“谁又土遁了”通过精心收集,向本站投稿了10篇数学思维训练六年级,以下文章小编为您整理后的数学思维训练六年级,供大家阅读。
- 目录
篇1:数学思维训练六年级
数学思维训练六年级
适合六年级的数学思维训练方法是怎么样的?请看下面吧!
1.转化型
这是解决问题遇到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。
在教学中,通过该项训练,可以大幅度地提高学生解题能力。
如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。
照这样卖法,4 人买了后,筐中鱼尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的学生来说,会感到一筹莫展。
即使基础较好的学生也只能复杂的方程。
但经过转化思维训练后,学生就变得聪明起来了,他们知道把买鱼人转换成1人,显然鱼1条;然后转换成2人,则鱼有3条;再3人,则7条;再4人,则15条。
2.系统型
这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。
在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。
如:1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。
象这道题就牵涉到系统思维的训练。
教师可引导学生把10 个数看成一个系统,从不同的层次去考虑、第一层次:找100 的`最接近数,即89 比100 仅少11。
第二个层次:找11 的最接近数,很明显是前面的12。
第三个层次:解决多l 的问题。
整个程序如下:12+3+4+5-6-7+89=100
3.激化型
这是一种跳跃性、活泼性、转移性很强的思维形式。
教师可通过速问速答来训练练学生。
如问:3 个5 相加是多少?学生答:5+5+5=15 或5×3=15。
教师又问:3 个5 相乘是多少?学生答:5×5×5=125。
紧接着问:3 与5 相乘是多少?学上答:3×5=15,或5×3=15。
通过这样的速问速答的训练,发现学生思维越来越活跃,越来越灵活,越来越准确。
4类比型
这是一种对并列事物相似性的个同实质进行识别的思维形式。
这项训练可以培养学生思维的准确性。
如:
①金湖粮店运来大米6吨。
比运来的面粉少1/4吨、运来面粉多少吨?
②金湖粮店运来大米6吨,比运来的面粉少1/4,运来面粉多少吨?
以上两题,虽然相似,实质不同,一字之差,解法全异,可以点拨学生自己辨析。
通过训练,学生今后碰到类似的问题便会仔细推敲,这样就大大地提高了解题的准确性。
篇2:六年级数学思维训练试题
六年级数学思维训练试题
有一堆球,如果是10的倍数个,就平均分成10堆,并且拿走9堆;如果不是10的'倍数个,就添加几个球(不超过9个),使这堆球成为10的倍数个,然后将这些球平均分成10堆,并且拿走9堆。这个过程称为一次操作。如果最初这堆球的个数123456789101112…9899.连续进行操作,直至剩下1个球为止,那么共进行了次操作;共添加了个球。
答案:189次;802个。
解析:这个数共有189位,每操作一次减少一位。操作188次后,剩下2,再操作一次,剩下1。共操作189次。这个189位数的各个数位上的数字之和是
(1+2+3+…+9)20=900。
由操作的过程知道,添加的球数相当于将原来球数的每位数字都补成9,再添1个球。所以共添球
1899-900+1=802(个)。
篇3:六年级数学思维训练题
六年级数学思维训练题
你能继续写下去吗?
3
13
1113
3113
132113
1113122113
观察这些数字,你能写出下一行数字吗?
解答:这些数字是有规律的,下一行是对上一行数字的读法。第一行3,第二行读第一行,1个3,所以13。第三行读第二行,1个1,1个3,所以1113。第四行读第三行,3个1,1个3,所以3113。第五行读第四行,1个3,2个1,1个3,所以132113。第六行读第五行,1个1,1个3,1个2,2个1,1个3,所以1113122113。第七行读第六行,3个1,1个3,1个1,2个2,2个1,1个3,所以下一行数字是311311222113。
篇4:六年级数学思维训练试题
某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。
解:已修的天数:
(720×3-1200)÷80
=960÷80
=12(天)
公路全长:
(720+80)×12+1200
=800×12+1200
=9600+1200
=10800(米)
答:这条公路全长10800米。
篇5:六年级数学思维训练甲虫试题
六年级数学思维训练甲虫试题
在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?
解:“恰好在中间”,我的理解是在蓝甲虫和黄甲虫的中点上。
假设一只甲虫A行在红甲虫的前面,并且让红甲虫一直保持在蓝甲虫和A甲虫的`中点上。那么A甲虫的速度每分钟行13×2-11=15厘米。当A甲虫和黄甲虫相遇时,就满足条件了。
所以A甲虫出发时,与黄甲虫相距12×100-15×(30-20)=1050厘米。
需要1050÷(15+15)=35分钟相遇。
即红甲虫在9:05时恰好居于蓝甲虫和黄甲虫的中点上。
篇6:六年级数学思维训练综合测试题
六年级数学思维训练综合测试题
一、填空题。
1、在每个( )中填入一个数,使下面的一列数从第3个数开始,每一个数等于前面两个数的和,则第10个数是( )。
( ),( ),( ),( ),8,( ),( ),( ),55,( ),……
2、高位数字大于低位数字的四位数 (a>b>c>d)有( )个。
3、春节联欢晚会时,2008盏彩灯(各由一个拉线开关控制)大放光明。小真把编号是6的倍数的开关各拉一次,小聪把编号是19的倍数的开关各拉一次,小明把编号是29的倍数的开关各拉一次。这时有( )盏彩灯是亮的。
4、甲、乙、丙、丁四人共同购买了一台液晶电视。已知甲出的钱是其它三人总钱数的 1/3,乙出的钱是其余三人总钱数的 1/4,丙出的钱是其余三人总钱数的 1/5,丁出了2070元,则这台电视的价格是( )元。
5、设两个两位数的积是一个四位数的算式 “贝贝×京京=北京欢迎”中的文字代表数字1,2,3,4,5,相同文字表示相同的数字那么,贝×京=( );四位数“北京欢迎”=( )。
6、有三个圆心相同的半圆,它们的直径分别为1、3、5,用线段将其分割成9块,如图所示,如果每块中的字母代表着这一块面积,并且相同字母表示相同的面积,那么A:B=( )。
二、填空题。
1、给3/7 的分子加上9,要使分数大小不变,分母应( )。
2、60的20%正好是一个数的75%,这个数是( )。
3、饲养厂鸡的只数比鸭的只数多25%,那么,鸭的只数比鸡的只数少( )% 。
4、小红看一本书,已看的页数与未看的页数的比是1:5,如果再看10页这时已看页数占全书总页数的25%,这本书共( )页。
5、一张圆形纸片的半径是3厘米,一张正方形纸片上的边长是4厘米。两张纸片重叠一部分放在桌面上,覆盖桌面的面积为38平方厘米。问:两张纸片重合部分的面积是( )。
三、应用题。
1、小强骑自行车从甲地到乙地需要3小时,如果先步行2千米,步行速度是骑车速度的. ,则晚到20分钟,那么甲,乙两地相距多少千米?
2、A和B两个工程队,原计划分别承担工程甲和乙,已知工程队A的工作效率是工程队B工作效率的2倍。若A和B分别承担工程乙和甲,此时,完成甲和乙这两项工程的时间比原计划增加50%,则工程甲和工程乙的工程量之比是多少?
3、这4位同学购买编号分别为1~10的10种不同的书。为了节约经费和互相传阅方便,他们约定每人只买其中5种不同的书各一本,且任2位同学不能买全这10 本书;任3位同学必须买全这10本书。若 买的书号为1,2,3,4,5; 买的书号5,6,7,8,9; 买的书号为1,2,3,9,10,求 购买的书的书号是多少?
篇7:六年级数学思维训练类试题
六年级数学思维训练类试题
股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?
解答:
10.65*1%=0.1065(元) 10.65*2%=0.213(元)
10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)
13.86*1%=0.1386(元) 13.86*2%=0.2772(元)
0.1386+0.2772=0.4158; 13.86-0.4158=13.4442(元)
13.4442-10.9695=2.4747
2.4747×3000=7424.1
篇8:六年级数学思维训练类试题
六年级数学思维训练类试题精选
甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的'用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:
所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
解:应按丙,乙,甲,丁顺序用水。
丙等待时间为0,用水时间1分钟,总计1分钟
乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟
甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟
丁等待时间为丙、乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,
总时间为1+3+6+16=26分钟。
篇9:六年级数学下册思维训练题
六年级数学下册思维训练题
1、在每个( )中填入一个数,使下面的一列数从第3个数开始,每一个数等于前面两个数的和,则第10个数是( )。
( ),( ),( ),( ),8,( ),( ),( ),55,( ),……
2、六年级数学下册思维训练题:高位数字大于低位数字的四位数(a>b>c>d)有( )个。
3、下面四个图形都是正方体的展开图,其中每个正方形都标上了颜色。已知正方体相对的两个面上的颜色相同,那给出的展开图中不正确的是( ).(填序号)
4、春节联欢晚会时,2008盏彩灯(各由一个拉线开关控制)大放光明。小真把编号是6的倍数的开关各拉一次,小聪把编号是19的倍数的开关各拉一次,小明把编号是29的倍数的开关各拉一次。这时有( )盏彩灯是亮的。
5、甲、乙、丙、丁四人共同购买了一台液晶电视。已知甲出的钱是其它三人总钱数的,乙出的钱是其余三人总钱数的,丙出的钱是其余三人总钱数的,丁出了2070元,则这台电视的价格是( )元。
6、设两个两位数的积是一个四位数的算式“贝贝×京京=北京欢迎”中的文字代表数字1,2,3,4,5,相同文字表示相同的数字那么,贝×京=( );四位数“北京欢迎”=( )。
7、已知五位数“”能被2008整除,则除得的商是( )。
8、如图,在三角形ABC中,角A=80度,BD=BE,CD=CF,则角EDF=( )度?
9、有三个圆心相同的半圆,它们的直径分别为1、3、5,用线段将其分割成9块,如图所示,如果每块中的字母代表着这一块面积,并且相同字母表示相同的面积,那么A:B=( )。
10、如图,三角形ABC的面积是240平方厘米,D是AC的中点,E是BC的三等分点,则阴影部分的面积=( )平方厘米.
11、小强骑自行车从甲地到乙地需要3小时,如果先步行2千米,步行速度是骑车速度的,则晚到20分钟,那么甲,乙两地相距多少千米?
12、如图,A、B是圆的直径的'两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。已知C离A为60米,D离B为45米,则这个圆的周长为( )米。
13、A和B两个工程队,原计划分别承担工程甲和乙,已知工程队A的工作效率是工程队B工作效率的2倍。若A和B分别承担工程乙和甲,此时,完成甲和乙这两项工程的时间比原计划增加50%,则工程甲和工程乙的工程量之比是多少?
14、这4位同学购买编号分别为1~10的10种不同的书。为了节约经费和互相传阅方便,他们约定每人只买其中5种不同的书各一本,且任2位同学不能买全这10本书;任3位同学必须买全这10本书。若买的书号为1,2,3,4,5;买的书号5,6,7,8,9;买的书号为1,2,3,9,10,求购买的书的书号是多少?
篇10:小学数学思维训练
1.求异型
这是在同一来源中产生各种各样的为数众多的输出的分析性的思维形式,而教师可以引导学生从不同的方面探索问题的多种答案。
如16—10,可以启发学生用不同的叙述方式表述这道算式。
如①16 减去10 等于几?②16减去10 还剩多少?③16 与10 的差是多少?④10 与什么数的和是16?⑤16比10 多多少?⑥10 比16 少多少?⑦16 减去什么数等于10?⑧10 加上什么数等于16?这样,既使学生透彻理解了数量关系,又训练了口头表达能力,更重要的是锻炼了学生的思维能力。
其它如“一题多解”、“一题多变”等就不赘述了。
2.求同型
这是一种进行综合、概括的思维形式。
如上例,教师亦可以用几种不同的叙述方法提出几个问题,让学生归纳出16—10 的算式来。
此外,还可以通过一些异中有同的习题来训练学生的抽象概括思维能力。
如:
①甲乙两人接到加工54 只零件任务,甲每天加工10 只,乙每天加工8只,几天后完成任务?
②一件工程,甲独做10 天完成,乙独做15 天完成,两人合作几天完成?
像这些形异质同的问题,要引导学生自己总结出:工作总量÷工作效率=工作时间。
只有这样,学生才能以不变应万变,解一题会多题,可以起到减轻学生负担的作用。
3.递进型
这是一种属于逻辑判断、推理的思维形式。
例如,教师在讲授“已知一个数的百分之几是多少,求这个数。
”一类题时,叮以引导学生用已掌握的“已知一个数几倍是多少,求这个数”的解题规律去进行逻辑推理,让学生自己发现新出现的百分数应用题的解题规律。
教师不要越俎代疱,否则吃力不讨好,反而妨碍了学生思维能力的提高。
4.逆反型
这是一种敢于和善于突破习惯性思维束缚的反向思维形式。
在数学教学中,可供训练的材料比比皆是,如加减、乘除、通分约分、正反比例等,问题是教师如何善于运用它。
如教验算时,16-10=6,学生习惯地用16-6=10
来验算,这时教师可启发学生用6+10=16 来验算。
经过训练,学生便可知道用加法验算减法、用减法验算加法、用乘法验算除法、用除法验算乘法了。
5.激化型
这是一种跳跃性、活泼性、转移性很强的思维形式。
教师可通过速问速答来训练练学生。
如问:3 个5 相加是多少?学生答:5+5+5=15 或5×3=15。
教师又问:3 个5 相乘是多少?学生答:5×5×5=125。
紧接着问:3 与5 相乘是多少?学上答:3×5=15,或5×3=15。
通过这样的速问速答的`训练,发现学生思维越来越活跃,越来越灵活,越来越准确。
6.类比型
这是一种对并列事物相似性的个同实质进行识别的思维形式。
这项训练可以培养学生思维的准确性。
如:
①金湖粮店运来大米6吨。
比运来的面粉少1/4吨、运来面粉多少吨?
②金湖粮店运来大米6吨,比运来的面粉少1/4,运来面粉多少吨?
以上两题,虽然相似,实质不同,一字之差,解法全异,可以点拨学生自己辨析。
通过训练,学生今后碰到类似的问题便会仔细推敲,这样就大大地提高了解题的准确性。
7.转化型
这是解决问题遇到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。
在教学中,通过该项训练,可以大幅度地提高学生解题能力。
如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。
照这样卖法,4 人买了后,筐中鱼尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的学生来说,会感到一筹莫展。
即使基础较好的学生也只能复杂的方程。
但经过转化思维训练后,学生就变得聪明起来了,他们知道把买鱼人转换成1人,显然鱼1条;然后转换成2人,则鱼有3条;再3人,则7条;再4人,则15条。
8.系统型
这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。
在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。
如:1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。
象这道题就牵涉到系统思维的训练。
教师可引导学生把10 个数看成一个系统,从不同的层次去考虑、第一层次:找100 的最接近数,即89 比100 仅少11。
第二个层次:找11 的最接近数,很明显是前面的12。
第三个层次:解决多l 的问题。
整个程序如下:
12+3+4+5-6-7+89=100
经过像这样的训练,学生就会触类旁通,碰到难题就能产生新的思路和设想。
★ 创新思维训练
★ 小学思维训练试题
数学思维训练六年级(精选10篇)




