考研数学 深度解析线代命题规律

时间:2024-03-19 03:37:52 作者:bigcat 综合材料 收藏本文 下载本文

【导语】“bigcat”通过精心收集,向本站投稿了4篇考研数学 深度解析线代命题规律,以下是小编收集整理后的考研数学 深度解析线代命题规律,希望对大家有所帮助。

篇1:考研数学 深度解析线代命题规律

2013考研数学 深度解析线代命题规律

数学考试大纲和相比,线性代数基本没有变化。线性代数每年考查的题型题量很固定,考查内容也很稳定,以考察计算题为主,相对来说,是同学们复习比较好拿分的科目。下面就线性代数的考查特点给大家做一个分析。

线性代数一共六章的内容。其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的'重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。

线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取得考研数学的胜利。

()

篇2:考研数学新大纲解析:线性代数命题规律

考研数学新大纲解析:线性代数命题规律

线性代数是考研数学考查的重要部分,毋庸置疑,线性代数在考研数学试卷中也将占据不可忽视的重要地位。线性代数一共六章的内容:其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。

行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的`时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。

历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。

线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取在20考研数学的考试中取得佳绩。

篇3:考研数学线代核心考点解析

2013考研数学线代核心考点解析

在考研数学考试中,线性代数占总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。虽然线性代数的考点众多,但要把这5个题目的分值完全收入囊中,需要进行重点题型重点突破。

专家们深入研究了硕士教育对于考生数学素养的要求,总结出考研数学线性代数考试考查概率极高的四个核心考点,供备考者复习参考。

矩阵的秩

矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!

通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求考生深入理解概念,灵活处理理论之间的关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的`理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。

矩阵的特征值与特征向量

矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。

线性方程组求解

对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的结构及有解的条件须熟悉。例如第20题(数学二为22题),已经三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在“AX=b存在2个不同的解”这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了!

二次型标准化与正定判断

二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间!正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。

这四个考点可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习,争取达到线代满分!

篇4:考研数学 线代复习重点解析之行列式与矩阵

考研数学 线代复习重点解析之行列式与矩阵

精彩链接:

2014考研数学 线性代数复习重点梳理

考研数学复习窍门 抓住基础 举一反三

2014考研数学心得:带着兴趣去复习

高数复习重点解析之――微分方程与无穷级数

一、行列式

行列式是线性代数中的基本运算。该部分单独出题情况不多,很多时候,考试将其与其它知识点(矩阵、线性方程组、特征值与特征向量等)结合起来考查。行列式的重点是计算,包括数值型行列式、抽象型行列式和含参数行列式的计算。 考 研 教育|网

结合考试分析,建议考生从行列式自身知识、与其它知识的联系这两方面来把握该部分内容。具体如下:

1. 行列式自身知识

考生应在理解定义、掌握性质及展开定理的基础上,熟练掌握各种形式的行列式的计算。行列式计算的基本思路是利用性质化简,利用展开定理降阶。常见的计算方法有:“三角化”法,直接利用展开定理,利用范德蒙行列式结论,逆向运用展开定理。

2. 行列式与其它知识的联系

行列式与其它知识(线性方程组的克拉默法则、由伴随矩阵求逆矩阵、证明矩阵可逆、判定n个n维向量线性相关(无关)、计算矩阵特征值、判断二次型的正定性)有较多联系。考生应准确把握这些联系,并灵活运用。

二、矩阵

矩阵是线性代数的核心,也是考研数学的重点考查内容。考试单独考查本部分以小题为主,平均每年1至2题。但是矩阵是线性代数的.“活动基地”,线性代数的考题绝大部分是以矩阵为载体出题的,因此矩阵复习的成败基本决定了整个线性代数复习的成败。

该部分的常考题型有:矩阵的运算,逆矩阵,初等变换,矩阵方程,矩阵的秩,矩阵的分块。其中逆矩阵考得最多。

结合考试分析,建议考生从以下方面把握该部分内容:

矩阵运算中矩阵乘法是核心,要特别注意乘法不满足交换律和消去律。逆矩阵需注意三方面――定义、与伴随矩阵的关系、利用初等变换求逆矩阵。伴随矩阵是难点,需熟记最基本的公式 ,并灵活运用。对于矩阵的秩,着重理解其定义,及其与行列式及矩阵可逆性的关系。

辛勤的汗水必将浇开梦想之花。祝福广大考生梦想成真。

考研数学 线代复习重点解析之行列式与矩阵

考研数学之线代特点及备考攻略

考研法律硕士非法学命题规律

名师解读考研数学真题线代概率

考研英语命题思路全面解析

从考研数学线代真题看届的复习

结合实际应用 挖掘考研数学解题规律

考研计算机命题趋势

三字经:孔融让梨故事深度解析

妖猫传深度解析

考研数学 深度解析线代命题规律(精选4篇)

欢迎下载DOC格式的考研数学 深度解析线代命题规律,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档