【导语】“vison”通过精心收集,向本站投稿了12篇《列方程解二、三步应用题》教学反思,以下是小编为大家整理后的《列方程解二、三步应用题》教学反思,希望能够帮助到大家。
- 目录
篇1:《列方程解二、三步应用题》教学反思
这一小节内容是在前面初步学会列方程解比较容易的两步应用题的基础上,教学解答一般的两、三步应用题。例4是数量关系稍复杂的两步计算应用题,即:“已知一个数的几倍多(或少)几是多少求这个数。”与其相应的顺思考的应用题,即求比一个数我几倍多(或少)几是多少。例4若用算术方法解。需逆思考,思维难度大,学生容易出现去除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从生活中的事物入手,降低问题的难度。
解答例4这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从身边的事物入手,让数学知识更贴近生活。五年级的学生 大多数是12岁,我利用这一事实编题,问学生今年几岁,学生说出是12岁。我就说:“老师今年的年龄比同学的年龄的3倍还多4岁,老师今年多大年纪?”学生脱口而出:“40岁”。“你是怎样计算的?”生回答:“12×3+4=40(岁)。老师又问:“老师的年龄与同学的年龄存在着怎样的等量关系呢?”生回答:“老师的年龄等于学生的年龄乘3加上4。”这样的教学既拉近的师生之间的距离,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
学生通过比较复习题与例4的异同,强化了理解题意这个环节,然后,我大胆放手,让学生用自己学过的方法来解答例4。有困难可与小组同学讨论,也可以借助画线段图帮助理解题意。学生在动手画,动口说的过程中,理解数量关系。学生利用已有的经验自己试一试,想一想,说一说,突出了学生的主体地位。学生 试解例题后。从不同角度理解题意,老师让学生 把各种不同的解法板演在黑板上,让学生分析哪种解法合理。其中最重要的一条是这道题存在的等量关系更弄清,再从中选择最佳解题方案。我认为这样教学即能预防错误定势的形成,又突出了最佳解题思路,强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生 自己解答,充分相信学生 ,让学生 成为学习的主人,参与到教学的全过程中去。画线段图,理解题意这种方法学生比较陌生,教师给予适当的指导,让学生学会画图分析题意找等量关系:直观形象地加深了对数量关系的理解。在画图过程中,出现的问题比较多“比倍多(或少)”个别学生 不知是包括里面还是外面,从而找不准等量关系。所以在应用题的教学中,教师要指导学生 学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要。
篇2:列方程解应用题(二)
教学目标
1.使学生初步学会分析稍复杂的两步计算的应用题的数量关系,正确列出方程.
2.学生会找出应用题中相等的数量关系.
教学重点
训练学生用方程解“已知比一个数的几倍多(少)几是多少,求这个数”的应用题.
教学难点
分析应用题等量关系,并会列出方程.
教学过程
一、复习准备
(一)写出下面各题的式子.
1.比 的3倍多15
2.比 的4倍少2
3.2个 与34的和
4.5个 与0.6的3倍的差
(二)解答复习题
少年宫舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人.合唱队有多少人?
(学生独立解答)
23×3+15
=69+15
=84(人)
答:合唱队有84人.
二、新授教学
(一)导入 新课(改复习为例4)
少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?
1.比较:例4与复习题有什么相同点和不同点?
相同点:“合唱队的人数比舞蹈队的3倍多15人”这句话没有变;
不同点:复习题已知舞蹈队人数求合唱队人数,
例4是已知合唱队人数求舞蹈队人数.
2.教师说明:例4就是我们以前见过的“已知比一个数的几倍多几是多少,求这个数”的应用题.今天我们学习用方程解答这类应用题.
篇3:列方程解应用题(二)
教师板书:
解:设舞蹈队有 人.
答:舞蹈队有23人.
5.思考:还可以怎样列方程?( 或 )
引导:例题的方法最简单,解题时要用简单的方法解.
(三)变式练习
少年宫合唱队有84人,合唱队的人数比舞蹈队的人数的4倍少8人,舞蹈队有多少人?
三、课堂小结
今天这节课你学到了什么知识?在学习中你有什么感想?
四、巩固练习
(一)只列式不计算.
1.图书室有文艺书180本,比科技书的2倍多20本,科技书 本.
2.养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡 只.
(二)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只.去年养兔多少只?
(三)一个等腰三角形的周长是86厘米,底是38厘米.它的`腰是多少厘米?
五、课后作业
(一)地球绕太阳一周要用365天,比水星绕太阳一周所用时间的4倍多13天.水星绕太阳一周要用多少天?
(二)买3枝钢笔比买5枝圆珠笔要多花0.9元.每枝圆珠笔的价钱是2.6元,每枝钢笔的价钱是多少钱?
六、板书设计
篇4:列方程解应用题(二)
例4.少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?
解:设舞蹈队有 人.
答:舞蹈队有23人.
教案点评:
分析数量之间的等量关系,学生已有一定的基础,本节主要训练学生掌握根据题目所给的不同条件,找等量关系的方法。
首先引导学生用多种方法解答,并通过观察、比较、分析,从众多的等量关系中找出最佳思路,使学生学会从多种角度思考问题,培养学生思维的灵活性。
篇5:《列方程解应用题》教学反思
《列方程解应用题》教学反思
列方程解含有两个未知数的应用题,人教版九年义务教育五年制第八册33页例6。
列方程解应用题是在第八册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。例6的内容,在算术中称为“和倍”和“差倍”问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应
本节课的教学目标是使学生初步掌握含有两个未知数的应用题的解题思路和方法,会解含有两个未知数的应用题;会用把两个未知数的值代入已知条件看是否符合的方法进行验算;在教学解题思路的同时培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。
本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。创设情境,蔡利琦同学和周旭同学两个人互相询问对方的的钱数并说出两个人之间的倍数关系,来猜测两个人各有多少钱?
由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生用算术方法解这道题,还有利于设未知数,找等量关系和列出方程。
之后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。
之后进行检验。虽不要求写在本子上或卷子上,但这是不可忽视的重要步骤,长期要求下去,就可使学生养成良好的检验习惯,增强责任心和自信心,那种做完题不知对错的做法是后患无穷的`。首先从方程的角度来检验,然后再让这两个同学把钱拿出来让大家看一下,果真,结果正如我们预料,同学们感到非常有趣,而且兴奋异常,获得了成功的喜悦。
再想一想,还可以怎样叙述两个人的关系呢?有的同学说,我们还可以告诉大家蔡利琦是周旭的5倍,比周旭多8元钱,那么该怎样解答呢?
同学们积极思考,想出了好多的解题方法,并进行比较概括找出自己喜欢的解法。达到了很好的教学效果。然后进行适时的练习,达到巩固教学效果的目的。
本堂课,在对学生的及时评价反馈上,和环节的处理上还有待于进一步的加强,也恳请领导和各位老师能够帮助我,使我能够在今后的教学中,逐渐加强,能够熟练的驾御课堂。
篇6:《列方程解应用题》教学反思
列方程解应用题是在第八册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。例6的内容,在算术中称为“和倍”和“差倍”问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识,必须重视这部分内容的教学。
本节课的教学目标是使学生初步掌握含有两个未知数的应用题的解题思路和方法,会解含有两个未知数的应用题;会用把两个未知数的值代入已知条件看是否符合的方法进行验算;在教学解题思路的同时培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的'能力及养成独立思考的良好习惯。
本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。创设情境,蔡利琦同学和周旭同学两个人互相询问对方的的钱数并说出两个人之间的倍数关系,来猜测两个人各有多少钱?
由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生用算术方法解这道题,还有利于设未知数,找等量关系和列出方程。
之后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。
之后进行检验。虽不要求写在本子上或卷子上,但这是不可忽视的重要步骤,长期要求下去,就可使学生养成良好的检验习惯,增强责任心和自信心,那种做完题不知对错的做法是后患无穷的。首先从方程的角度来检验,然后再让这两个同学把钱拿出来让大家看一下,果真,结果正如我们预料,同学们感到非常有趣,而且兴奋异常,获得了成功的喜悦。
再想一想,还可以怎样叙述两个人的关系呢?有的同学说,我们还可以告诉大家蔡利琦是周旭的5倍,比周旭多8元钱,那么该怎样解答呢?
同学们积极思考,想出了好多的解题方法,并进行比较概括找出自己喜欢的解法。达到了很好的教学效果。然后进行适时的练习,达到巩固教学效果的目的。
本堂课,在对学生的及时评价反馈上,和环节的处理上还有待于进一步的加强,也恳请领导和各位老师能够帮助我,使我能够在今后的教学中,逐渐加强,能够熟练的驾御课堂。
篇7:《列方程解应用题》教学反思
《列方程解应用题》教学反思
列方程解应用题例1,是学生学习了解方程的基础上进行学习的,学会利用方程来解决简单的实际问题。这部分内容关键是让学生理解题意,找出正确的等量关系式,根据等量关系来列出方程,为让孩子很好的理解列方程解决问题的方法,我利用了孩子熟知的年龄之间差距为例题时行讲解,学生看到这个情境确实很兴奋。
本课我把它重点定位在:
1、学会列方程解应用题的一般步骤;
2、学会如何分析应用题的方法。教学例题时,我首先让学生读题,明确题目的意思。然后问,“这题是研究哪两个数量的关系?”这时一定要求学生表述清楚,是“妈妈的年龄”而不能只说成是“妈妈”突出是研究两人“年龄的关系”。同时拓展,我们也可以研究他们体重的关系等等。我设计这个问题的目的,是让学生能从整体上思考本题,做到心中有数。第二个问题,找出题的未知数,把什么看作未知数?第三个问题:“题目中的哪一句话反应了他们年龄之间的关系?”第四个问题,“你能一个式子表示出他们年龄之间的关系吗?”孩子们自然一下就想到了“妈妈的年龄-30=小明的'年龄”“小明的年龄+30=妈妈的年龄”“妈妈的年龄—小明的年龄=30”等数量关系式。你选择其中的任何一个等量关系列出方程并解方程。整个过程从分析到找到列方程解应用题的方法,在师的引导之下,孩子们自然理解了解应用题的一般步骤:1、等量关系式;2、设未知数;3、列方程;4、解方程;5、检验、答语,过程自然,孩子们掌握的也比较好!
篇8:列方程解应用题教学反思
列方程解应用题教学反思
这是一节开放性教学的课。我把开放性教学分为两个部分:开放题教学和开放的教学方式。我以初三数学列方程解应用题中的一个常规性问题改为一个答案开放的开放性问题,不断引导学生探究问题的内在规律性。这是一个发展性的问题,可以给各个年级的学生去讨论。这课堂可以给初三学生猜想数据背后的规律性。对于初三年级的学生可以让他们用分式的知识去分析路程和速度是用字母来表示时这种相遇问题背后的规律性。教师想方设法为学生设计好的问题情景,同时给学生提供充分的思维空间,学生在参与发现和探索的过程中思维就会创在一个又一个的点上,这样的教学日积月累对于培养学生的创新意识和创新能力是有巨大的作用的。我认为学习数学最好的方法是在发现中学习,在学生的再创造中学习,并引导学生整理统合,组织属于学生自己的知识经验。学生积极参与问题的提出和解决过程,有助于学习后的'长期记忆。学生在对开放题的探究中有助于智力的发展与提升。学生从主动参与发现和解决问题的过程中获得成就感的满足,不须*外在赏罚去维持其学习动机与兴趣。而且长期坚持以学生为学习主体的教学培养出来的学生适应充满各种危机,和瞬息变化的社会的能力较强,并且发展的后劲较大。但是开放性教学对于较大型的班级不是很有优势,因为通常这样的班级学生的学习能力差距较大,当能力较强的学生发现问题较快时,对思维能力较次者容易造成较大的心理压力。
篇9:列方程解应用题
列方程解应用题
教学内容
教科书118页例6及“做一做”。练习二十九1~5题。
一、素质教育目标
(一)知识教学点
1.使学生初步学会分析“已知有两个数的和与差,和两个数的倍数关系,求两个数各是多少”的应用题的数系,正确列出方程进行解答。
2.指导学生设末知数,表示两个数之间的关系。
3.训练学生分析这类应用题的数量关系。
(二)能力训练点
1.会解答所列方程形如ax bx=c的应用题。
2.会正确找出应用题的等量关系。
3.会进行检验。
(三)德育渗透点
1.培养学生认真学习的好习惯。
2.渗透不同事物之间既有联系又有区别的观点。
(四)美育渗透点
通过题目中的等量关系,使学生感受到人民的卓越智慧,体会到源于生活。
二、学法指导
1.引导学生分析题意,找出等量关系。
2.指导学生试算,利用已有经验进行体验。
三、教学重点
用方程解答“和倍”“差倍”应用题的方法。
四、教学难点
分析应用题等量关系,设末知数。
教学过程 设计
(一)复习准备
1.列方程并求出方程的解。
(1)x的5倍与x的3倍的和是40;
(2)某数的4倍比它的6倍少24。
2.根据下面的条件,找出数量间的相等关系。
(1)大米与面粉重量的`和是1000千克;(大米的重量+面粉的重量=重量和。)
(2)每支钢笔比每支圆珠笔贵3.8元;(每支钢笔的价钱-每支圆珠笔的价钱=贵的价钱。)
(3)已看的页数比剩下的页数少76页。(剩下的页数-已看的页数=少的页数。)
3.用含有字母的式子表示。
(1)学校科技组有女生x人,男生人数是女生的3倍,男生有人,男生女生一共有()人,男生比女生多()人;
(2)果园里苹果树的棵数是梨树的2倍,梨树有x棵,苹果树有()棵,苹果树和梨树一共有()棵,梨树比苹果树少()棵。
4.解答:果园里有桃树45棵,杏树的棵数是桃树的3倍。两种树一共有多少棵?
(1)学生审题画图,独立解答。
(2)学生解答后讲解:
解法1:
列式:45+45×3=45+135=180(棵)
解法2:
列式:45×(3+1)=45×4=180(棵)
答:两种树一共有180棵。
(二)学习新课
1.改变上题的条件和问题,使之成为例6。
果园里桃树和杏树一共有180棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?
(1)学生审题,将复习题的图改为例6。
(2)思考:
①这道题求什么?与以前学习的应用题有什么不同?(有两个未知数。)
②怎样设未知数呢?
如果设桃树有x棵,那么杏树就有3x棵;
比较哪种设法比较简便?为什么?
易解。
将线段图中的问号改为x或3x。
(3)根据哪个条件找数量间的相等关系?
根据桃树和杏树一共有180棵,找等量关系。
(4)列方程,解方程,
解:设桃树有x棵。或:
(5)检验,答题。
教师:检验时,可以把得数代入题目,看是否符合已知条件。
学生进行检验。
①看桃树和杏树一共的棵数是否是180棵,
45+135=180(棵)
②看杏树棵数是否是桃树的3倍,
135÷45=3
答:桃树有45棵,杏树有135棵。
2.试做:
果园里杏树比桃树多90棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?
(1)思考:
此题与例6相比,哪些地方相同?哪些地方不同?数量关系是怎样的?(倍数关系相同,不同点是把两种树的和改成了两种树的差。)
数量关系为:
(2)试做:
检验:
①135-45=90;
②135÷45=3。
答:桃树有45棵,杏树有135棵。
3.小结:
思考讨论:
(1)我们今天学习的应用题有什么特点?(今天学习的应用题,都是已知两种数量的倍数关系以及它们的和或差,求这两种数量各是多少。)
(2)这样的应用题,我们是怎样解答的?(一般根据倍数关系,设一倍数为x,另一个数用含有字母的式子表示;再根据这两种量的和或差,找出数量之间的相等关系,就可列出方程,并解方程,求出得数;最后还要把得数代入题目中去,看是否符合已知条件。)
(三)巩固反馈
1.根据条件,设未知数。
(1)快车的速度是慢车的2倍。
设()为x千米,那么()为2x千米;
(2)男生人数是女生的1.2倍。
设()为x人,那么( )为1.2x人;
(3)大米的重量是面粉的3.5倍。
设()为x千克,那么()为3.5x千克;
(4)父亲的年龄是女儿的4倍。
设女儿的年龄为x岁,那么父亲的年龄为()岁;
(5)甲桶油的重量是乙桶的1.5倍,设乙桶油的重量为()千克,那么甲桶油的重量为()千克。
2.独立解答P118“做一做”,P119:4。
解答后讲解数量间的相等关系。
做一做:
根据“四年级、五年级共有学生330人”,得:
四年级人数+五年级人数=四、五年级人数和
↓ ↓ ↓
1.2x x 330
P119:4。
根据“如果再往乙袋里装5千克大米,两袋就一样重了。”可知乙袋比甲袋少5千克,得:
甲袋重量-乙袋重量=乙袋比甲袋少的重量
↓ ↓ ↓
1.2x x 5
3.将上题中的“如果再往乙袋里装5千克大米”改为“甲袋给乙袋5千克”应怎样解答?
画图理解:甲袋比乙袋多多少?
从图上看出甲袋比乙袋多5×2=10(千克)
根据:甲袋重量-乙袋重量=甲袋比乙袋多的重量
↓ ↓ ↓
1.2x x 10
列方程:1.2x-x=10。
4.课后作业 :P119:1,2,3。
课堂教学设计说明
列方程解含有两个未知数的应用题,学生第一次接触,因此设哪个未知数为x是本节课的难点。为了分散这一难点,在复习中采取填空的形式,引导学生根据倍数关系设未知数。在新授中,通过对两种设法的比较、分析,得出设一倍数为x比较简便。在练习中又设计了专项练习,学生在思考、讨论中,透彻地理解并掌握了这一规律。
例6 学习了列方程解和倍应用题,改变其中一个条件,变成差倍应用题,着重引导学生比较两题的异同。讨论解答方法哪些地方相同,哪些地方不同,既可提高教学效率,又能将学生的注意力引导到比较两题的异同上面来,有助于形成两种解法的逻辑关系。
在学习了和倍、差倍应用题之后,及时引导学生找出这两类应用题的特点,并根据题目的特点总结出解题规律。既使学生掌握了解题方法,又提高了学生抽象概括的能力。
板书设计
篇10:列方程解应用题
列方程解应用题大全
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。下面是列方程解应用题大全,请参考!
列方程解应用题大全
类型一(简单的一步方程)
1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。六一班收集了60个,六二班比六一班多收集15个,六二班收集了几个?
2、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。六二班收集了60个,六二班比六一班多收集15个,六一班收集了几个?
3、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。六二班收集了60个,六二班收集的是六一班的2倍,六一班收集了几个?
4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)
类型二(几倍多多少/少多少):
1、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?
3、农场一共收获了1200棵大白菜,每22棵装一筐,装完后还剩12棵,共装了几框?
类型三(买东西和卖东西):
1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?
2、我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛共花了28元。其中《科学家》这本书买了4本,《发明家》买了多少本?
3、王奶奶拿了孙子们帮她收集的`易拉罐和饮料瓶去废品收购站卖,共得到7元,易拉罐和饮料瓶每个都是0.15元,已知易拉罐有20个,那么饮料瓶有几个?
类型四(和倍问题 / 差倍问题):
1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?
2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?
3、甲车每小时比乙车多行驶10千米,甲车的速度是乙车的1.2倍,求乙车的速度是多少?
类型五(相遇问题、追及问题、鸡兔同笼)
1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地相距110千米,问甲车和乙车几小时后相遇?
2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。4分钟后,小明到达终点,取得了胜利,这时小东落后了他400米。经过计算发现,小明每分钟骑300m,那么小东每分钟骑多少米?
3、笼子里关了一些鸡和兔子,已知它们的腿加起来共有48条,并且鸡的只数和兔子的只数相同,那么鸡和兔子各有多少只?
类型六(和差问题):
1、甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?
2、两个相邻自然数的和是97,这两个自然分别是多少?
3、两个连续自然数的和是153,这两个数分别是多少?
篇11:列方程解应用题
(1)山坡上有羊80只,其中白羊是黑羊的4倍,山坡上黑羊、白羊各多少只?
(2)商店里卖出两筐柑橘,第一筐重26千克,第二筐重29千克,第二筐比第一筐多卖了9元钱,平均每千克柑橘多少元?(用两种方法解)
(3)一块梯形麦田,面积是540平方米,高18米,上底是20米,下底是多少米?
(4)甲乙两车从相距750千米的`两地同时开出,相向而行,5小时相遇,甲车每小时行80千米,乙车每小时行多少千米?
(5)两辆汽车同时从同地开出,行驶4.5小时后,甲车落在乙车的后面13.5千米,已知甲车每小时行35千米,乙车每小时行多少千米?
参考答案
1.x=12 x=28 x=0.5
x=2.2 x=8 x=5
2.(1)付出的钱、用去的钱 5-3x=0.5
(2)艺术类书的2倍、4本 2x+4=50
(3)底×高÷2 80x÷2=280
(4)(上底+下底)×高÷2 (15+x)×30÷2=450
(5)①买乒乓球拍用的钱.
②买羽毛球拍用的钱.
③买一副乒乓球拍和一副羽毛球拍用的钱.
④买乒乓球拍和羽毛球拍共用的钱.
(6)20-1.25x
20-1.25x=20-1.25×10=105
3.(1)设黑羊x只.
x+4x=80
x=16
4x=4×16=64
(2)(29-26)x=9
x=3
(3)(20+x)×18÷2=540 x=40
(4)(80+x)×5=750 x=70
(5)(x-35)×4.5=13.5 x=38
篇12:列方程解应用题
1.解方程.
4x-31=17 2x-6×4=32
7x+2x=4.5 5.6-2x=1.2
15x÷4=30 4(3x-7)=32
2.根据题意填空.
(1)妈妈买回3千克菜花,她付出5元,找回了0.5元,每千克菜花多少元?
等量关系:( )-( )=找回的钱
设每千克菜花X元.列方程是:( )
(2)五一班图书有故事书50本,是艺术类书的2倍还多4本,艺术类的书有多少本?
等量关系:( )+( )=故事书50本.
设艺术类的书有x本,列方程是( ).
(3)一块三角形地,面积是280平方米,底是80米,高是多少米?
等量关系:( )=三角形面积
设高是X米,列方程是( ).
(4)一块梯形的面积是450平方米,高30米,上底是15米,下底是多少米?
等量关系:( )=梯形面积
设下底是x米,列方程是:( )
(5)学校买回8副乒乓球拍,每副a元,买回b副羽毛球拍,每副25.8元.
①8a表示( ).
②25.8b表示( ).
③a+25.8表示( ).
④8a+25.8b表示( ).
(6)小红付出20元,买了x本练习本,每本12.5元,应找回( )元.当x=10时,应找回( )元.
《列方程解二、三步应用题》教学反思(整理12篇)




