积公式,我让学生进行讨论,学生归纳总结小学阶段学过的面积公式都可以用梯形面积的公式计算。梯形的面积公式是(上底+下底)X高÷2,而长方形,正方形,平行四边形的上底和下底相等,可将公式变为底(长,边长)X高(宽,边长)X2÷2=底(长,边长)X高(宽,边长),又因为圆面积公式是根据长方形面积公式推出来的,因此梯形面积公式对圆也同样适用,当梯形的上底为零时,(即梯形上一个三角形)这时梯形面积公式成:底×高÷2,即三角形面积公式。通过分析、归纳学生不仅能更好地熟悉掌握平面图形的面积公式,同时也培养学生的创新思维能力。
篇6:如何培养学生数学思维
多媒体教学培养数学思维能力
多媒体作为常规教学的辅助手段,越来越受到小学数学教师的重视,这与它的积极作用是分不开的。幻灯、投影的特点之一就是具体形象、生动直观,能给学生提供鲜明、生动、明晰的视觉形象,激起学生学习的兴趣和求知欲,调动学生学习的积极性。如“量角器的认识和使用”一节,如照书本插图或模型教具讲解,可见度太低,会影响学生学习积极性。假如把透明量角器放在投影仪的载物台上,通过投影进行讲解,则能满足学生视觉直观需要,使学生聚精会神、兴趣盎然地投入到学习活动中。
思维能力是智力的核心。思维起源于观察,观察又给思维提供资料。幻灯、投影能在较短时间内向学生提供丰富的感性材料,使学生的感官和思维处于活跃状态。如平行四边形面积公式的推导,若运用活动而色彩鲜艳的幻灯片,再辅之以简单明确的表达,就很容易引起学生的注意,从而激发学生对平行四边形切割、拼凑方法的兴趣,帮助学生理解平行四边形面积公式,同时搞清平行四边形和长方形之间的内在联系,为以后学习三角形、梯形面积公式的推导打下良好的基础。观察是思维的触角,是学生认识世界,增长知识的重要能力。幻灯、投影不仅为学生提供从未涉及过的事物或现象,而且为直接感知观察这些事物或现象创造了条件,并且把间接知识、抽象的概念具体化、形象化。既突出了事物的重点和本质特性,又便于学生观察,形成表象,促进学生在实践中提高观察力。如讲“圆柱体表面积”一节内容时,投影圆柱体和圆柱体表面展开后的复合幻灯片,学生就能清楚地认识到圆柱体的表面积是由“两个相同上、下底圆面积和一个侧面积组成”。而侧面展开后恰好是一个长方形,这个长方形的长是上(或下)底面的周长,宽是圆柱的高。
确立良好思维品质的发展目标
发展学生的质疑意识感。质疑意识感,包括提出中间问,确定中间结果,制定解题计划,明确复杂问题可分解为成的简单问题,提出对“双基”知识的理解障碍点,体会学习数学中的心理问题。较强的质疑意识感,是形成良好思维品质的催化剂。
发展学生的数感和符号感。数学的基本构成要素是数和符号。要用数学命题,公式法则和相关的图形来正确刻画数量关系和空间形式,就必须以准确鲜明的数感和符号感为必要的前提。
发展学生的数学过程清晰感。数学过程清晰感,包括对观察、分析成果的清晰表述,对解题过程的清晰展示,对思考理由的清晰阐述。学生具有数学过程清晰感,是良好思维品质的具体体现。
发展学生的数学信息感。数学信息感不仅包含教材所提供的常规数学模型,还包括关于解答问题,探索规律,学习知识等方面的思想方法。数学信息是抽象于现实并应用于现实的关键因素。
篇7:如何培养学生数学思维
用实践操作唤起学生兴趣是培养思维能力的前提。
作为数学教师,在具体的教学活动中自己亲自动手或让学生自己动手操作,最能唤起学生学习数学的兴趣,保持稳定的注意力。如圆柱体体积公式推导这一节,我让学生将一个圆柱体拼割成一个近似的长方体,并让学生掌握圆柱体体积公式。教学时,我先要求学生自己认真观察老师的推导过程,看看这个近似的长方体体积,表面积同原来圆柱体体积,表面积相比是否发生变化。通过这样的实践操作,学生学起来兴趣大增,掌握知识点轻松自如,从而达到事半功倍的效果。
在小学数学中让学生进入实践操作是有效提高课堂教学效率的一种重要手段。在教学行程问题后,我出示这样一题,已知客车每小时行60千米,货车每小时行50千米,现两车同时从相距200千米的甲乙两地同时出发,经过两小时后,两车相距多少千米?由于题目中没说明行驶方向,所以两车出发2小时后相距路程是多少?并无一个标准。因此,我组织学生在教室按照四种情况进行演示:1、两学生同时相向而行;2,两学生同时背向而行;3、两学生向同一个方向行驶走得快的在前;4、两学生同时向同一方向行驶而走得慢的在前。通过这样实践操作,学生深受启发,于是在短时间内很快解决了本题。
数学教师良好的创新教育教学能力是培养学生创新能力的关键
教师要想方设法调动学生的创新意识,教师要尊重学生的人格。以平等、宽容的态度对待学生,使学生能够与教师一起参与学习,做学习的主人,从而形成宽松和谐的教育环境,使学生尽情创新。在课堂教学中,还要有意识地搞好合作教学,使教师和学生角色处于随时互换的动态变化中。要利用班集体集思广益,促进学生之间的交流,畅所欲言,各抒己见,或将几个想法组合成一个较好的平台,最大限度地调动学生的潜能。
在教学过程中,把生活实际中美的图形展示到课堂教学中,充分利用图形的线条美、色彩美,给学生最大的视觉感知,充分体会数学图形给生活带来的美。把图形运用到美术创作、生活空间的设计中,使他们产生创造图形美的欲望,驱使他们创新,维持长久的创新兴趣。针对不同的学生,开展一定的活动,如几何图形拼图大赛,数学笑话晚会,逻辑推理故事演说等,让学生展开想象的翅膀,发挥各自的特长,充分展示自我,找到生活与数学的结合点,感受自己胜利的喜悦,体会数学给他们带来的成功感和快乐,达到培养学生创新能力的目的。
培养学生“说数学”(集锦7篇)




